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Summary

Meiotic sex chromosome inactivation (MSCI) is an essential event in the mammalian male 

germline. MSCI is directed by a DNA damage response (DDR) pathway centered on the 

phosphorylation of histone variant H2AX at serine 139 (termed γH2AX). The failure to initiate 

MSCI is linked to complete meiotic arrest and elimination of germ cells; however, the mechanisms 

underlying this arrest and elimination remain unknown. To address this question, we established a 

new separation-of-function mouse model for H2ax that shows specific and complete defects in 

MSCI. The genetic change is a point mutation in which another H2AX amino acid residue 

important in the DDR, tyrosine 142 (Y142), is converted to alanine (H2ax-Y142A). In H2ax-
Y142A meiosis, the establishment of DDR signals on the chromosome-wide domain of the sex 

chromosomes is impaired. The initiation of MSCI is required for stage progression, which enables 

crossover formation, suggesting that the establishment of MSCI permits the timely progression of 

male meiosis. Our results further suggest that normal meiotic progression requires the removal of 
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ATR-mediated DDR signaling from autosomes. We propose a novel biological function for MSCI: 

The initiation of MSCI sequesters DDR factors from autosomes to the sex chromosomes at the 

onset of the pachytene stage, and the subsequent formation of an isolated XY nuclear 

compartment—the XY body—sequesters DDR factors to permit meiotic progression from the mid 

pachytene stage onward.

Graphical Abstract

eTOC Blurb

Abe et al. demonstrate that tyrosine 142 of histone variant H2AX is required for the initiation of 

meiotic sex chromosome inactivation (MSCI). Based on new genetic evidence, the study proposes 

a novel biological function for MSCI: MSCI sequesters DNA damage signaling from autosomes to 

permit timely progression of male meiosis.
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Introduction

Meiosis is a hallmark event in germline development, when paternal and maternal 

chromosomes undergo synapsis and a reshuffling of the genome prior to producing haploid 

gametes. During meiosis, the fidelity of meiotic recombination and chromosome synapsis is 

strictly monitored by checkpoint mechanisms. In coordinating these and other critical events 

in meiosis, checkpoint mechanisms facilitate timely progression of germ cells through 

meiosis. Importantly, evolutionarily conserved proteins in DNA damage response (DDR) 

pathways are implicated in meiotic checkpoint mechanisms of a variety of organisms, from 

yeast to worms to mammals [1]. Yet despite our understanding of meiotic checkpoints in 

yeast and worms, their molecular operation remains largely unknown in mammals [2].
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In mammalian male meiosis, the X and Y chromosomes are subjected to meiotic sex 

chromosome inactivation (MSCI) [3, 4]. MSCI is an essential process in the male germline, 

as failure to initiate MSCI is linked to the complete arrest and timely elimination of male 

germ cells in the mid pachytene stage of meiotic prophase I [5, 6]. MSCI is a sex 

chromosome-specific manifestation of a general mechanism for transcriptional silencing in 

meiosis termed meiotic silencing of unsynapsed chromatin, which operates as a surveillance 

mechanism for chromosome asynapsis [7–10]. Mechanistically, the initiation of meiotic 

silencing is directed by a DDR pathway centered on the kinase Ataxia telangiectasia and 

Rad3 related (ATR) and its phosphorylation of histone H2AX at serine 139 (termed 

γH2AX) [3, 5, 6, 11–15]. In response to meiotic chromosome asynapsis, a large γH2AX 

“domain” forms through signal amplification of ATR-mediated γH2AX—first from the 

unsynapsed axes, then to their protruding loops of chromatin; the signal amplification is 

directed by Mediator of DNA damage checkpoint protein 1 (MDCI), a γH2AX-binding 

protein [3, 6]. A major question remains as to how the failure to initiate MSCI is related to 

complete meiotic arrest and the timely elimination of spermatocytes.

To understand the molecular events that occur in response to MSCI defects, we generated 

and studied a new separation-of-function mouse model for H2ax. This model contains a 

point mutation in which another H2AX amino acid residue important in the DDR, tyrosine 

142 (Y142) [16, 17], is converted to alanine (H2ax-Y142A). In somatic cells, Y142 is 

constitutively phosphorylated under physiological conditions; Y142 becomes 

dephosphorylated upon DNA damage, enabling interactions between γH2AX and other 

DDR factors, including MDC1, which promote DNA repair [17]. In meiosis, the 

dephosphorylation of Y142 takes place on the sex chromosomes at the onset of MSCI [18]. 

