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Impact of functional synapse clusters on neuronal
response selectivity
Balázs B. Ujfalussy 1✉ & Judit K. Makara1

Clustering of functionally similar synapses in dendrites is thought to affect neuronal input-

output transformation by triggering local nonlinearities. However, neither the in vivo impact

of synaptic clusters on somatic membrane potential (sVm), nor the rules of cluster formation

are elucidated. We develop a computational approach to measure the effect of functional

synaptic clusters on sVm response of biophysical model CA1 and L2/3 pyramidal neurons to

in vivo-like inputs. We demonstrate that small synaptic clusters appearing with random

connectivity do not influence sVm. With structured connectivity, ~10–20 synapses/cluster

are optimal for clustering-based tuning via state-dependent mechanisms, but larger selec-

tivity is achieved by 2-fold potentiation of the same synapses. We further show that without

nonlinear amplification of the effect of random clusters, action potential-based, global plas-

ticity rules cannot generate functional clustering. Our results suggest that clusters likely form

via local synaptic interactions, and have to be moderately large to impact sVm responses.
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Processing of synaptic stimuli targeting the dendritic tree
fundamentally depends on the spatio-temporal structure of
the inputs: spatially distributed or asynchronous inputs are

integrated linearly, whereas spatially close and synchronous
inputs can induce dendritic nonlinearities, such as regenerative
dendritic spikes. These observations motivated the idea of func-
tional synaptic clustering: to elicit dendritic spikes, inputs
showing correlated in vivo activity should target nearby dendritic
locations1. Consistent with this idea, in vivo imaging of the
activity of dendritic spines demonstrated that neighbouring
synapses are co-activated more often than random2–6 suggesting
the involvement of active processes in the formation of functional
clusters. However, both the relative importance of synaptic
clustering compared to other factors influencing neuronal
responses under in vivo conditions and the biophysical
mechanisms leading to their formation are unknown.

In particular, the spatial scale of the synapses showing corre-
lated activity in vivo has been found to be restricted to ~5–10 μm
and involved a small number, ~2–5 dendritic spines2,4–6. This is
substantially less than the ~10–20 inputs required to trigger
dendritic Na+ or NMDA spikes (characteristic for thin branches)
under in vitro conditions7–10 leaving the potential impact of the
clusters elusive. The high background activity, characteristic for
the in vivo states, can markedly change the integrative properties
of the cell11–13, but it is not clear how it influences the effect of
functional clustering, i.e., whether the facilitation of dendritic
spikes14, or other effects, such as saturation15, shunting7,16 or
increased trial-to-trial variability17 are stronger.

The formation of small functional synapse clusters likely
involves activity-dependent synaptic plasticity mechanism(s)18,19.
Synaptic plasticity is influenced by both global (i.e., cell-wide) and
local (i.e., dendritic) processes, and how these factors interact to
generate functional clustering is not known. On one hand, several
lines of evidence indicate that clusters can be generated through
local plasticity mechanisms. First, synaptic plasticity has been
shown to be driven by local synchrony of the inputs3. Second,
local cooperative synaptic plasticity mechanisms have been
described in dendrites acting independently of the somatic output
of the neuron on the spatial scale of synaptic clustering, i.e., 5–10
μm20,21. Finally, functional clustering was not restricted to inputs
showing correlated activity with the soma5. On the other hand,
theoretical considerations argue22,23 and in vivo experimental
evidence demonstrates24 that the somatic output of the neuron
influences plasticity of the incoming synapses. Global plasticity
may strengthen functional synaptic clustering if co-activation
of clustered synapses facilitates somatic action potentials that,
back-propagating to the dendritic tree, can reinforce these
synaptic clusters. Importantly, this global scenario is expected to
require the synaptic clusters to control global synaptic plasticity
by driving the output of the cell via the amplification of their
postsynaptic effect by local dendritic nonlinearities. Global plas-
ticity can not only strengthen existing clusters but may also
contribute to the formation of the synapse clusters if even ran-
domly occurring, small synaptic clusters can trigger dendritic
nonlinearities.

In this paper we first demonstrate that global plasticity
mechanisms can indeed lead to functional synaptic clustering
when synaptic clusters can influence the somatic response. Next
we develop a novel analysis method to estimate the effect of
synaptic clustering on the somatic response of a biophysical
model neuron under in vivo-like conditions. Using our method
we show that, when the connectivity is unstructured, small
synaptic clusters do not influence the sVm response of CA1 and
L2/3 pyramidal neuron models and thus global plasticity can not
be responsible for the formation of synaptic clusters in these cell
types. We further show that assuming uniform synaptic strength,

10–20 synapses per cluster are required to achieve reliable output
tuning, but changing the strength or the number of inputs has a
stronger effect on the neuronal output. Finally we demonstrate
that the increase of the background activity during hippocampal
sharp waves (SPW) paradoxically decreases the effect of synaptic
clustering on the sVm, which effect was partially alleviated when
the clusters innervated strongly excitable dendritic branches.

Results
Clustering via global plasticity needs local nonlinearities. To
examine the theoretical conditions of creating functional synaptic
clusters via global mechanisms, we first turned to a simplified
neuron model equipped with 10 nonlinear subunits, corre-
sponding to idealised dendritic branches (Methods, Fig. 1a) and
simulated structural synaptic plasticity in the model. The model
received 100 synaptic inputs from 10 functional presynaptic
ensembles with winner-take-all dynamics, representing groups of
place cells with non-overlapping place fields. The plasticity of
synapse i was controlled by a synapse-specific factor ϕi(t) repre-
senting biochemical processes stabilising the synapse. We chan-
ged ϕi(t) depending on the synaptic input si and the global output
of the cell, r(t):

ΔϕiðtÞ ¼ rðtÞ α siðtÞ � βð Þ ð1Þ
where α and β are parameters controlling the amount of poten-
tiation and depression, respectively. When ϕi(t) ≤ 0 (i.e., when the
synapse was typically not coactive with the soma), the synapse
was replaced by an other input selected randomly from the pre-
synaptic ensembles (Methods). By changing the shape of the
subunit nonlinearity (Fig. 1b) we could vary the contribution of
local nonlinear integration to the neuronal response (Fig. 1c).

We then simulated plasticity starting from a random initial
connectivity between the presynaptic ensembles and the subunits,
and compared the developing innervation patterns with a shuffled
control. As expected, when subunit nonlinearities were weak, and
thus randomly occurring synaptic clusters did not have an
additional contribution to the neuronal output (Fig. 1c, orange),
the connectivity pattern remained random (Fig. 1d, e, orange).
However, when the effect of accidentally formed clusters was
boosted by strong subunit nonlinearities (Fig. 1b, green), and thus
subunit nonlinearities contributed significantly to the neuron’s
output (Fig. 1c, green) the connectivity pattern became
significantly non-random (Fig. 1d, green): inputs from one
ensemble became dominant within a subunit at the expense of
other ensembles. This heterogeneity in the input tuning was
reflected by the increased variance of the ensemble size within
branches compared with shuffle control (Fig. 1e). Thus, the same
global plasticity process led to the formation of functional
synaptic clusters when subunit nonlinearities were strong.

These simulations demonstrated that functional clustering can
be achieved or reinforced via global plasticity mechanism when
local nonlinearities contribute to the neuronal response varia-
bility. In the following sections we investigate whether local
dendritic nonlinearities in cortical pyramidal neurons are
sufficiently strong to amplify the effect of input clusters and to
control the neuronal responses under realistic input conditions.

Random synaptic clusters have no impact on somatic respon-
ses. Even with unstructured connectivity, co-tuned synapses may
be located near each other in dendrites by chance. First, we
measured the impact of such randomly occurring synapse clusters
to trigger dendritic nonlinearities and to influence the somatic
response. To estimate the impact of functional synaptic clustering
under in vivo-like conditions in neurons with complex mor-
phological and biophysical properties, we developed a novel

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15147-6

2 NATURE COMMUNICATIONS |         (2020) 11:1413 | https://doi.org/10.1038/s41467-020-15147-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


analysis termed the decomposition of response variance (Meth-
ods). In short, we simulated a biophysical model neuron whose
integrative properties have been fitted to in vitro data, and sti-
mulated it with input patterns matched to the input the neuron
receives under behaviourally relevant in vivo conditions via
excitatory and inhibitory synapses distributed throughout the
entire dendritic tree. We recorded and analysed the biophysical
model’s sVm response while manipulating the variability of the
input and the fine-scale arrangement of the synapses.

We used a detailed model of a CA1 pyramidal cell25 (Methods)
that reproduced several somatic and dendritic properties of these
neurons measured under in vitro conditions (Supplementary
Fig. 1a–g), including the generation and propagation of Na+

action potentials at the soma and along the apical dendritic
trunk25; the generation of local Na+ spikes in thin dendritic
branches8; amplitude distribution of synaptic responses26; non-
linear integration of inputs via NMDA receptors8 (NMDAR); the
similar voltage threshold for Na+ and NMDA nonlinearities8 and
the major role of A-type K+ channels in limiting dendritic
excitability8,27.

