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Chronic recurrent multifocal osteomyelitis (CRMO) in
humans can be modeled in Pstpip2°° mice, which carry a mis-
sense mutation in the proline—serine—threonine phosphatase—
interacting protein 2 (Pstpip2) gene. As cmo disease in mice, the
experimental model analogous to human CRMO, is mediated
specifically by IL-18 and not by IL-1e, delineating the molecu-
lar pathways contributing to pathogenic IL-18 production is
crucial to developing targeted therapies. In particular, our ear-
lier findings support redundant roles of NLR family pyrin
domain-containing 3 (NLRP3) and caspase-1 with caspase-8 in
instigating cmo. However, the signaling components upstream
of caspase-8 and pro-IL-1f cleavage in Pstpip2°° mice are not
well-understood. Therefore, here we investigated the signaling
pathways in these mice and discovered a central role of a nonre-
ceptor tyrosine kinase, spleen tyrosine kinase (SYK), in mediat-
ing osteomyelitis. Using several mutant mouse strains, immuno-
blotting, and microcomputed tomography, we demonstrate that
absent in melanoma 2 (AIM2), receptor-interacting serine/
threonine protein kinase 3 (RIPK3), and caspase recruitment
domain- containing protein 9 (CARDY) are each dispensable for
osteomyelitis induction in Pstpip2°”° mice, whereas genetic
deletion of Syk completely abrogates the disease phenotype. We
further show that SYK centrally mediates signaling upstream of
caspase-1 and caspase-8 activation and principally up-regulates
NF-«kB and IL-1 signaling in Pstpip2°”° mice, thereby inducing
cmo. These results provide a rationale for directly targeting SYK
and its downstream signaling components in CRMO.

Autoinflammatory bone diseases, including chronic recur-
rent multifocal osteomyelitis (CRMO),? osteoporosis, Paget’s
disease, arthritis, and periodontal disease, are increasingly per-
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vasive contributors to severe chronic pain, physical disabilities,
and morbidity (1). CRMO is primarily a pediatric chronic
inflammatory bone disease, with at least 80% of patients expe-
riencing primary symptoms, including osteomyelitis and debil-
itating bone pain (2). Treatment of CRMO is currently limited
to nonsteroidal anti-inflammatory drugs with escalation to cor-
ticosteroids or bisphosphonates for pain relief (3). However, all
current therapeutic options have limited specificity to the
pathophysiology underlying CRMO.

To study the molecular mechanisms underpinning disease
manifestation, CRMO in humans can be modeled in mice that
carry the L98P missense mutation in the Pstpip2 gene. Proline—
serine—threonine phosphatase—interacting protein 2 (PSTPIP2),
a Fes/CIP4 homology domain and Bin-Amphiphysin-Rvs
(F-BAR) family protein involved in regulating membrane and
cytoskeletal dynamics (4), is encoded by Pstpip2 on chromo-
some 18 in both humans and mice and is predominantly
expressed in the myeloid lineage (5). The L98P mutation in
mice is termed chronic multifocal osteomyelitis (cmo), and
Pstpip2°® mice are phenotypically characterized by autoin-
flammatory disease involving the bones and skin, resulting in
osteomyelitis and bone deformities. The bone lesions in both
cmo disease and CRMO are associated with increased IL-1 sig-
naling, osteoclast-mediated resorption, and an elevation of
osteoclast precursors (6), but the specific inflammatory path-
ways critical for disease are not known.

IL-1B has been established as the principle driver of dysregu-
lated cellular homeostasis, extracellular matrix composition,
proinflammatory cytokine production, and osteolysis in a
diverse array of autoinflammatory, hematologic, and bone dis-
eases, including osteoarthritis (7) and multiple myeloma (8).
Inhibition of IL-1B and IL-1 receptor (IL-1R) signaling has been
shown to completely protect against disease in Pstpip2°”*° mice
(9), suggesting that inhibition of IL-18, IL-1R, or their upstream
regulators could provide significant benefit to patients with
autoinflammatory bone disease. It is known that caspase-1—
mediated cleavage of pro-IL-1f is activated by the nucleotide-
binding oligomerization domain-like receptor family, pyrin
domain- containing 3 (NLRP3) inflammasome (10), and previ-
ous studies have established a redundant role of caspase-1 or
NLRP3 with caspase-8 in mediating this cleavage and disease
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progression (11, 12). However, the signaling cascade involved in
caspase-8 activation remains not well-understood.

