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Molecular classification of breast 
cancer using the mRNA expression 
profiles of immune-related genes
Juan Mei*, Ji Zhao & Yi Fu

Breast cancer is the most lethal cancer in women and displaying a broad range of heterogeneity in 
terms of clinical, molecular behavior and response to therapy. Increasing evidence demonstrated 
that immune-related genes were an important source of prognostic information for several types of 
tumors. In this study, the k-mean clustering was applied to gene expression data from the immune-
related genes, two molecular clusters were identified for 1980 breast cancer patients. The prognostic 
significance of the immune-related genes based classification was confirmed in the log-rank test. These 
clusters were also associated with immune checkpoints, immune-related features and tumor infiltrating 
levels. In addition, we used the shrunken centroid algorithm to predict the cluster of a given breast 
cancer sample, and good predictive results were obtained by this algorithm. These results indicated that 
the proposed classification method is a promising method, and we hope that this method may improve 
the treatment stratification of breast cancer in the future.

Breast cancer is one of the most aggressive cancers with an estimated 2100000 new cases and 627000 deaths 
worldwide in 20181. During the past years, multidisciplinary treatment regimen, such as surgery, chemotherapy, 
radiotherapy, hormonal therapy and targeted therapy had been made much progress for breast cancer2,3. The 
five-year survival rate of breast cancer was approximately 85% and even worse for breast cancer patients with 
advanced stage. In recent years, the gene expression profiles in breast cancer patients had been investigated by 
many studies, and found that this cancer was composed of distinct molecular subtypes2,4–7. These distinct molec-
ular subtypes may underlie the high variability of clinical outcomes in breast cancer patients. Therefore, breast 
cancer should not be considered as a homogeneous entity, and molecular classification of breast cancer into clin-
ically and biologically meaningful subtypes was needed.

At present, several researches had shown that the immune system was one of the determining factors during 
tumor initiation and progression8–11. Several studies illustrated that the presence of tumor infiltrating lympho-
cytes was often associated with better prognosis several cancer types, including breast cancer12–21. Thus, inclusion 
of immune signatures in the molecular subtyping may provide additional information beyond routine prognosis 
in breast cancer. However, until now, no attempt has been made to use these immune signatures to stratify breast 
cancer.

In this study, by using the gene expression profiles of immune-related genes with favorable prognosis, the 
k-means clustering was applied on the breast cancer samples to establish a robust molecular classification. Then, 
the associations between the molecular clusters and prognosis, clinicopathological factors, immune-related fea-
tures and tumor infiltrating levels were assessed. The shrunken centroid algorithm was used to classify the clusters 
by the gene expression profiles of immune-related genes with favorable prognosis as the input parameters, and 
good predictive results were obtained in this study.

Results
Immune landscape of 17 immune cell types.  We first examined whether the tumor infiltrating levels of 
17 immune cell types were the prognostic factors in overall survival of breast cancer. The breast cancer patients 
were classified into two equal groups by using the median the ssGSEA score as the cutoff point. The univariate 
Cox analysis indicated that the higher tumor infiltrating levels of cytokine receptors, interleukins, and TGFb fam-
ily member receptor were significantly associated with favorable prognosis in breast cancer patients (Fig. 1A–D). 
For example, patients with the high tumor infiltrating level of cytokine receptors had about 0.13 reduced risk of 
death compared with patients with the low tumor infiltrating level of cytokine receptors.
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Using the ESTIMATE algorithm, the tumor purity, ESTIMATE score, immune score and stromal score were 
estimated, and the Spearman’s correlations between them with the tumor infiltrating levels of 17 immune cell 
types were calculated (Fig. 1E). The tumor purity, ESTIMATE score, immune score and stromal score were 
weakly to moderately correlated with the tumor infiltrating levels of 17 immune cell types. In addition, most of 
the 17 immune cell types shown significant correlations with CYT. The significant associations between tumor 
purity, ESTIMATE score, immune score, stromal score and CYT were also illustrated in Fig. 1F.