After validating the biophysical model, we stimulated the
neuron with synaptic input patterns characteristic for the
hippocampal population activity under natural conditions
(Methods). Specifically, we simulated the activity of 2000
excitatory and 200 inhibitory presynaptic neurons during the
movement of a mouse in a 2-m long circular track (Fig. 2a, b).
The excitatory neurons exhibited a single idealised place field,
were modulated by theta oscillation and showed phase preces-
sion28 (Supplementary Fig. 1h, i). As about 10% of hippocampal
CA3 neurons show location selective activity in a given
environment29,30, the activity of the simulated cells accurately
represents the CA3 inputs received by the a postsynaptic CA1
neuron under in vivo conditions (Methods). Inhibitory inter-
neurons were modulated by theta oscillation31 but were spatially
untuned32. Importantly, the biophysical model showed place-
selective activity in response to the synaptic inputs, with several
features of the sVm activity falling in the physiological range33

(Supplementary Fig. 1j–l). Initially we chose unstructured
connectivity between the inputs and the postsynaptic dendritic
tree and studied how the sVm response of the neuron was
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Fig. 1 Global plasticity can lead to functional clustering. a Input integration in a simplified neuron model. Left: Presynaptic inputs (N= 100, only 6 shown)
divided into 10 discrete ensembles (colours; 3 shown). The firing rate (lines) of the ensembles switched between a low and a high activity state, and the
activation of a particular ensemble corresponded to a specific spatial location. Spike counts (symbols) were sampled from a Poisson distribution in 100 ms
bins, corresponding to theta cycles. Right: Each of the 10 dendritic subunits (2 shown) first integrated the incoming spike counts (+ sign) and then applied
a pointwise nonlinearity (yellow sigmoidal function) modelling dendritic spikes. The output of the neuron was the sum of the inputs from all branches. b By
changing the parameters of the sigmoid subunit nonlinearity we could interpolate between near-linear (orange) and strongly supralinear (green)
integration. c Variance of the postsynaptic tuning curve (mean response to the activation of the 10 ensembles) with near linear and supralinear subunits.
Symbols show mean and SEM of N= 100 input connectivity, horizontal line indicates the variance expected from trial-to-trial variability, ς2∕N (Methods).
Bottom: schematics illustrating the connectivity of the inputs and the output of the cell when the same number of inputs is selected from each ensemble
(uniform input condition, Methods) with 2 subunits and 3 ensembles. d The probability that the observed connectivity pattern is consistent with random
innervation with linear (yellow) and supralinear (green) subunits. The connectivity becomes significantly non-random after ≈200 time steps in the case of
supralinear subunits (green). Note the logarithmic x and y axis. Green and orange lines indicate moving average. Insets show the identity of the presynaptic
ensembles (colours and symbols) targeting the 10 dendritic subunits (horizontal rows) in one typical neuron at the beginning of the simulations (top) and
at the most clustered stage (bottom). e Variance of the cluster size was larger than in the shuffled control in the model with supraliner subunits, indicating
the presence of functional clustering.
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affected by small functional synaptic clusters (typically
2–4 synapses, depending on the definition of the synaptic cluster,
Supplementary Fig. 2) occurring randomly under these
conditions.

We observed considerable variability of the sVm response both
across trials (trial-to-trial variability) and along the track (tuning
curve variability; Fig. 2c, d). To evaluate the contribution of
synaptic clustering to the total variability, we compared its effect
to other components contributing to the total variance of the
neuronal response. In particular, the sVm response variability can
be attributed to three separate factors (Fig. 2d): (1) trial-to-trial
variability associated with stochastic biophysical processes (e.g.,
spiking and synaptic vesicle release) modelled as a Poisson
process here (Methods); (2) tuning curve variability caused by
variations in the inputs active along the track, including the
precise number of presynaptic neurons with place fields at a given
location, their maximal firing rates or their synaptic strengths; (3)
tuning curve variability attributed to dendritic factors, i.e.,
differential spatial distribution of inputs active along the track
including small-scale functional clustering or large-scale spatial
heterogeneities (e.g., proximal vs. distal dendritic location).
Importantly, in our simulations we could separate the effect of

these factors by simple manipulations of the input conditions (i.e.,
the strength of the synapses and the location and amplitude of the
presynaptic place fields; Fig. 2f, left) and the synaptic connectivity
(i.e., the spatial arrangement of the synapses along the dendritic
tree; Fig. 2f, right).

We first measured the contribution of the input and dendritic
factors together on the variance of the tuning curve under
random input conditions (Fig. 2b, f, input place field parameters
varied within physiological range; Methods), and random
connectivity using 10 independent synaptic configuration pat-
terns. We found that the tuning curve varied considerably along
the track (Fig. 2d) and we compared this variability to the trial-to-
trial variance (ς2) estimated in N= 16 trials. The tuning curve
variability was consistently larger than the lower bound imposed
by the trial-to-trial variability (ς2∕N, Fig. 2k, random input,
random connectivity; Methods) indicating a significant contribu-
tion from inputs and/or dendritic factors.

Second, we eliminated the effect of dendritic factors on the
response variability by rearranging synapses throughout the
dendritic tree to minimise the correlation between the activity of
nearby synapses (balanced connectivity, Fig. 2f, Supplementary
Fig. 3 and Methods). In the balanced connectivity the functional

2200
2000

a f

g

h

i

j k l

b

c

e

d

0

Random inputs

Input order along the track

Input
random

Uniform

Uniform inputs

1 2 3 4 5 6 7 8 9 10 11 1312

Response to random inputs, random connectivity

Response to uniform inputs, random connectivity

Response to random inputs, fully balanced connectivity

Response to uniform  inputs, fully balanced connectivity

Input

R
an

do
m

U
ni

fo
rm

Random

D
en

dr
iti

c
In

pu
t

D
en

d 
&

 in
p

D
en

d 
+

 in
p

C
lu

st
er

in
gUniform

Balanced

R

L: Locally
G: Globally
F: Fully

L G F R L G F

Balanced

Balanced (L: locally; G: globally; F: fully)

R - random
Connectivity

8

4
4

7
7

10 13 16 19 22 25 28 31 34 37 40 mod
10 0 3 6 9 12 2 5 8 11

13
1

11 12 13 6 3 2 5 4 1 10 9 7

Input
Connectivity

0.02
0.12 0.10

0.08

0.06

0.04

0.02

–0.02

0.00

0.08

0.04

0.00

0.01

V
ar

ia
nc

e 
(k

H
z2 )

V
ar

ia
nc

e 
(m

V
2 )

V
ar

ia
nc

e 
(m

V
2 )

0.00

Tuning curve Factors

Tuning curve variance: input (2) and dendritic (3) factors

Trial-to-trial variance (1)

Response

Average

Slow V
m

Tuning curve

Filtered spike counts 0.5 kHz

1 s

0.5 kHz

1 s

1 mV

1 s

1 mV

1 s

1 mV

1 s

Average

In
hi

bi
to

ry
E

xc
ita

to
ry

�2

�2

�2

N

�2

N

Fig. 2 Random synaptic clusters have small impact on neuronal tuning. Source data are provided as a Source Data file. a Activity of the 2000 excitatory
(orange, ordered by the place field location) and 200 inhibitory (blue) inputs in a single lap on the circular track. Inset: Morphology of the modelled CA1
pyramidal neuron and spatial distribution of excitatory and inhibitory synapses. b Filtered input spike counts in 16 individual trials (light) and average (dark)
in the random input condition (purple: schematic place fields). c sVm response of the postsynaptic cell to inputs in 16 laps (grey), the average postsynaptic
response (black), the low-pass filtered responses (slow Vm, light purple) and the tuning curve (dark purple) in the random input condition with random
connectivity. d Decomposition of the response variance: trial-to-trial variability (top) and the tuning curve variance (bottom). e Slow Vm response in
individual trials (light) and tuning curve (dark) in the random input condition with fully balanced connectivity. f Schematic for the inputs and connectivities.
Top: ordering of 13 input place cells along the circular track. Colour difference is proportional to place field distance. Left: schematic of the random and
uniform inputs. The size of the symbols correspond to the total input strength at a given location. Right: schematic of random (R) and balanced connectivity
on a short segment of a single dendritic branch. To eliminate clustering, we used a co-prime ordering procedure either locally within branches (L), globally
(G) or fully (F; see Methods; mod is the modulo operator). g Same as b in the uniform input condition. h, i Same as e with uniform inputs and random (h) or
fully balanced (i) connectivity. j Variance of the average filtered input spike count in random and uniform input conditions. Solid line segments show the
lower bound of the variance of the average of 16 laps based on trial-to-trial variability (ς2∕N) and dashed segments indicate trial-to-trial variance. k Tuning
curve variance in the random and uniform input conditions with either random (R) or locally (L), globally (G) or fully balanced (F) connectivity.
l Contribution of dendritic and input factors to response variance. Grey dots in j–l show N= 10 independent simulations with different synaptic
configuration and inputs. Symbols and error bars show mean and SEM.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15147-6