The nonreceptor tyrosine kinase SYK is a central regula-
tory molecule in innate immune Toll-like receptor and
nucleotide-binding oligomerization domain-like receptor
signaling pathways (13, 14) and inflammatory cytokine
secretion (15). SYK is also known to play a role in activating
caspase-8, resulting in IL-18 processing (16). Based on the
involvement of SYK in the caspase-8 pathway and the impor-
tance of caspase-8 in mediating cmo disease, we sought to
determine the role of SYK signaling in regulating cmo disease.
Here we discovered the mechanistic basis underpinning SYK-
dependent induction of autoinflammatory osteomyelitis. Spe-
cifically, we show that SYK critically up-regulates the pro-IL-13
production responsible for cmo disease progression and proin-
flammatory NF-«B signaling, which contributes to pro-IL-1f3
up-regulation.

Results

RIPK3 and AIM2 are dispensable for disease progression in
Pstpip2<™° mice

The NLRP3 inflammasome plays a redundant role with
caspase-8 to promote disease progression in Pstpip2°™°
mice, indicating that NLRP3 is an upstream regulator of
caspase-1 activation (12), but our understanding of the
upstream regulation of caspase-8 activation remains incom-
plete. Although caspase-8 deficiency is embryonically lethal,
caspase-8 — deficient mice can be completely rescued by delet-
ing receptor-interacting serine/threonine kinase 3 (RIPK3)
(17-19). In addition, reduced IL-1 production and abolished
caspase-8 activation in Ripk3~'~ bone marrow— derived den-
dritic cells suggest that RIPK3 is required for caspase-8 activa-
tion and subsequent release of IL-13 (20). Absent in melanoma
2 (AIM2) acts as an inflammasome sensor for cytosolic DNA,
and it activates caspase-1 through the adaptor protein apopto-
sis-associated speck-like protein containing a caspase activa-
tion and recruitment domain (ASC). AIM2 induces caspase-8
activation in caspase-1-deficient macrophages in the context
of several bacterial infections, including Burkholderia (21),
Francisella (22), and Legionella (23). Given their established
functions in caspase-8 activation under various conditions, we
explored the roles of RIPK3 and AIM2 in mediating caspase-8
activation in Pstpip2°° mice by analyzing cmo disease pro-
gression in NLRP3- and RIPK3-deficient Pstpip2<"° mice
(Pstpip2°°Nlrp3~'~Ripk3~'~) and NLRP3- and AIM2-defi-
cient Pstpip2°™® mice (Pstpip2°°Nlrp3~'~"Aim2~'7). All
mice with both genotypes (Pstpip2“"°Nlrp3~'~Ripk3~'~ and
Pstpip2°"°Nlrp3~'~Aim2~'") developed disease similarly to
Pstpip2°° mice (Fig. 1, A and B). Microcomputed tomography
(micro-CT) scans of the inflamed areas revealed an extensive
reduction in bone density and structural malformation in the
feet of these mice (Fig. 1, A and B). Further, massive lympho-
megaly was observed in the popliteal lymph nodes draining
inflamed footpads (Fig. 1, A and B). These data suggest that
RIPK3 and AIM2 are dispensable for disease progression in
Pstpip2°™*° mice.
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Figure 1. RIPK3 and AIM2 are dispensable for disease progression in
Pstpip2°™° mice. A, incidence of disease in WT (n = 5), Pstpip2“™°Nlrp3~'~
(n = 9), and Pstpip2™°Nirp3~'~Ripk3~’~ (n = 5) mice over the experimental
course and representative footpad images, footpad CT scans, and popliteal
lymph nodes from these respective mice. B, incidence of disease in WT (n = 8),
Pstpip2<™°Nirp3~'~ (n = 10), and Pstpip2™°Nirp3~/~Aim2~'~ (n = 10) mice
over the experimental course and representative footpad images, footpad CT
scans, and popliteal lymph nodes from these respective mice.