The cluster analysis of breast cancer.  Then the univariate Cox regression analysis was conducted for 
assessing the correlation between the expression levels of 2498 immune-related genes and overall survival in 
the breast cancer cohort. 117 immune-related genes were considered to be correlated with overall survival of 
breast cancer with the criterion of P-value < 0.05 and hazard ratio (HR) < 1. These survival-related genes were 
selected for further cluster analysis. The k-means clustering was applied to cluster breast cancer samples based 
on the expression levels of 117 immune-related genes, and Nbclust testing was applied to determine the optimal 
number of stable clusters. According to the average silhouette width from the k-means clustering, 2 clusters were 
chosen as the optimal number of clusters (Fig. 2A). Patients in cluster 1 had significantly longer median overall 
survival than those in the cluster 2 (180 months versus 127 months; log-rank test P-value < 0.0001) (Fig. 2B). 
The multivariate Cox regression analysis revealed that the 117 immune-related genes derived clusters, together 
with progesterone receptor (PGR), HER2, node and size remained an independent prognostic factor (Fig. 2C). 
We then investigated the distribution of intrinsic molecular subtypes within the clusters. An imbalance in term 
of intrinsic molecular subtype was noticed (Fig. 2D). Her2 tumors and Luminal B tumors were more likely to be 
enriched in cluster 2, and Normal like tumors were more likely to be enriched in cluster 1.

Characterization of immune infiltration profiles between two clusters.  The relative tumor 
infiltrating levels of 1980 breast cancer samples were quantified by using mRNA expression data of 2498 
immune-related genes related to 17 immune cell types obtained from the ImmPort database (Fig. 3A). As illus-
trated in Fig. 3A, the cluster 1 samples were marked by the high level of immune infiltration level, whereas by 
contrast, the cluster 2 samples were characterized by the low immune infiltration level. These results revealed a 
comprehensive picture of tumor infiltrating levels, the heterogeneity across samples and differences in immune 
cell types. Then, the differences in the tumor infiltrating levels of 17 immune cell types between two clusters were 
also investigated. According to the Wilcoxon test, there were statistically significant differences in these immune 

Figure 1.  The immune landscape of 17 immune cell types. (A) Forest plot visualizing hazard ratios (HRs) with 
95% CI and P-values for 17 immune cell types. Kaplan-Meier survival curves by high and low tumor infiltrating 
levels for (B) cytokine receptors, (C) interleukins and (D) TGFb family member receptor. (E) The spearman’s 
correlation between the tumor infiltrating levels of 17 immune cell types and tumor purity, ESTIMATE score, 
stromal score, immune score and CYT. Statistical significance at the level of null ≥0.05, * < 0.05, ** < 0.01 and 
*** < 0.001. (F) The Spearman’s correlation between tumor purity, ESTIMATE score, stromal score, immune 
score and CYT.
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cell types between the two clusters in the breast cancer patients (Figs. 3B and S1). The mean tumor infiltrating 
levels of the cluster 1 were significantly higher than those of the cluster 2.

We then compared the gene expression profile of cluster 1 samples with cluster 2 samples by the GSEA algo-
rithm to determine how the tumor infiltrating levels differed between two clusters. 2498 immune-related genes 
of 17 immune cell types were selected as the reference gene set. The GSEA for the enriched and depleted immune 
cell types were illustrated in Figs. 4A–D and S2. Compared with the cluster 2 samples, the cluster 1 samples were 
significantly enriched with antimicrobials, cytokines, cytokine receptors, antigen processing and presentation, 
natural killer cell cytotoxicity, chemokines, TCR signaling pathway, BCR signaling pathway, interleukins, inter-
leukins receptor, chemokine receptors, TNF family members and TNF family members receptors.

Immune checkpoints are critical modulators in the immune system, allowing the initiation of a productive 
immune response and preventing the onset of autoimmunity. Among these immune checkpoints, PD-1, PD-L1 
and CTLA-4 were the most important immune checkpoints. In this study, we wanted to know whether the expres-
sion levels of PD-1, PD-L1 and CTLA4 were different between two breast cancer clusters. For doing this, the 
Wilcoxon test was applied to calculate the difference between the two breast cancer clusters in the expression 
levels of PD-1, PD-L1 and CTLA4. As illustrated in Fig. 5A, the expression levels of PD-1, PD-L1 and CTLA4 of 
the cluster 1 were significantly higher than those of the cluster 2.