4 NATURE COMMUNICATIONS |         (2020) 11:1413 | https://doi.org/10.1038/s41467-020-15147-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


synaptic clusters are equally absent for all differently tuned
presynaptic ensembles, while dendritic processing in general is
unchanged. In the first step we rearranged synapses only within
individual dendritic branches, removing local synaptic clusters
but otherwise keeping large-scale, global biases intact (locally
balanced connectivity, L). We found that this manipulation did
not change the response variance compared to the random
connectivity (p= 0.38; Wilcoxon signed rank test (W-test),
Fig. 2k), indicating that small functional clusters occurring
randomly had no effect on the neuronal tuning. Next, we fully
rearranged the synapses removing both local clusters and large-
scale inhomogeneities (fully balanced connectivity, F). This
manipulation slightly, but significantly decreased the tuning
curve variance, in spite of the large variability across simulations
(Fig. 2e, k, random vs. fully balanced connectivity, p= 0.03, W-
test). Randomising synapse locations within branches (globally
balanced connectivity, G) did not increase the tuning curve
variance compared to the fully balanced connectivity (Fig. 2k,
global vs. fully balanced connectivity, p= 0.5, W-test).

Third, to isolate and directly measure the effect of dendritic
factors, we eliminated the impact of input factors by setting the
strength of the synapses identical and the total input rate to
constant, but keeping the inputs otherwise unchanged. To achieve
this we fixed the shape of the place fields and organised them
to uniformly tile the environment (uniform input condition,
Fig. 2f, g). This way, the variability of the input was minimised
(Fig. 2j) and thus all remaining variability in the tuning curve was
attributed to dendritic factors. Using random connectivity, we
found that, after eliminating the input factors, the variability of
the tuning curve decreased substantially but the remaining
variability was still larger than ς2∕N (Fig. 2h, k, random
connectivity, uniform vs. random input, p= 0.002, W-test). We
also observed large reduction in the variability between the
10 simulated neurons indicating that the majority of the cell-to-
cell variability was caused by the random selection of inputs.
Rearranging synapses within individual dendritic branches did
not have an effect on the tuning curve variability (Fig. 2k,
uniform input, random vs. locally balanced connectivity, p= 0.77,
W-test). Finally, when uniform input condition was combined
with fully balanced connectivity, the tuning curve variance
became statistically identical to the variance expected from the
trial-to-trial variability (Fig. 2j, uniform input, balanced con-
nectivity vs. ς2∕N, p= 0.77, W-test), confirming that our
manipulations successfully eliminated both input and dendritic
factors. These results were qualitatively similar when we analysed
the raw membrane potential responses at the expected peak phase
of the theta oscillation (data not shown) indicating that our
results are not related to sVm processing. We obtained similar
result with L2/3 pyramidal neurons using inputs matched to
population activity recorded in the visual cortex in vivo
(Supplementary Fig. 4a–e).

From these results we conclude that with unstructured
connectivity, input factors provide a substantially stronger
contribution to the sVm response of CA1 and L2/3 pyramidal
cells than dendritic factors. Moreover, we found that among
dendritic factors, large-scale biases in the synaptic input tuning
have a measurable contribution to the response variability,
but small functional synaptic clusters do not influence
neuronal responses (Fig. 2l). As the output of the neuron is
controlled by these other factors, back-propagating action
potentials are not correlated with the activity of the small
synaptic clusters and thus, synaptic clusters can not be reliably
reinforced via global, Hebbian plasticity (Fig. 1). Our data
therefore supports the need of local synaptic plasticity
mechanisms with low activation threshold for the formation
of synaptic clusters21.

Next we introduce structured synaptic connectivity (synaptic
clusters) and study how they influence the tuning curve of the
neuron.

Larger synaptic clusters can lead to clustering-based tuning. To
systematically study the effect of synaptic clustering we chose a
subset of excitatory synapses that were co-active in the middle of
the track (Fig. 3a) and organised them into clusters of increasing
size (Fig. 3b; Methods). Specifically, we increased the cluster size
from 1 synapse per cluster (no clustering) to 60 synapses per
cluster (maximal cluster size) in 7 discrete steps, and measured
the somatic and dendritic membrane potential response of the
neuron with different levels of clustering to identical, uniform
presynaptic inputs (Fig. 3c top and middle). While we did not
observe a detectable effect of clusters consisting of 2–5 synapses,
when cluster size reached that of 10 synapses, a depolarisation
ramp emerged in the tuning curve at the location where the
clustered synapses were active (Fig. 3c, d) increasing the variance
of the tuning curve (Fig. 3e, bright symbols) and the response
integral (Fig. 3f, bright symbols). Note that the input to the
neuron is identical across the different clustering configurations,
thus the ramp is the somatic signature of nonlinear dendritic
processing of clustered inputs: the tuning is entirely due to input
clustering. Further increasing the cluster size to 20 synapses per
cluster increased the magnitude of the depolarising ramp, but it
also saturated the response (Fig. 3e, f, bright symbols). Omitting
dendritic spines (Fig. 3e, f, dashed grey line) did not change the
minimal cluster size required to achieve reliable tuning. Similarly,
randomly distributing the clustered synapses along the entire
dendritic branch only marginally changed the tuning, confirming
that the fine-scale arrangement of the synapses within a branch
has a minor role in shaping sVm selectivity8 (Fig. 3e, f).

As synaptic factors play an important role in establishing the
tuning of hippocampal place cells34, we compared the effect of
synaptic clustering on the tuning curve with the possible effects of
synaptic plasticity. As a simple model of synaptic changes during
LTP, we doubled the conductance of the clustered synapses and
recorded the tuning curve while changing the level of clustering.
We found that the effect of synaptic plasticity was larger than the
effect achieved by clustering in general (Fig. 3c, bottom; 3e, f, dark
symbols). Similar to the control case, maximal depolarisation of
the tuning curve was achieved at intermediate cluster sizes
(10–20 synapse per cluster, Fig. 3d, bottom) and further
increasing the level of clustering greatly saturated the membrane
potential of dendritic branches receiving clustered inputs,
decreasing the average magnitude of NMDAR current per
synapse. Furthermore, we found that dendritic spines boosted
the effect of LTP (Fig. 3e, f, dashed grey line). Paralleling the
changes in the somatic tuning, the occurrence of dendritic spikes
also increased within the place field in the branches receiving
clustered input (Fig. 3g). We obtained similar results in the L2/3
neuron: clusters of 10–20 synapses lead to maximal responses and
larger clusters yielded saturation (Supplementary Fig. 4f–j).

Our data show that during place cell activity and theta
oscillation, clustering-based tuning emerges in CA1 pyramidal
cells only if connectivity is nonrandom and the clusters are
relatively large. However, neuronal signal integration is highly
dependent on the state of the network12. Therefore in the next
section we examined the effect of synaptic clustering on the
postsynaptic response during hippocampal sharp waves.

Synaptic clustering has small impact during SPWs. Hippo-
campal sharp waves are transient, highly synchronous network
states where a large fraction of the local network becomes
active35. During SPWs, the population activity internally recreates

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15147-6 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1413 | https://doi.org/10.1038/s41467-020-15147-6 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


sequential activity patterns experienced earlier during exploratory
behaviour and theta activity36. We expected the critical cluster
size to be smaller during SPWs than during theta activity, as
elevated excitatory activity can facilitate the generation of den-
dritic spikes14.

We simulated replay of the experienced trajectory, embedded
in an elevated background activity mimicking hippocampal
population activity during SPW-ripples (Fig. 4a). The statistics
of the excitatory and inhibitory inputs, including the population
firing rates, the ripple modulation of the cells and the statistics of
the replay events were matched to in vivo data37–39 (Methods).
We systematically varied the overlap between the replayed
trajectory with the place fields of the neurons giving postsynapti-
cally clustered inputs (Fig. 4a, b). Contrary to our expectations,
we found that the number of action potentials during individual
sharp wave events (Fig. 4c, solid lines) and the amplitude of the
somatic depolarisation (Fig. 4e, bright symbols) were insensitive
of the arrangement of the synapses into functional clusters,
although the time spent above dendritic spike threshold in
dendritic branches receiving clustered input increased with
cluster size (Fig. 4g, bright symbols). Increasing the conductance
of the selected excitatory synapses by a factor of 2 (mimicking
LTP) resulted in both larger dendritic (Fig. 4d, g) and somatic
(Fig. 4e, dark symbols) depolarisation and also a larger output
spike count (Fig. 4c, dashed lines) when clusters were small.
However, when LTP was combined with large functional synaptic
clusters, the advantage of the LTP began to disappear and the
output spike counts and somatic depolarisation amplitudes were
markedly reduced (Fig. 4c, e). Interestingly, the timing of the
action potentials during the SPW correlated with the replayed

input trajectory when the average postsynaptic firing rate was
sufficiently high (Supplementary Fig. 5).