SYK, but not CARDSY, is required for inflammatory disease
progression in Pstpip2°™° mice

In addition to the role of SYK in innate immune signaling path-
ways (13, 14) and inflammatory cytokine secretion (15), recent
evidence has indicated the involvement of SYK in a diverse range
of biological functions, including cellular adhesion, platelet activa-
tion, and osteoclast maturation (24). The SYK adaptor protein
caspase recruitment domain— containing protein 9 (CARDY) is
expressed primarily in lymphoid tissues and contributes to innate
immune signaling in response to fungal, viral, and bacterial infec-
tions (25-27). Given that SYK and CARD9 are involved in
caspase-8 activation and subsequent IL-13 processing in bone
marrow—derived dendritic cells during fungal infection (16), we
explored the respective contributions of SYK and CARD9 to
disease progression in Pstpip2°™*° mice. First, we monitored dis-
ease progression in Pstpip2”°Nlrp3~'~ Syk" LysM"® mice and
Pstpip2°°Nlrp3~'~ Card9~'~ mice. Although Pstpip2°Nlrp3~'~
Card9~'~ mice did not show protection from disease,
Pstpip2°°NIrp3~'~ Syk" " LysM™ mice displayed nearly com-
plete protection (Fig. 2, A and B). Next we investigated whether
deletion of SYK in Pstpip2°*° mice with intact NLRP3 would be
sufficient to provide protection from disease. We found that
myeloid-specific deletion of SYK alone in Pstpip2°° mice
(Pstpip2°°Syk" LysM") provided complete protection from
disease (Fig. 2C). The structural bone lesions found by micro-CT
and the popliteal lymphomegaly observed in Pstpip27"°,
Pstpip2°™°Nlrp3~'~, and Pstpip2”°Nlrp3~'~Card9 '~ mice
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Figure 2. CARDY, but not SYK, is dispensable for disease progression in
Pstpip2°™° mice. A, incidence of disease in WT (n = 5), Pstpip2“™°Nirp3~"~
(n = 10),and Pstpip2°™°Nirp3~'~Card9~'~ (n = 20) mice over the experimen-
tal course and representative footpad images, footpad CT scans, and poplit-
eal lymph nodes from these respective mice. B, incidence of disease in WT
(n = 5), Pstpip2°™°NIrp3~'~ (n = 8),and Pstpip2°™°NIrp3~'~ Syk"ILysme (n =
20) mice over the experimental course and representative footpad images,
footpad CT scans, and popliteal lymph nodes from these respective mice. C,
incidence of disease in WT (n = 5), Pstpip2°™ (n = 7), and Pstpip2°™°Syk™f
LysM"® (n = 13) mice over the experimental course and representative foot-
pad images, footpad CT scans, and popliteal lymph nodes from these respec-
tive mice.

were rescued in Pstpip2”™°Nlrp3~'~ Syk" LysM ™ and Pstpip2<™°
Syk"LysM<"® mice (Fig. 2, A—C). Taken together, these data sug-
gest that SYK functions upstream of both caspase-1 and caspase-8
in inducing c¢mo disease, that SYK is sufficient and necessary for
cmo disease induction, and that NLRP3 and CARD9 are dispens-
able for cmo disease progression.

SYK mediates cmo disease by promoting proinflammatory
signaling but not inflammasome activation

Disease in cmo mice is mediated by the cytokine IL-13(9). To
investigate the role of SYK in regulating IL-13 up-regulation in
cmo, we first measured pro-IL-18 expression and SYK activa-
tion in the footpads of WT and Pstpip2°”*° mice. Footpads from
Pstpip2°° mice had increased pro-IL-1f expression and SYK
activation with respect to those of WT mice (Fig. 34). Myeloid-
specific deletion of SYK in Pstpip2°*° mice reduced the expres-
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sion of pro-IL-1p in footpads to a level similar to that of WT
mice without affecting the expression of caspase-1 or caspase-8
(Fig. 3A). Consistent with these data, the expression of pro-
IL-1B induced by lipopolysaccharide (LPS) treatment was
increased in bone marrow-derived macrophages (BMDM:s)
isolated from Pstpip2°*° mice relative to that of BMDMs from
WT mice (Fig. 3B). The increased pro-IL-183 expression in
Pstpip2°® mice correlated with activation of SYK. Myeloid-
specific deletion of SYK in Pstpip2°° mice abolished the
increased induction of pro-IL-18 in BMDMs upon LPS stimu-
lation relative to Pstpip2°° BMDMs without affecting the
expression of caspase-1 and caspase-8 (Fig. 3B). These findings
suggest a primary role for SYK in mediating pro-IL-1f3 produc-
tion and cmo disease progression.