The differences between the two breast cancer clusters in CYT, immune score, ESTIMATE score, stromal 
score and tumor purity were also investigated in the breast cancer patients (Fig. 5B). Among these four indices, 
the CYT, calculated from the geometric mean of the expression of the genes GZMA and PRF1, was used to reflect 
the patient’s antitumoral immune cytolytic activity and the immune score was used to reflect the infiltration of 
leukocytes. As illustrated in Fig. 5B, the average values of the CYT, immune score, ESTIMATE score and stromal 
score in the cluster 1 were significantly higher than those in the cluster 2. These results were expected, as the 
tumor infiltrating levels of 17 immune cell types in the cluster 1 were higher than those in the cluster 2, and the 
CYT, immune score, ESTIMATE score and stromal score were significantly correlated with most of immune 
cell types (all P-values < 2.20E-16; Wilcoxon test). Tumor purity is defined as the proportion of cancer cells in 
the tumor tissue22. The average tumor purity of the cluster 2 was significantly higher than that of the cluster 1 
(P-value < 2.20E-16; Wilcoxon test). This result was expected, as previous published works suggested that the 
immune cells were negatively correlated with tumor purity at the pan-cancer level22.

•

•

•

•

•

• •

•

•
•

0.00

0.02

0.04

0.06

0.08

1 2 3 4 5 6 7 8 9 10
Number of clusters k

htdi
w

etteuohlis
egarevA

Optimal number of clusters

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++ ++++++++++ +++ + +


++++++++

++

p < 0.0001

0.00

0.25

0.50

0.75

1.00

0 100 200 300
Month

lavivrusllarev
O

Cluster + +Cluster1 Cluster2

Kaplan−Meier Curve for BRCA Survival

D

Cluster 2

Cluster 1

Normal

LumB

LumA

Her2

Basal

0

500

1000

1500

2000

Cluster Subtype
Class

ycneuqerF

size

grade

node

her2

pgr

er

cluster

(N=1980)

(N=1980)

(N=1980)

(N=1980)

(N=1980)

(N=1980)

(N=1980)

1.12

1.10

1.63

1.37

0.77

1.09

1.30

(1.08 − 1.16)

(0.97 − 1.24)

(1.41 − 1.88)

(1.12 − 1.67)

(0.66 − 0.91)

(0.90 − 1.31)

(1.12 − 1.51)

<0.001 ***

0.149

<0.001 ***

0.002 **

0.002 **

0.4

<0.001 ***

# Events: 833; Global p−value (Log−Rank): 0 
AIC: 11235.99; Concordance Index: 0.66 0.8 1 1.2 1.4 1.6 1.8 2

Hazard ratio

A B

C

Figure 2.  The cluster analysis of breast cancer. (A) The silhouette width analysis of the clustering by using the 
expression profiles of 117 immune-related genes. (B) Kaplan-Meier estimate of the overall survival for cluster 
1 and cluster 2 patients. (C) The multivariable cox regression analyses in breast cancer patients. (D) Alluvial 
diagram for cluster 1 and cluster 2 versus different subtypes in in breast cancer patients.
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Generation of the breast cancer classifier.  In this study, we wanted to build a classifier that could iden-
tify the cluster of the breast cancer patients by using the expression profile of 117 immune-related genes. For 
doing this, the shrunken centroid algorithm23 that implemented in the R package pamr (version 1.55) was used to 
learn a classifier for discriminating between cluster 1 and cluster 2. The ten-fold cross-validation was performed 
to select the optimal threshold for centroid shrinkage. The shrunken centroid algorithm identified a set of 117 
signature genes with the most robust model that minimized the overall misclassification error. These 117 signa-
ture genes were used to predict the cluster of the breast cancer samples with the misclassification rate of 2.68% 
of the two tumor clusters (Fig. 6A). The predictive ability of the shrunken centroid algorithm for prediction each 
cluster was illustrated in Fig. 6B. These predictive results clearly indicated that the shrunken centroid algorithm 
was suitable to prediction the cluster of breast cancer samples (Fig. 6B).

Discussion
The breast cancer patients often display a heterogeneous clinical outcome. Given the heterogeneity of breast 
cancer patients, it is important to determine the appropriate treatment for patients diagnosed with breast cancer. 
Therefore, understanding the heterogeneity of breast cancer is one of the most fundamental goals in breast cancer. 
In the past few years, using mRNA expression profiles to stratify tumors into different molecular subtypes have 
been applied in several types of tumors24–28. Here, in this study, by using the mRNA expression profile of 117 
immune-related genes with favorable prognostic factor, the k-means clustering was applied to cluster the breast 
cancer patients without applying any clinical or biological information. By analyzing the associations between 
the clusters and clinical outcome of breast cancer patients, we found that the 117 immune-related genes derived 
clusters were significantly associated with the overall survival, and the clusters was an independent prognostic 
factor in the multivariate Cox proportional-hazard analysis.