To understand the biophysical mechanisms underlying the
paradoxical effects of functional clustering during SPWs, we
analysed how the local dendritic depolarisation and the average
NMDAR current of a single synapse within a functional cluster
changes with the size of the cluster (Fig. 4d). We could identify
two different mechanisms that contributed to the reduced impact
of clustering during sharp waves. First, local dendritic voltage was
substantially more depolarised during SPWs than during theta
(Fig. 4d, top). Although clustering further increased the local
depolarisation during SPWs, it had only a minor impact on the
average NMDAR current per synapse (Fig. 4d, bottom) as that
was already near-maximal even in the absence of clustering (i.e.,
cluster size= 1). Second, the elevated synaptic conductance load
during SPWs reduced the gain of the neuronal responses such
that similar changes in the input currents had a markedly smaller
effect on the postsynaptic responses7 (Fig. 4h).

These results demonstrate that the impact of synaptic
clustering on the neural response is small during SPWs and can
even be negative when large clusters are combined with LTP and
synaptic saturation becomes the dominant effect.

Strong Na+ spikes can overcome synaptic saturation during
SPWs. Regenerative dendritic Na+ spikes can overcome the
local synaptic saturation and reduced response gain effects
caused by the high input conductance during SPWs and trigger
action potentials when propagating to the soma. Local Na+

spikes were relatively weak in our model with only a minor
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contribution to the somatic responses (Fig. 5a and Supple-
mentary Fig. 6a). However, experimental evidence shows that a
fraction of perisomatic dendrites of CA1 pyramidal cells
expresses strong dendritic Na+ spikes that can efficiently pro-
mote and time somatic AP firing40. Therefore we increased the
excitability of selected dendritic branches and studied the effect
the strong dendritic spikes generated in these branches on the
somatic response during theta and SPWs. Specifically, we
selected Nstrong= 12 terminal branches longer than 60 μm, and,
as a simple proxy for generating stronger spikes, added a hot-
spot of voltage gated Na+ channels by increasing the sodium
conductance 10-fold in the middle 30% of these branches
(Supplementary Fig. 6a). As a result, these branches generated
strong dendritic Na+ spikes ( >2V/s dV/dt spike amplitude
when measured at the soma40) in response to local synaptic
stimulation (Fig. 5a).

We found that the presence of strongly excitable dendritic
branches had only a minimal effect on the subthreshold responses
during theta (Supplementary Fig. 6b, c) although the firing rate of
the cell increased slightly in the presence of LTP when clusters
were large (Supplementary Fig. 6d). However, strong branches
increased both the somatic membrane potential depolarisation
(Fig. 5c, top) and the output spike count (Fig. 5d, top) during
SPWs when they received input from large (Nsyn≥ 20) synaptic
clusters, especially when increased excitability was combined with
LTP (Fig. 5c, d, bottom). The coding of the input trajectory by
spike timing was similar with strong branches to that in control
conditions (Supplementary Fig. 5c–e).

In conclusion, the presence of dendritic branches with strong
Na+ spikes made the CA1 model neuron more sensitive to
clustering during sharp waves, but still relatively large input
clusters were required to make an impact.
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Discussion
Identifying the external sensory and internal biophysical corre-
lates of neuronal tuning has been a longstanding goal in systems
neuroscience41,42. Previous studies estimating the contribution of
dendritic nonlinearities to stimulus selectivity relied on phar-
macological manipulations which also influenced synaptic fac-
tors43–45. Our computational approach offers a novel way to
isolate these effects and measure the contribution of dendritic and
synaptic factors on the neuronal tuning and compare it to the
trial-to-trial variability.

We found that synaptic factors have a dominant role over
dendritic factors in determining neuronal selectivity under a
wide range of behaviourally relevant in vivo-like input condi-
tions both with random and structured connectivity. To ensure
that these factors are correctly estimated, we matched the
synaptic conductances46, the EPSP amplitudes26 and the den-
dritic active conductances to experimental data8,25,40. Stronger
dendritic nonlinearities, such as fully propagating dendritic Na
+ spikes in hippocampal interneurons47 or bistable NMDAR
nonlinearities48,49 could increase the contribution of dendritic
factors. Conversely, other factors, such as larger differences in
the place field properties, greater variability in the synaptic
receptor numbers or correlations between the presynaptic firing
rates and the synaptic strength are expected to increase the
influence of the synaptic factors. In addition, state-dependent
changes in neuromodulation may dynamically regulate the
relative contribution of synaptic inputs and dendritic proces-
sing in vivo50. Finally, weak tuning of the inhibitory
interneurons32,42 could increase the magnitude of the synaptic
factors, while precisely timed branch-specific inhibitory input
could prevent the generation of dendritic spikes51 and thus alter
the dendritic factors.

Local dendritic nonlinearities, in principle, can fundamentally
change the integrative properties of neurons and can also have a
profound effect on the computational capabilities of the circuit.
However, such a large computational effect requires strong local,
branch-specific nonlinearities52 and a large influence on the
global output. This is in contrast with our current and recent
findings that the effect of local dendritic nonlinearities on the
somatic response of the neuron under in vivo-like conditions is
relatively small compared to synaptic factors or global, neuron-
wide nonlinearities, at least in CA1 and L2/3 pyramidal cells13.
On the other hand, our work highlights potentially state-
dependent roles for different types of local dendritic non-
linearities recruited by clustering. While the effect of clustering
was mostly mediated by nonlinear NMDAR current during theta
oscillation, Na+ spikes generated by strongly excitable dendritic
branches rendered neurons sensitive to clustering during SPWs.
This raises the possibility that these complementary forms of
dendritic nonlinearities—having different kinetic characteristics
and overall effects on AP rate and timing—may be activated
under different behavioural states associated with different input
conditions8,53. Multiplexing parallel channels of signal processing
with different spatio-temporal properties within the dendritic tree
can be a powerful computational strategy13, but its characterisa-
tion requires further theoretical and experimental investigations.

Using our simple model we demonstrated that functional
synaptic clusters can be formed and stabilised via global synaptic
plasticity rules only in the presence of strong local dendritic
nonlinearities (Fig. 1). Notably, this mechanism did not generate
clusters composed of functionally homogenous inputs, as global
plasticity stabilises any input irrespective of its location within
the dendritic tree that show correlated activity with a functional
cluster. The interspersion of inputs with a wide range of
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functional properties on individual branches is an important
characteristic of both experimental data5,42,54 and computational
models55 and may thus be a signature of the regulation of
structural synaptic plasticity on various spatial scales.

Importantly, to generate functional clusters by global plasticity
alone, dendritic nonlinearities have to be sufficiently strong with a
low threshold to amplify the effect of small, randomly occurring
clusters and to control the plasticity process, whereas clustering
via local plasticity mechanisms does not necessarily require
dendritic nonlinearities21. We found that synaptic clusters ran-
domly occurring within dendritic branches did not contribute to
the tuning curve variability and thus global plasticity per se is
unlikely to account for the reinforcement of small functional
synaptic clusters. However, global plasticity can reinforce already
existing clusters once they have grown large enough to trigger
nonlinear dendritic integration presumably due to local plasticity
mechanisms. Moreover, global plasticity can also contribute to
the stabilisation of large scale biases in synaptic tuning proper-
ties4 as these factors did have a measurable contribution to the
neuronal tuning curve. Whereas several previous theoretical
studies showed that local synaptic plasticity processes could
gradually generate synaptic clustering1,56–58, our study indicates
their necessity for the initial formation of synaptic clusters. The
complementary role of these iterative structural plasticity pro-
cesses59 and fast, single trial learning34 in the generation of the
feature selectivity of place cells requires further investigations.