We next sought to identify additional intracellular signaling
pathways mediated by SYK signaling that contribute to induc-
tion of pro-IL-18 expression and excessive inflammation in
Pstpip2°™° mice. Recent evidence has demonstrated that the
mitogen-activated protein (MAP) kinases ASK1 and ASK2 cen-
trally regulate NF-«B and downstream MAP kinases, including
JNK, ERK, and p38, to drive autoinflammatory disease progres-
sion in the Ptpn6°P™ mouse model of neutrophilic dermatosis
(28). We hypothesized that NF-«B and MAP kinase signaling
promote cmo disease progression and that SYK plays a role in
regulating this signaling. Although there was more activation of
NF-«B and ERK in the footpads of Pstpip2°"° mice compared
with WT mice, JNK and p38 were activated similarly (Fig. 3C).
However, deletion of SYK reversed the elevated NF-«kB but not
ERK activation in Pstpip2“”° mice, suggesting that NF-«kB plays
an important role downstream of SYK to mediate persistent
inflammation in c¢mo disease.

Furthermore, SYK has been shown to regulate inflam-
masome activation and IL-13 maturation downstream of dec-
tin-1 signaling (16). We therefore asked whether SYK regulates
both NLRP3 inflammasome and caspase-8 activation upstream
of IL-1B production. We observed similar caspase-1 and
caspase-8 cleavage in BMDMs derived from WT, Pstpip277°,
and Pstpip2°°Syk™ LysM"® mice in response to the classical
NLRP3 inflammasome trigger LPS + ATP, which was further
supported by the similar gasdermin D (GSDMD) activation
observed among these genotypes (Fig. 3D). In addition, we fur-
ther noticed that SYK deficiency did not affect the expression of
pro-IL-1B, NLRP3, and ASC, all of which are crucial compo-
nents of inflammasome signaling (Fig. 3E). These data suggest
that SYK does not regulate the caspase-1 and caspase-8 activa-
tion mediated by the classical NLRP3 trigger. Overall, our data
indicate that SYK regulates NF-kB signaling, but not inflam-
masome activation, for the induction of pro-IL-18 to mediate
disease progression in Pstpip2°”° mice.

Discussion

Cmo has been shown to be mediated by pathological IL-13
production downstream of NLRP3/caspase-1 and caspase-8 (9,
11, 12). Disease progression occurs despite single deficiency of
either caspase-1 or caspase-8 (12), which suggests that the
caspases function as part of distinct complexes that are inde-
pendently activated. Although caspase-1 and caspase-8 have
both been shown to colocalize with AIM2/ASC speck to medi-
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Figure 3. SYK is involved in regulating the levels of pro-IL-13 and NF-«B in Pstpip2°™° mice. A, immunoblot analysis of pro-IL-18, caspase-8 (Casp-8),
caspase-1 (Casp-1), phospho-SYK (p-SYK), total SYK (t-SYK), and GAPDH in WT, Pstpip2<™°, and Pstpip2°™°Syk™ILysM" footpad lysates. B,immunoblot analysis
of pro-IL-1p, Casp-8, Casp-1, p-SYK, t-SYK, and GAPDH in WT, Pstpip2°™°, and Pstpip2™°Syk™LysM e BMDMs at the indicated time points after LPS treatment.
C,immunoblot analysis of phospho-IkBa (p-1kBa), total IkBa (t-IkBa), phospho-ERK (p-ERK), total ERK (t-ERK), phospho-JNK (p-JNK), total JNK (t-JNK), phospho-
p38 (p-p38), total p38 (t-p38), and GAPDH in WT, Pstpip2<™°, and Psl’p/'pZC”“’Sykﬂ’”LysMCre footpad lysates. D,immunoblot analysis of activated (cleaved) Casp-1,
Casp-8, and GSDMD in WT, Pstpip2™°, and Pstpip2™°Syk™ L ysMe BMDMs treated with LPS + ATP or left untreated with medium. £, immunoblot analysis of
the inflammasome components pro-IL-18, NLRP3, ASC, and GAPDH in WT, Pstpip2<™, and Pstpip2™°Syk™LysM® BMDMs treated with LPS + ATP or left
untreated with medium. Representative blots from three independent experiments are shown.

ate pro-IL-1p cleavage (22), AIM2 deficiency did not provide
protection in Pstpip2°™° mice, further supporting that, in cmo
disease, caspase-1 and caspase-8 operate and are activated
independently in distinct complexes. In this study, we demon-
strated that deficiency of SYK in Pstpip2°”° mice prevented
the induction of osteomyelitis. SYK signaling upstream of
caspase-1 and caspase-8 to promote pro-IL-18 production cen-
trally mediates cmo disease induction. Thus, it is interesting
that deficiency of the SYK adaptor protein CARD9 did not pro-
vide protection in Pstpip2°° mice. In addition to promoting
pro-IL-1p synthesis, SYK, but not CARDY, has been shown to