Compared with patients in cluster 2, patients in cluster 1 had higher tumor infiltrating levels, CYT, immune 
score and stromal score. The expression levels of PD-1, PD-L1 and CTLA4 in the cluster 1 were also significantly 
higher than those in cluster 2. Benefit from the meaningful results of clustering breast cancer patients, we will 
strive to use the mRNA expression profile of 117 immune-related genes in other tumors to classify patients into 

Figure 3.  The immune infiltrate profile of two clusters. (A) The heatmap of the ssGSEA scores for 17 immune 
cell types in cluster 1 and cluster 2. (B) The violin plots of the tumor infiltrating levels in 12 immune cell types 
for in cluster 1 and cluster 2. APP: antigen processing and presentation.
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distinct clusters in our future work. To this end, a computational model was built to predict the molecular clusters 
defined by the expression levels of the immune-related genes.

The naïve bayes, logistic, IBK, J48, random forest and libSVM that implemented in Weka (version 3.8.2)29 
were applied to compare the predictive results with the shrunken centroid classifier, the default parameters of 
these algorithms in Weka were used. The expression profile of 117 immune-related genes was used as the param-
eters of these classifiers. The ten-fold cross-validation was used to evaluate the performance of these classifiers. 
The overall accuracies of the naïve bayes, logistic, IBK, J48, random forest, libSVM and shrunken centroid were 
95.05%, 97.12%, 89.39%, 88.79%, 95.61%, 96.57% and 97.32%, respectively (Table 1). These predictive results 
clearly demonstrated that the overall accuracy of the shrunken centroid classifier was higher than those of other 
classifiers, and the shrunken centroid classifier was a promising algorithm in prediction of the clusters of breast 
cancer patients.

In this study, the Minimum Redundancy Maximum Relevance (mRMR)30,31, the analysis of variance 
(ANOVA) and Maximum Relevance Maximum Distance (MRMD)32,33 were applied on the expression profile 
of 117 immune-related genes, and the top 50 features, 84 features and 112 features were selected by these feature 
selection algorithms, respectively. These features were used as the input parameters of the naïve bayes, logistic, 
IBK, J48, random forest and libSVM. In the ten-fold cross validation, the overall accuracies of these algorithms 
with the default parameters in Weka were shown in Table 1. As shown in Table 1, the predictive results clearly 
indicated that these feature selection algorithms may improve the predictive results for IBK, J48 and libSVM.

In order to perform the cross platform data examination, the dataset of breast cancer was downloaded from 
TCGA, 1095 patients were contained in this cohort. Based on the expression levels of 117 immune-related 
genes, 2 clusters of TCGA breast cancer were identified by the Nbclust. Then, the expression profile of 117 
immune-related genes was used as the input parameters of the shrunken centroid algorithm. In the ten-fold 
cross-validation, the overall accuracy of the shrunken centroid algorithm was 96.27%. The overall accuracies 
of the naïve bayes, logistic, IBK, J48, random forest, libSVM and shrunken centroid with the default parameter 
were 88.95%, 92.69%, 91.05%, 89.22%, 95.61%, 95.06% and 96.27%, respectively. Based on these results, we can 

Figure 4.  The GSEA delineated the enriched immune cell types. (A) Volcano plot of GSEA for the cluster 1 
when compared with the cluster 2. GSEA of (B) antimicrobials, (C) cytokines and (D) cytokine receptors for the 
cluster 1 when compared with the cluster 2.
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conclude that our proposed model was suitable to predict the breast cancer patients in other platform data and its 
performance was better than other algorithms.

In this study, several limitations should be acknowledged. First, in our study, only the METABRIC breast can-
cer cohort was included in our analysis. Although, 1980 breast cancer patients were included in the METABRIC 
cohort, the dataset used here represented part but not all of the possible breast cancer presents. Since the TCGA 
breast cancer cohort and several GEO breast cancer cohorts were available on the website, more breast cancer 
cohorts were needed to confirm the effectiveness of our analysis. Second, the biological information on the mech-
anisms behind the immune-related genes was not clear, more experimental researches were needed to further 
understand their functional roles. Finally, there were more types of survival, such as progression-free survival, 
disease-free survival, and overall survival in the breast cancer cohorts, however, only the overall survival was 
used in this study. To yield more comprehensive analysis results for breast cancer patients, more types of survival 
should be used in our future work.