Under in vitro conditions the induction of dendritic spikes
requires the near-synchron activation of a sufficiently large
number of inputs8–10,48, but whether inputs occurring in vivo
have the sufficient synchrony to trigger them is debated60,61.
Although the spatial scale of the functional clusters reported
in cortical neurons has been restricted to ~5–10 μm and ~2–5
dendritic spines2,4–6, current experimental techniques do not
allow reliable monitoring of the activity of all synaptic inputs in a
given dendritic branch and thus, these studies may underestimate
the real number of synapses involved in a given synaptic cluster.
Moreover, synapses with selectivity similar to the tuning of a
small cluster on the same branch can be equally efficient in
generating clustering-based tuning as a single, larger synapse
cluster (Fig. 3e, f). These considerations suggest that further
improvements in the experimental techniques and analysis
methods are required to reliably estimate the size and the somatic
effect of in vivo occurring synapse clusters. Furthermore, the
temporal window for interaction between inputs targeting
neighbouring dendritic spines for synaptic plasticity was often
found to be orders of magnitude larger20,62 (≈10 min) than the
synchrony required for nonlinear dendritic integration8 (<10 ms).
Even if the dendritic nonlinearities are too weak to substantially
amplify the neuronal responses to clustered inputs or inputs
are too asynchronous to trigger dendritic spikes, synaptic
clustering could have an important role in reducing the inter-
ference between memories and to promote selective general-
isation via spatially restricting the effect of plasticity-related
molecules20,62,63.

There are several main areas where our results could influence
the current interpretation of experimental data. First, our finding
that small synaptic clusters do not influence the neuronal
responses challenges the prevailing view that the primary func-
tion of synaptic clusters is to trigger dendritic nonlinearities and
enable flexible single neuron representations24–6,18,52,64. Second,
our result that global plasticity can contribute to the weakening of
other synapses when the cell is driven by the activation of clus-
tered inputs can promote new theoretical and experimental
research investigating the interaction between local and global
plasticity rules in shaping neuronal feature selectivity and cluster
formation65. Third, our insights could motivate novel in vivo

experiments both to further quantify the mid-scale organisation
and diversity of synaptic inputs targeting the dendritic tree
(focusing less on the fine-scale within-branch arrangements5,6),
as well as to directly test predictions of our simulations.

One fundamental prediction is that small clusters of synapses
have minimal effect on the response of a neuron under in vivo
conditions. A direct way to test this prediction would be to sti-
mulate a set of inputs of a neuron in vivo in clustered and in
distributed configurations (e.g., by in vivo two photon glutamate
uncaging66) and compare the resulting somatic response.
Another critical insight of our theory is that global plasticity does
not account for reinforcement of small coactive synapse clusters.
This prediction could be tested by a combination of advanced
imaging techniques, whereby one measures the activity of both
small functional synapse clusters and the soma4 and monitors
long-term plasticity of the clustered synapses19. Specifically, our
theory predicts that small clusters of coactive synapses will be
strengthened even if they are uncorrelated with somatic activity.
While currently both experiments are beyond tractability with
available techniques, they could directly test the predictions of
our model in the foreseeable future.

In conclusion, our findings indicate that (1) the selective
responses of cortical neurons are primarily the consequence of
the tuning of their synaptic inputs, (2) functional synaptic clus-
tering matched to local dendritic properties can have additional
role in refining those responses, (3) plasticity of functional
synapse clusters such as those observed in vivo requires local
rather than global mechanisms, and (4) in turn, local plasticity by
small synaptic clusters may lead to powerful tuning of somatic
responses.

Methods
Simplified model for structural plasticity. The simplified model neuron was
composed of 10 dendritic and 1 somatic subunit. The activity of dendritic subunit j
was the nonlinear function of the sum of its inputs:

aj ¼ f
X
i2Sj

si

0
@

1
A ð2Þ

where Sj contains the indices of the presynaptic inputs targeting subunit j and si is
the spike count at input i. We used a sigmoid subunit nonlinearity with parameters
ζ and θ controlling its slope and the threshold, respectively:

f ðxÞ ¼ 1
1þ expð�ζðx � θÞÞ ð3Þ

The activity of the somatic subunit was the sum of the dendritic activations, and
we used a fixed somatic spiking threshold θsp to calculate the binary output of the
cell, r(t).

The inputs were organised into 10 different ensembles each fluctuating between
a low (λ= 1 Hz) and a high (λ= 10 Hz) activity state with only one of the ensemble
active at any given time, and the activation of a particular ensemble corresponded
to a specific spatial location. Spike counts were generated from a Poisson process in
100 ms time bins, corresponding to theta cycles. Inputs were either selected
uniformly (10 from each ensemble, Fig. 1c) or randomly (Fig. 1d, e) from the 10
ensembles.

To model structural plasticity, we used a postsynaptically gated plasticity rule
where the stabilisation of the synapse was controlled by synapse-specific factor 0 ≤
ϕi(t) ≤ 100, influenced by the spike count si of input i and the output of the cell r(t)
(Eq. (1)) with parameters α= 5 and β= 1. We initialised ϕ(0)= ϕinit= 10 for all
synapses and the synapse was replaced by an other input selected randomly from
the presynaptic ensembles if ϕi(t) became ≤0, when ϕi(t) was also reset to ϕinit.

We simulated plasticity with near-linear (θ= 5, ζ= 0.35, θsp= 3.3) and
superlinear (θ= 6.5, ζ= 20, θsp= 0.95) subunit activation functions in 25
independent neurons for 10,000 time bins and analysed the connectivity between
presynaptic ensembles and the subunits. The randomness of the cluster-size
distribution was assessed by first creating 100 mean-matched controls by randomly
shuffling the synapse identities between subunits in each time step. We then
compared the observed ensemble-size distribution with the shuffled data using
Pearson’s Chi-squared Test. Datapoints in Fig. 1d show the P-value of this test for
every 1 s (10 time step). The moving average (solid lines in Fig. 1d) was calculated
from the log of the P-value using a Gaussian filter with σ= 0.3 s.
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Biophysical models. All simulations were performed with the NEURON simu-
lation environment (version 7.4) embedded in Python (version 2.7).

CA1 neuron model: We used a modified version of the CA1 pyramidal cell
model of Jarsky et al.25 to better account for the dendritic processing of synaptic
inputs in CA1 pyramidal neurons 8. The passive parameters of the model were
slightly adjusted to capture the dendro-somatic attenuation of synaptic responses:
Cm= 1 μF cm−2, Ri= 100Ωcm and Rm= 20 kΩcm2 in the dendrites, Rm= 40
kΩcm2 in the soma and in the axon and Rm= 50Ωcm2 in the axonal nodes. The
excitatory synapses were placed on dendritic spines consisting of a spine neck
(length: 1.58 μm, diameter: 0.077 μm) and spine head (length: 0.5 μm, diameter:
0.5 μm) with total neck resistance Rneck ≈ 500MΩ (ref. 67). Since only about 10% of
the spines present in CA1 pyramidal cells were modelled explicitly in our
simulations, the effect of the remaining spines was taken into account by increasing
Cm and decreasing Rm by a factor of 2 in dendritic compartments beyond 100 μm
from the soma.

To replicate important features of dendritic integration of excitatory synaptic
inputs in the model we had to slightly modify the original ion channel parameters.
We focused on local nonlinearities (i.e., Na+ and NMDA spikes) as we assumed
that such spikes are more likely to be engaged by small synaptic clusters than global
regenerative dendritic spikes such as plateau potentials68. Specifically, in order to
increase the threshold for dendritic Na+ spike initiation to a similar value as the
threshold for local NMDA spikes8, the activation curve of the Na+ channels was
shifted by 20 mV in the basal, oblique and tuft branches (but not in the apical
trunk). Furthermore, to prevent the attenuation of NMDAR currents by the
activation of K+ channels after local Na+ spikes, we decreased the density of the K
+ channels in the dendritic branches (Table 1). Finally, in the original model25

action potentials were initialised in the axonal nodes and propagated actively to the
soma. Under in vivo-like synaptic inputs, the high conductance load at the soma
often prevented the generation of full action potentials in the original model and in
these cases axonal spikes appeared as spikelets. To eliminate spikelets we increased
the somatic and decreased the axonal Na+ channel conductance (Table 1).

For the simulations with strongly excitable dendritic branches (Fig. 5,
Supplementary Figs. 5c–e and 6) we selected 12 terminal branches longer than 60
μm, and added a hotspot of voltage gated Na+ channels69 by increasing the sodium
conductance to 0.3 S cm−2 in the middle 30% of those branches.

L2/3 neuron model: For the L2/3 pyramidal neuron model shown in
Supplementary Fig. 4 we used a detailed reconstruction of a biocytin-filled layer 2/3
pyramidal neuron (NeuroMorpho.org ID Martin, NMO-00904) as described
previously13,43. The passive parameters were Cm= 1 μF cm−2, Rm= 7000Ωcm2,
Ri= 100Ωcm, yielding a somatic input resistance of 70MΩ.