SASBMB

regulate NLRP3 inflammasome activation during fungal infec-
tion (29). This suggests that the CARD9 pathway selectively
transduces SYK signaling to promote pro-IL-1f3 synthesis but
not inflammasome activation. Additionally, several reports
have highlighted the role of SYK in regulation of the NLRP3-
and caspase-8-mediated inflammasomes (16, 29, 30). However,
our data with the canonical NLRP3 trigger LPS + ATP did not
reveal a dependence of caspase-1 and caspase-8 processing on
SYK, suggesting an exclusively diverse but specific role for SYK
in mediating cmo disease. In this regard, SYK primarily acts as a
pivotal regulator of pro-IL-1f3 synthesis but not as a regulator of
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inflammasome activation; however, these two processes both
converge toward the production of active IL-1B. Recent evi-
dence has also established central roles for the NLRP3 inflam-
masome and IL-18 signaling in several additional related disor-
ders of nonbacterial osteomyelitis, including Majeed syndrome;
synovitis, acne, pustulosis, hyperostosis, and osteitis syndrome;
and deficiency of IL-1R antagonist (3, 9, 12). Our findings pro-
vide an important context for evaluating the role of SYK in
mediating these related autoinflammatory bone disorders and
for the therapeutic potential of SYK inhibitors in this disease
spectrum.

The central regulatory role of SYK is not confined to IL-13-
mediated autoinflammatory disease. We have reported previ-
ously that SYK licenses MyD88 to induce IL-la—mediated
inflammatory disease in Ptpn6™™™ mice (31). Similarly, we
observed increased activation of SYK in the absence of PSTPIP2,
suggesting that PSTPIP2 functions to suppress SYK signaling.
However, the regulatory mechanisms behind SYK activation by
PSTPIP2 require further investigation. Recent evidence has estab-
lished that PSTPIP2 interacts with SHIP1, which is encoded by
Ptpn6 (32), suggesting that SHIP1 may be able to modulate SYK
activation through its phosphatase activity.

SYK signaling is known to be activated downstream of vari-
ous cell surface receptors, including CD74, integrins, C-type
lectin receptors (dectin-1 and dectin-2), and Fc receptors (27).
Identification of the specific triggers of SYK activation in these
Pstpip2°° mice would further clarify the signaling mechanism
and provide a deeper understanding of the progression of cmo
disease. SYK signaling has also been strongly associated with
the recruitment of neutrophils to areas of inflammation (33).
The marked reductions in inflammation and lymphomegaly
seen in SYK-deficient Pstpip2°”*° mice indicate that SYK signal-
ing potentially mediates neutrophil recruitment in Pstpip2°*°
mice. Although T cell dysregulation has been associated with
inflammatory bone diseases, previous studies have character-
ized the osteomyelitis in cmo disease by increased neutrophil
numbers without T cell abnormalities (9, 34). As neutrophils
have been implicated as major contributors to IL-18 produc-
tion in c¢mo (11), our findings suggest that SYK-mediated
recruitment and activation of neutrophils may also play a role in
promoting the boney inflammation characterizing Pstpip2°*°
mice. Previous studies have shown that inhibition of signaling
pathways highly associated with caspase-8 activation and
inflammatory bone disease, such as tumor necrosis factor sig-
naling, fails to protect against cmo disease (9, 12). This also
indicates that current guidelines for the therapeutic use of
tumor necrosis factor inhibitors in the subset of patients with
CRMO and concurrent autoimmune diseases may not be effec-
tive in treating CRMO. Therapeutic options for the largely
pediatric and adolescent CRMO population are limited by non-
specificity and inadequate control of pain and disease progres-
sion, which can result in physical disabilities or permanent
deformities. As genetic deletion of Syk in the myeloid compart-
ment of Pstpip2°”° mice resulted in complete prevention of
disease induction and progression, SYK and its downstream
signaling components represent promising novel therapeutic
targets in CRMO.
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Experimental procedures
Mice