In summary, by employing the mRNA expression profile of the immune-related genes, our study demon-
strated for the first time that the two molecular clusters of breast cancer patients. The approaches described here 
can conceivably be adapted for other tumors, and will provide a powerful tool for the systematic identification 
of immune-related biomarkers in clinical oncology. Prospective studies are needed to further validate our find-
ings in prospectively planned clinical trials, and to test its clinical utility in individualized management of breast 
cancer.

Figure 5.  The violin plots of three immune checkpoints and five immune related indices between two clusters. 
(A) The violin plots of the PD-1, PD-L1 and CTLA4 expression levels for two clusters. (B) The violin plots of the 
CYT, stromal score, immune score, ESTIMATE score and tumor purity for two clusters.
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Material and Methods
Breast cancer cohort.  The relevant clinical data and gene expression data were retrieved from the 
METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) breast cancer cohort5. Both the 
METABRIC training cohort and the METABRIC test cohort were used in this study. 1980 breast cancer patients 
with the clinical data, overall survival data and gene expression data were contained in our final cohort.

The mRNA expression data and clinical data of the breast cancer patients were downloaded from The 
METABRIC (Molecular Taxonomy of Breast Cancer International Consortium), which is public dataset for breast 
cancer patients, no experiments on humans and/or the use of human tissue samples were used in our study.

Immune-related genes and immune infiltration signatures.  2498 immune-related genes were down-
loaded from the ImmPort database34. 17 immune gene categories, such as antigen processing and presentation, 
antimicrobials, BCR signaling pathway, cytokine, interleukins, T-cell receptor signaling pathway, B-cell receptor 
signaling pathway and TNF family receptors were included in these immune-related genes. Subsequently, the 
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Figure 6.  The predictive results for two clusters by the shrunken centroid algorithm. (A) The misclassification 
errors for predicting the two clusters with different parameters. (B) The misclassification errors for predicting 
the cluster 1 and cluster 2 with different parameters.

Algorithms
117 
features

50 
features

84 
features

112 
features

Naïve bayes 95.05% 94.75% 96.01% 94.85%

Logistic 97.12% 96.41% 96.77% 95.40%

IBK 89.39% 89.55% 91.06% 89.49%

J48 88.79% 89.55% 89.09% 88.43%

Random forest 95.61% 94.80% 94.64% 95.45%

libSVM 96.57% 96.57% 96.82% 96.87%

Table 1.  The predictive results of different input parameters. (In this table, the 50 features were selected by the 
mRMR, the 84 features with the P-values less than 0.001 were selected by ANOVA and the 112 features were 
selected by MRMD).
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single sample gene set enrichment analysis (ssGSEA)35,36 was used to calculate the abundance level of each gene 
category for each sample, and the normalized abundance level was considered as the tumor-infiltrating level (TIL) 
of each gene category for each sample.

The tumor purity, ESTIMATE score, immune score and stromal score were calculated by the ESTIMATE algo-
rithm8. The CYT was calculated as the mean expression level of the granzyme A (GZMA) and perforin 1 (PRF1) 
for assessing the intratumoral immune cytolytic activity in tumors10.

Breast cancer patients clustering.  The subtypes of the breast cancer patients were identified by using the 
k-means clustering algorithm and the Nbclust that implemented in the R package factoextra (version 1.0.5) was 
used to determine the optimal number of stable breast cancer clusters. Silhouette width was computed to confirm 
the most stable samples within each cluster.

Gene set enrichment analysis (GSEA).  To determine how the immune cell types differ between two 
breast cancer clusters in the tumor microenvironment, GSEA was performed by the R package clusterProfiler 
(version 3.4.1)37. All the immune-related genes that downloaded from the ImmPort database34 were selected as 
the reference gene set. Gene sets with the P-value less than 0.05 after 1000 permutations were considered to be 
significantly enriched or depleted. The normalized enrichment score (NES) was used to examine gene set enrich-
ment results across different gene sets.

Statistical analysis.  Survival differences between two breast cancer clusters were assessed by the 
Kaplan-Meier estimate, and the differences between them were compared using the two-sided log-rank test. 
The univariable analysis and multivariate analysis were performed with the Cox proportional-hazards regression 
model. All statistical analyses were performed using R (version 3.6.1). All of the statistical tests were two-sided, 
and the significance was defined as P-values being less than 0.05.
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