Active conductances were added to all dendritic compartments and to the soma
and included the following: voltage-activated Na+ channels (soma: 100 mS cm−2,
dendrite: 8 mS cm−2 and hotspots69: 60 mS cm−2); voltage-activated K+ channels
(10 mS cm−2 soma and 0.3 mS cm−2 dendrite); M-type K+ channels (soma: 0.22
mS cm−2 and dendrite: 0.1 mS cm−2); Ca2+-activated K+ channels (soma: 0.3
mS cm−2 and dendrite: 0.3 mS cm−2); high-voltage activated Ca2+ channels (soma:
0.05 mS cm−2 and dendrite: 0.05 mS cm−2) and low-voltage activated Ca2+

channels (soma: 0.3 mS cm−2 and dendrite: 0.15 mS cm−2). Calcium handling was
modelled by a first-order system representing Ca2+ pumps and buffers with a time
constant of decay of Ca2+ of τ= 28.6 ms and the equilibrium free intracellular Ca2
+ concentration of CCa= 100 nM.

Synapses: The model included AMPA and NMDA excitation and slow and fast
GABAergic inhibition with synaptic conductances modelled as double-exponential
functions. Each excitatory synapse included an AMPA and a NMDA component
which were thus colocalized and always coactivated. Similarly, inhibitory synapses
were composed of a mixture of GABA-A and GABA-B receptors. The parameters
of the synaptic conductances are shown in Table 2 for both the L2/3 and the CA1
neuron model. The voltage dependence of the NMDAR conductance was captured
by the standard sigmoidal activation curve:

gNMDA ¼ �gNMDA 1þ CMg

4:3
e�0:071V

� ��1

ð4Þ

with the Mg2+ concentration beeing CMg= 1 mM and with a slightly steeper

activation than in the original model of Jahr and Stevens70. The maximal
conductance of both the NMDA and AMPA synapses was doubled for the
clustered synapses when we modelled LTP.

We simulated NE= 2000 excitatory and NI= 200 inhibitory synapses in the
CA1 cell and NE= 1920 excitatory and NI= 192 inhibitory synapses in the L2/3
cell. During random connectivity excitatory synapses were placed randomly with a
uniform distribution on the entire dendritic tree of the postsynaptic neuron
(Fig. 2f, Supplementary Fig. 3a).

When we systematically varied the size of the clusters, we selected 240
presynaptic inputs based on the location of their place field (or orientation tuning
in L2/3 cell) and varied the configuration of the corresponding synapses on the
postsynaptic dendritic tree. Specifically, the inputs were ordered by the location of
their place fields (orientation preferences) and were divided into
Nclust ∈ {240, 120, 48, 24, 12, 8, 4} contiguous and disjoint sets of clusters, each
containing Mclust ∈ {1, 2, 5, 10, 20, 30, 60} inputs. The remaining 1760 background
inputs, having tuning curves negatively correlated with the tuning of the clusters,
were placed randomly with uniform density. Clusters were placed on dendritic
branches longer than L= 60 μm by first randomly selecting a branch (with
probability proportional to its length) and then a cluster starting point between the
proximal end of the branch and L− d Mclust μm distance from it. Synapses were
added distally from the cluster starting point with inter-synapse distance of d= 1
μm. This procedure guaranteed that synapses within one cluster target the same
dendritic branch, show maximally correlated activity and that the expected location
of clustered synapses is independent of the cluster size. Note, that selection of long
branches, typically thin terminal dendrites, for the location of clustered synapses
introduces a slight bias for the postsynaptic processing of clustered inputs even
when Mclust= 1.

For the simulations shown with open symbols in Fig. 3e, f the 20 synapses
forming each of the 12 clusters were randomly redistributed along the entire
dendritic branch receiving clustered inputs.

Dendritic branches receiving clustered inputs had higher input rate due to the
presence of additional, background inputs. This was not a problem during theta as
the background activity is relatively low and asynchron in that case, but could be a
substantial concern during sharp waves. To exclude the possibility that synaptic

Table 1 Ion channel densities in the CA1 model.

Na+ (S cm−2) Kþ
DR (S cm−2) Kþ

A (S cm−2)

Apical trunk (<100 μm) 0.04 0.04 minf0:048 ð1þ d=100Þ;0:288g
Apical trunk (>100 μm) minf0:04 ð1þ d=1000Þ;0:06g 0.04 minf0:048 ð1þ d=100Þ;0:288g
Other dendrites 0.03 0.02 0.02
Soma 0.2 0.04 0.02
Axon hillock 0.04 0.04 0
Axon initial segment 0.04 0.04 0.02
Axonal inter-nodal segment 0.04 0.04 0.004
Axonal nodes 15 0.04 0.004

The distance along the trunk, d, is measured in μm. As in Jarsky et al.25, the dendritic segments closer than 100 μm to the soma contained Kþ
A channels with lower half-inactivation voltage27.

Table 2 Synaptic parameters used in the models.

CA1 model L2/3 model

AMPA τ1 0.1 ms 0.1 ms
τ2 1 ms 2ms
gmax 0.6 nS* 0.5 nS
Erev 0 mV 0mV

NMDA τ1 2 ms 2ms
τ2 50ms 40ms
gmax 0.8 nS* 0.8 nS
Erev 0 mV 0mV

GABAfast τ1 0.1 ms 0.1 ms
τ2 4 ms 4ms
gmax 0.7 nS 0.7 nS
Erev −65mV −70mV

GABAslow τ1 1 ms 1 ms
τ2 40ms 40ms
gmax 1.2 nS 0.33 nS
Erev −80mV −85mV

*The maximal conductance of the AMPA (NMDA) synapses was chosen randomly from a
uniform distribution between 0.15 (0.2) and 1.05 (1.4) nS for the CA1 model during random
inputc conditions, respectively.
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saturation during SPWs is caused by the increased input density at clustered
branches, we generated 2000 (instead of 1760) background input locations
distributed uniformly and selected the Mclust background inputs closest to the
location of the clustered synapses. These background inputs did not participate in
the replay of any particular trajectory but only fired at elevated baseline rate during
SPWs (see the section Inputs below). Conversely, the clustered synapses did not
show an elevated baseline activity during SPWs but only participated in the
trajectory replay. Using this procedure we achieved a similar average input level for
branches receiving clustered vs. non-clustered inputs. The data presented in this
paper used this more uniform input distribution during SPWs, but similar results
were achieved when clusters were simply added to the background (data not
shown).

Inhibitory synapses were divided into two groups with 80 synapses targeting the
soma (and the apical trunk in the case of the CA1 neuron) and the remaining
synapses were distributed randomly along the entire dendritic tree.

Balanced connectivity: To achieve a fully balanced synaptic connectivity
(denoted as F in Fig. 2) in the case of the hippocampal pyramidal cell, we first
applied co-prime reordering procedure on the N= 40 presynaptic ensembles (see
below) that minimised correlation between the neighbouring ensembles. To
achieve this, we selected base numbers α relative prime to N and generated an
arithmetic progression with difference α, dividing the elements of the sequence by
N and taking the remainder (Fig. 2f). In the case of α= 3 and N= 10 a potential
sequence is:

f2; 5; 8; 11; 14; 17; 20; 23; 26; 29g mod 10 ¼ f2; 5; 8; 1; 4; 7; 0; 3; 6; 9g
In this sequence the distance between neighbouring elements is constant, so the
similarity between any pair of neighbouring input is identical and thus input
correlations are the same within any contiguous subset of the sequence. Also note
that the sequence is not repeating until N elements. We chose α= 9 that minimised
correlation between inputs within ~40 μm (9 synapses).

Next, we arranged the 2000 inputs into a single sequence where cells from the 4
different different ensembles were selected according to the ordering defined above.
Finally, we mapped this sequence to the dendritic tree of the neuron starting from
the soma and following each subtree towards the distal end sequentially with
constant distance (d=4.877 μm) between the synapses. This defined the fully
balanced (F) connectivity (Supplementary Fig. 3d).

In the locally balanced connectivity (L in Fig. 2) we started with a random
connectivity and applied the co-prime reordering procedure independently to
individual dendritic branches. Specifically, we ordered the Ni synapses targeting
branch i according to their place field location, selected a co-prime αi ≈Ni∕4 and
rearranged the inputs within branch i while also equalising the distance between
neighbouring synapses (Supplementary Fig. 3b).

In addition, we also tested a globally balanced connectivity (G in Fig. 2), where
we started from the fully balanced connectivity, and randomised synapse location
and the ordering of the synapses within each branch separately (Supplementary
Fig. 3c).

Visual cortical inputs targeting the L2/3 neuron model had 4 different features:
orientation preference, phase preference, orientation selectivity and response
linearity71. We co-sorted inputs to achieve an input distribution that is
approximately balanced with respect to all 4 features at the same time (for details,
see legend of Supplementary Fig. 3e–h).