Pstpip2°™° (35), Nlrp3~'~ (36), Ripk3~'~ (37), Aim2~'~ (38),
Card9~'~ (39), and Syk” LysM" (25) mice have been described
previously. Pstpip2°°NIrp3~'~ mice were generated by crossing
Pstpip2®™ and Nirp3~’~ mice. Then Pstpip2°"°Nlrp3~'~
Ripk3~'~, Pstpip2”™°Nlrp3~'~Aim2~'~, Pstpip2“"°Nirp3~'~
Card9~'~,and Pstpip2°"°Nlrp3~'~ Syk™ "LysM"® mice were gen-
erated by crossing Pstpip2””°Nlrp3~'~ mice onto Ripk3~',
Aim2~'~, Card9~'~, and Syk™"LysM backgrounds, respec-
tively. Pstpip2°°Syk™*LysM" mice were generated by crossing
Pstpip2°™° and Syk"LysM mice. Pstpip2°™° mice were pur-
chased from The Jackson Laboratory and were on the BALB/c
background. All other mutant mice were on the C57BL/6 back-
ground. Littermate controls were utilized to evaluate the influence
of genetic deletions on immune responses, IL-1f3 regulation, and
cmo disease progression. All mice were kept in the Animal
Resource Center at St. Jude Children’s Research Hospital. Animal
studies were conducted according to protocols approved by the St.
Jude Animal Care and Use Committee.

Cell culture and stimulation

Primary BMDM:s were grown for 5 to 6 days in Iscove’s mod-
ified Dulbecco’s medium (Gibco) supplemented with 10% FBS
(Atlanta Biologicals), 30% L929-conditioned medium, 1% non-
essential amino acids (Gibco), and 1% penicillin/streptomycin
(Sigma). BMDMs were seeded at a concentration of 1 X 10°
cells onto 12-well plates. After incubating overnight, cells were
stimulated with LPS (100 ng/ml, InvivoGen) for the indicated
time (0—8 h) or treated with LPS + ATP (LPS, 4 h; ATP (5 mm,
Roche), 30 min) (38) before cell harvest.

Western blotting

For immunoblotting, BMDMs and footpad protein lysates
were prepared by tissue homogenization in radioimmune pre-
cipitation assay lysis buffer supplemented with a protease
inhibitor mixture (Roche) and PhosSTOP (Roche). A Pierce
BCA protein assay kit was used to quantify samples. A total of
40 g of protein was resolved using SDS-PAGE and transferred
onto PVDF membranes (40). The membranes were blocked in
5% skim milk before primary antibodies were added and incu-
bated overnight at 4 °C. Afterward, membranes were incubated
with HRP-tagged secondary antibodies for 1 h at room temper-
ature. Primary antibodies were anti-GAPDH (Cell Signaling
Technology, catalog no. 5174), anti-IL-1 (Cell Signaling Tech-
nology, catalog no. 12507), anti-phospho-ERK1/2 (Cell Signal-
ing Technology, catalog no. 9101), anti-total ERK1/2 (Cell Sig-
naling Technology, catalog no. 9102), anti-phospho-p38 (Cell
Signaling Technology, catalog no. 9211), anti-total p38 (Cell
Signaling Technology, catalog no. 9212), anti-phospho-IkBa
(Cell Signaling Technology, catalog no. 2859), anti-total IkBa
(Cell Signaling Technology, catalog no. 9242), anti-phospho-
SYK (Cell Signaling Technology, catalog no. 2717), anti-total
SYK (Cell Signaling Technology, catalog no. 2712), anti-phos-
pho-JNK (Cell Signaling Technology, catalog no. 9251), anti-
total JNK (Cell Signaling Technology, catalog no. 9252),
anti-caspase-1 (Adipogen, catalog no. AG-20B-0044-C100),

SASBMB



EDITORS’ PICK: Targeting SYK prevents disease in Pstpip2°™ mice

anti-ASC (Adipogen, catalog no. AG-25B-0006-C100), anti-
NLRP3 (Adipogen, catalog no. AG-20B-0014-C100), anti-gas-
dermin D (Abcam, catalog no. Ab155233), and anti-caspase-8
(Adipogen, catalog no. AG-20T-0138-C100). Secondary HRP
antibodies were purchased from Jackson ImmunoResearch
Laboratories.

Micro-CT

A Siemens Inveon wCT scanner (Siemens Healthcare) was
used to capture micro-CT images. Mouse footpads were
imaged with a 672 X 1344 mm matrix and a field of view of
30.04 X 60.08 mm with one bed position. Projections were
obtained at 80 peak kilovoltage and 500 wA (1050-ms exposure,
1000-ms settle time) over half rotation (440 projections), giving
an isotropic resolution of 44.7 um. Inveon Research Workplace
software was used to process the data.

Statistical analysis

Each experiment was repeated at least twice before inclusion
in the manuscript. The log-rank (Mantel-Cox) test was used to
compare statistical significance between survival curves in the
two groups.
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