Inputs. To study the impact of synaptic clustering under in vivo-like conditions in
the biophysical models we carefully matched the inputs of the models to the
synaptic inputs experienced by these neurons in vivo. Inputs, corresponding to
synaptic release events, were generated by a Generalised Linear Model (GLM)
tuned to a number of different external and internal features72,73. Specifically, the
presynaptic input count at time t for synapse i were generated from a Poisson
process with rate λit :

sit � PoissonðΔt λitÞ ð5Þ
The firing rate λit of the presynaptic neuron i at time t was defined as

λit ¼ expðaitÞ þ λi0 ð6Þ

ait ¼ wi
ϕ ϕðxtÞ þ wi

ψ ψðtÞ þ wi
χ χðsiÞ ð7Þ

where ait is called the activation and ϕ(xt), ψ(t) and χ(si) denote the activation of
basis functions tuned to external inputs (location or stimulus orientation and
phase), internal processes (phase of theta or gamma oscillation) or the output of
presynaptic neuron i, respectively. The tuning properties of a particular input is set
by the nature of these basis functions, varied among different conditions (theta or
SPW for CA1 and gratings for L2/3) and the parameter vector wi specific for each
cell i. The term wi

χ χðsiÞ captures the effect of past events on the input rate72 and
was included to model a short (~5 ms) refractory period in the inputs.

Although the rate of each input was a deterministic function of time, the
synaptic events were generated by a stochastic process accounting for variability in
spike timing and stochastic vesicle release. This allowed us to generate multiple
trials with identical input rates to estimate the trial-to-trial variability. With both

the balanced and the random connectivity we generated 10 different synaptic
arrangements and input populations and simulated 16 trials with each of them.

Although the framework is identical for the different conditions, we describe
our choice for the basis functions and the parameters separately in the following
sections. Inputs were generated using custom written programmes in R.

Hippocampal inputs during theta: To simulate the inputs to the CA1 pyramidal
cell we focused on the population activity of the presynaptic CA3 pyramidal
neurons and ignored inputs arriving from elsewhere, including the entorhinal
cortex. A single CA1 pyramidal neuron receives Nsyn ≈ 20,000 excitatory
synapses74, and ≈10% of the presynaptic CA3 cells have place field in a typical
environment29,30. Therefore we simulated NPC= 2000 place cells each exhibiting a
single place field in the environment, while the activity of the other 18,000 cells was
incorporated in the increased baseline firing rate of the simulated place cells.

In the simulations the animal was moving at a constant 20 cm/s speed on a 2 m-
long circular track. Excitatory neurons had a single, idealised place field that
showed phase precession relative to the ongoing theta oscillation (constant 8 Hz
frequency). Phase precession was modelled using basis functions co-tuned to
spatial location and theta phase. Specifically, we had Nbasis=Nx ⋅Nψ= 160
Gaussian basis functions with Nx= 40 spatial and Nψ= 4 temporal components
uniformly tiling the space with standard deviation σx= 5 cm and σψ= π ∕ 2 radians.
The parameter w was optimised numerically to match the phase precession data
obtained from Skaggs et al.28 with the diameter of the place field being d ≈ 30 cm
(Supplementary Fig. 1i). To tile the space evenly, we shifted the parameter wx along
the spatial dimension either randomly (Fig. 2b–e; 10 presynaptic populations of
2000 place cells with random place field properties) or uniformly (Fig. 2g–i, 40
ensembles and 50 cells with identical tuning in each ensemble). The average firing
rate of the presynaptic place cells was either chosen randomly from a gamma
distribution37 with shape and rate parameters α= 6 and β= 6 (random) or was
identical 1 Hz for all neurons (uniform) corresponding to a 5 Hz presynaptic firing
rate combined with the low release probability of hippocampal synapses75 (prel ≈
0.2). To model spatially untuned activity of non-active place cells the parameter λ0
was set to 1 Hz leading to the average input rate r̂PC ¼ 2 Hz for the simulated place
cells. The total event rate of the excitatory inputs was thus rtot ¼ NPC � r̂PC ¼ 4 kHz
matching the event rate a pyramidal neuron is expected to receive in vivo,
rtot ¼ Nsyn � r̂ � prel � 4 kHz , where r̂ � 1 Hz is the average firing rate of a
randomly chosen hippocampal pyramidal neuron76.

Hippocampal inputs during SPW: To simulate SPW events we embedded
elevated hippocampal population activity of TSPW= 100 ms duration in a low
activity baseline state with independent presynaptic activity at a constant 0.8
Hz event rate. During the SPW the inputs were driven by a simulated spatial
trajectory corresponding to memory replay36. The presynaptic cells had a spatial
tuning and were also modulated by ongoing 150 Hz ripple oscillation35.
Specifically, we used Nbasis=Nx+Nψ= 44 Gaussian basis functions with
independent spatial (Nx= 40) and temporal (Nψ= 4) components. The place fields
had a diameter of d ≈ 50 cm and were distributed uniformly across the entire track
and the peak firing rate of the place cells was identical.

The average number of spikes fired by a rodent hippocampal pyramidal cell
during an individual sharp wave event of TSPW= 100 ms duration is Nsp ≈ 0.4
(ref. 37), leading to a Nsyn ⋅ Nsp ⋅ prel= 1600 synaptic events received by the
postsynaptic cell. During the SPW a part of the previously experienced trajectory
of the animal is replayed with an increased speed of v ≈ 6 m s−1 (ref. 38). In our
2-m long environment ≈30% of the track is replayed in each SPW by the
Nreplay ≈ 600 neurons having place fields overlapping with the replayed
trajectory. We assume that these place cells are firing at an increased mean rate
of rreplay ≈ 60 Hz and are thus responsible for Nreplay ⋅ rreplay ⋅ TSPW ⋅ prel=
720 synaptic events, while the remaining 880 inputs are uniformly distributed
across the entire presynaptic population (19,400 cells, out of which we simulated
only 2000) by increasing the baseline firing rate of the place cells uniformly
during the SPW period.

For the 240 inputs participating in synaptic clusters, the constant baseline firing
was not increased, as these inputs represented input from a single presynaptic
neuron. Instead, we selected the 240 of the 2000 not clustered synapses with
location closest to the location of the clustered inputs, and these synapses received
inputs with only elevated baseline activity during SPW but showed no spatial
tuning.

The firing rate of the inhibitory inputs targeting the perisomatic (dendritic)
region switched from rbasketbg ¼ 10 Hz (rdendbg ¼ 5 Hz) baseline rate to

rbasketSPW ¼ 30 Hz (rdendbg ¼ 15 Hz) during SPWs, respectively. Both excitatory and
inhibitory inputs were modulated by the 150 Hz ripple oscillation with the ratio
between their peak/minimal firing rate being rpeak ∕ rmin ≈ 3 (ref. 31). The
depolarisation amplitude and the ripple modulation of the somatic membrane
potential during SPWs in the biophysical model was consistent with data recorded
from awake mice39,77.

We varied the starting position of the replayed trajectory in steps of 10 cm
changing the overlap between the represented trajectory and the place field of the
clustered neurons and analysed the average somatic response during SPWs in 16
independent trials.

L2/3 inputs: To generate in vivo-like synaptic inputs to a L2/3 pyramidal cell we
simulated the activity of cortical and thalamic neurons in response to drifting
grating stimuli, widely used to study neuronal coding in the visual system. Since the
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activity of these two populations is reasonably similar under these conditions78, we
did not treat them separately.

We modelled the response of visual neurons to gratings moving at 2 cycles/s
with 16 different directions each shown for 1.5 s. The activity of each input was
tuned to the direction and the phase of the stimulus with the distribution of firing
rates, orientation selectivity, direction selectivity, response linearity (phase
modulation depth divided by the mean firing rate; F1/F0 calculated as in Niell and
Stryker71) and the width of the tuning curve matched to experimental data71,78

(Supplementary Fig. 4b). We used Nbasis=Nθ+Nφ+Nψ= 28 circular Gaussian
basis functions with independent components responsible for the tuning to motion
direction (Nθ= 16), phase (Nφ= 6) and gamma oscillation (Nψ= 6). Cells were
divided into 16 groups based on their direction preference, and within each group
we simulated 120 neurons with 5 different directional tuning selectivity (including
direction-selective and orientation-selective cells), 6 different preferred stimulus
phase and 4 different phase tuning selectivity, including simple cells (showing
marked phase preference) and complex cells (having little phase preference). In the
random condition (Supplementary Fig. 4d, e, random inputs) the orientation and
stimulus phase preference of the cells were selected randomly with uniform
probability and their average firing rate was chosen randomly from a gamma
distribution with shape and rate parameters α= 2 ⋅ 4.17 and β= 2. In the uniform
condition (Supplementary Fig. 4, except panels d, e, uniform inputs, f–j), each
presynaptic input represented a unique combination of these features with identical
mean firing rate r̂LGN � 4:17 Hz. The total excitatory input rate of the L2/3 model
neuron was around 8 kHz.

Inhibitory inputs had weak orientation tuning, showed complex cell-like phase
preference and had a mean firing rate of rinh ≈ 30 Hz. We generated 10 different
presynaptic populations with either uniform or random tuning parameters and
simulated 16 trials with each population.

Decomposition of response variance. The subthreshold membrane potential
response r(x, k) of the postsynaptic neuron at location x in trial k can be
approximated by the sum of stimulus-dependent (s) and dendritic (d) factors, each
factor potentially contributing both to the tuning curve (μ) and to trial-to-trial
variability (Φ) of the responses:

rðx; kÞ ¼ μsðxÞ þΦsðx; kÞ þ μdðxÞ þΦdðx; kÞ ð8Þ
where μi(x) captures the systematic, location dependent changes in the mean
response and Φi(x, k) is the drive fluctuating from trial-to-trial that is associated
with the given factor. Specifically, Φs is associated with fluctuation in the total input
(presynaptic spike counts) arriving to the cell while Φd denote fluctuations in the
input related to the location of the activated synapses within the dendritic tree
brought about by passive (e.g., cable filtering) and active (e.g., location dependent
activation of NMDA receptors) mechanisms, as well as functional synaptic clus-
tering (nonlinear interactions between neighbouring active inputs). Importantly,
we assume that the means of the trial-to-trial fluctuations are zero and their
variances are constant:

Ex;k½Φs� ¼0

Varx;k½Φs� ¼ς2s

with similar equations for Φd. Note, that our derivation can be generalised by
defining x as a point in a low dimensional manifold of the presynaptic firing rates.

We defined these factors to have a linear effect on the somatic response
(membrane potential), so biophysically these factors correspond to currents
flowing into the soma of the neuron. Note, that these factors do not correspond to
separate biophysical processes: during the sustained synaptic background activity,
the activation of a single additional synapse contributes to both dendritic and input
factors as it increases the total input count (input factor) but the local
depolarisation it causes also modulates input current flowing though the
neighbouring synapses (dendritic factor). Also note, that in general, these factors
are not independent of each other, as larger input strength (Φs) is potentially
associated with larger NMDAR current or stronger interactions within the
clusters (Φd).

In contrast to our simplified model used for studying plasticity, these factors can
not be directly measured in real neurons or in a biophysical model. Therefore,
instead of pinpointing the effect of these factors on a trial by trial bases, we were
aiming at identifying their average contribution to the neuronal response
variability. To achieve this, we derived a novel analysis technique, the
decomposition of neuronal response variance where we selectively modified the
contribution of the individual factors and measured their effect on the response in
a biophysical model.

To estimate the contribution of the specific factors, we performed 4 different
types of simulations. In the first scenario we used random inputs and random
connectivity and thus all factors were present and the sum of their contribution to
the response variance was measured (random case).

In the second scenario, which we called the uniform input scenario μs(x)= μs,
so the mean total input was independent of the position, and all fluctuations in the
response were caused by either trial-to-trial variability or systematic changes in the
dendritic factors. Moreover, we assume that the dendritic factors were identical in
the uniform and in the random case, that is, we assumed that changing the input
heterogeneity did not change the contribution of dendritic factors. This is a critical

assumption that is not justified in most cases (e.g., when large, local fluctuation in
the inputs can boost dendritic nonlinearities), but can be a reasonably good
approximation when changes in the input strength are relatively small. Therefore
we used this analysis only when the connectivity of the synapses was random or
balanced (i.e., not clustered), and therefore we did not expect large, systematic
fluctuations in the synaptic drive on any given dendritic branch. In the uniform
scenario Eq. (8) reads as:

rυðx; kÞ ¼ μs þΦsðx; kÞ þ μdðxÞ þΦdðx; kÞ
where the lower index in rυ indicates the condition (υ = “uniform”).

In the third simulation type, named as fully balanced we removed the dendritic
factors by arranging synapses regularly throughout the entire dendritic tree. Instead
of entirely eliminating the effect of dendritic processing, we only equalised its effect
on the differently tuned inputs, so that dendritic components did not add to the
variability of the neuronal tuning. This way we could selectively manipulate the
effect of dendritic factors on the somatic response, without changing the
contribution of the input factors. In the fully balanced scenario the systematic
variability in the tuning was caused by input components, and we assumed that the
contribution of the input components were identical in the fully balanced and in
the random case. In the fully balanced scenario Eq. (8) simplifies to:

rβðx; kÞ ¼ μsðxÞ þΦsðx; kÞ þ μd þΦdðx; kÞ
where the lower index in rβ indicates the scenario (β = “balanced”).

As a control, we performed a fourth simulation type, where both the dendritic
and input factors were eliminated. In this case we expected the postsynaptic tuning
to be flat, as all variability was caused by trial-to-trial fluctuations:

rυβðx; kÞ ¼ μs þΦsðx; kÞ þ μd þΦdðx; kÞ
We denote the trial-to-trial variance of one component of the drive with ς2i ,

with i= {β, υ} coding for trial type, and assume that they do not change between
the different scenarios. The correlation between the trial-to-trial components effect
of the somatic and dendritic factors is denoted by ρsd. The trial-to-trial variance of
the response is expected to be identical in all scenarios:

ς2 ¼ ς2s þ ς2d þ 2ςsςdρsd ð9Þ
where ς2 can be measured in a biophysical model. Confirming our assumption that
changing the input and the connectivity does not change the trial-to-trial
variability, we found that ς2 was similar in all four scenarios in the biophysical
model of both the hippocampal (Fig. 2k) and the visual cortical (Supplementary
Fig. 4e) neuron.

When we average over N trials, the variance of the mean response (the
estimated tuning curve) at a particular location will be ς2∕N. Denoting the variance
of the location dependent response by σ2i ≜ Var½μiðxÞ�, the variance of the
estimated tuning curve in the four scenarios can be written as:

σ2 ¼ς2=N þ σ2s þ σ2d þ 2σsσdρsd
σ2υ ¼ς2=N þ σ2d
σ2β ¼ς2=N þ σ2s

σ2υβ ¼ς2=N

We identified the contribution of stimulus-dependent and dendritic factors with
the variances σ2s and σ2d (Fig. 2l), which we calculated from the tuning curve
variances (σ2, σ2υ , σ

2
β and σ2υβ ; Fig. 2k) measured in the four different scenarios.

Data analysis. To calculate the tuning curve from the recorded somatic membrane
potentials we first detected action potentials (AP) as positive crossing of a threshold
of Vth=−30 mV. We obtained the subthreshold response by replacing the APs by
the voltage before the start of the AP, defined as the first point when the derivative
of the voltage exceeded η= 5 mV ms−1 before the spike. The end of the AP was
defined as the time when the membrane potential fell below threshold.

Next, we filtered the raw subthreshold response with a Gaussian kernel which
removed the oscillatory component from the sVm yielding the slow Vm response.
The width (SD) of the Gaussian kernel was σtheta= 100 ms in the CA1 cell during
theta, σripple= 2.5 ms during SPWs and σgamma= 100 ms in the case of the L2/3
cell. We applied a similar Gaussian filtering with σtheta= 100 ms to the input spike
counts when we evaluated the input variability (Fig. 2b, g, j and Supplementary
Fig. 4d).

Finally the tuning curve was obtained by averaging the slow Vm responses
across 16 trials with identical presynaptic firing rates but random synaptic events.
The variability of the tuning curve was calculated as the variance of the points of
the tuning curve along the track. The trial-to-trial variability was calculated by first
computing the variance of the 16 trials and then taking the average along the track.
The response integral during theta stimulation was calculated by first subtracting
the baseline Vm defined as the mean sVm in the last 2000 ms from the individual
slow Vm responses, and then integrating the baseline shifted response over time.
The SPW amplitude (Fig. 4b, e) was defined as the difference between the
maximum of the average filtered somatic membrane potential (Vresp) during the
SPW and the minimum of Vresp before the SPW. The excess response amplitude
(Fig. 4h) was defined relative to the one synapse per cluster response as the
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difference in the SPW amplitude or as the difference in the mean depolarisation
within the place field (dashed line in Fig. 3c).

To estimate the frequency of dendritic spikes we recorded the membrane
potential of 4 dendrites selected randomly among the branches receiving clustered
input. We defined the dspike ratio as the proportion of time the local Vm was above
the dendritic spike threshold during the activation of the clustered synapses
(dashed grey lines in Figs. 3a and 4a). Since the threshold for generating sodium
and NMDA nonlinearities approximately coincides both in CA1 neurons8 and in
our model, we used the membrane potential with the maximal NMDA current
(Vm=−25 mV; Fig. 4f) as dendritic spike threshold.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 2j, k, 3e–g, 4d, e, g, h and 5c, d are provided as a Source
Data file. The datasets generated and analysed in the current study can be reproduced
using the computer codes provided.

Code availability
The code used for simulating the biophysical model and generating the inputs can be
downloaded from the online repositories https://bitbucket.org/bbu20/clustering and
https://bitbucket.org/bbu20/popact, respectively.
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