Here, we find that H2ax-Y142A mice show specific and complete defects in MSCI, 

supporting the notion that a common DDR pathway operates in both the somatic DDR and 

MSCI [3].

In this study, we sought to define the common molecular events that occur in response to 

defective MSCI. We analyzed the H2ax-Y142A mouse model and an Mdc1 knockout 

(Mdc1KO) mouse model, both of which exhibit complete impairment of MSCI [6]. Our 

results suggest that the initiation of MSCI sequesters DDR signaling from autosomes to the 

sex chromosomes and that the establishment of MSCI permits the timely progression of 

male germ cells through meiotic prophase I. We propose a novel biological function for 

MSCI: The initiation of MSCI sequesters DDR factors from autosomes at the onset of the 

pachytene stage, and the subsequent formation of a distinctly compartmentalized XY body 

sequesters DDR factors to enable meiotic progression from the mid pachytene stage onward. 

This model postulates a new mechanism for the meiotic checkpoint: An ATR-mediated DDR 

pathway that operates in the checkpoint mechanism of the somatic cell cycle has direct 

regulatory roles in the MSCI checkpoint, which operates to induce cell death if DDR signals 

remain on autosomes.
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Results

An H2AX Y142A point mutation disrupts spermatogenesis

We used CRISPR/Cas9 genome-editing technology to generate a knock-in mouse line 

harboring a point mutation that changes tyrosine 142 of H2AX into an alanine residue 

(H2ax-Y142A: Figure 1A). Homozygous males for H2ax-Y142A (hereafter referred to as 

“H2ax-Y142A”) were infertile, had reduced body weight (Figure 1B), and had significantly 

smaller testes in comparison to wild-type littermate controls (Figure 1C). We confirmed the 

abrogation of phosphorylated Y142 (pY142) of H2AX in H2ax-Y142A testes through two 

methods: western blotting using wild-type and H2ax-Y142A testis lysates (Figure 1D), and 

immunofluorescence of wild-type and H2ax-Y142A spermatocyte nuclei chromosome 

spreads (Figure 1E). In wild-type pachytene spermatocytes, pY142 signals were detected 

throughout nuclei except at XY bodies [18]; pY142 signals were not detected in H2ax-
Y142A spermatocytes (Figure 1E). These results confirmed the successful establishment of 

an H2ax-Y142A mouse line.

Next, we examined the spermatogenic stage progression of H2ax-Y142A mice using two 

specific markers: H1T and γH2AX. H1T is a testis-specific histone variant that accumulates 

in nuclei from the mid-pachytene stage onward [19]. γH2AX is a prominent marker of the 

DDR at DNA double-strand breaks (DSBs), stalled replication forks, and MSCI [20, 21]. We 

observed complete spermatogenetic arrest at the mid pachytene stage (H1T-positive) in 

H2ax-Y142A testes (Figure 1F). Accordingly, the epididymides of H2ax-Y142A mice 

displayed a complete absence of sperm (Figure S1A). Apoptotic cell death is linked to germ 

cell loss in H2ax-Y142A testes (Figure S1B), while the point mutation did not noticeably 

change H2AX protein abundance (Figure S1C). Thus, the Y142A mutation reflects the 

biological importance of an H2AX residue rather than an effect mediated by destabilization 

of the H2AX protein. Together, these results suggest that Y142 of H2AX is an amino acid 

residue essential for the progression of spermatogenesis. In contrast to the severe H2ax-
Y142A phenotype observed in males, H2ax-Y142A female mice were fertile (6 independent 

females were tested; mean litter size: 6.33 ± 0.48, mean ± s.e.m.) similar to H2ax null 

females [5, 22].

H2AX-Y142 is critical for the establishment of MSCI

In the leptotene stage of meiotic prophase I, the topoisomerase II-like enzyme SPO11 

induces programmed DNA double-strand breaks (DSBs) and, in the subsequent zygotene 

stage, the synapsis of homologs takes places [23–25]. In response to SPO11-dependent 

DSBs, an initial wave of γH2AX signaling takes place throughout nuclei in the leptotene 

stage. In chromosome spreads of H2ax-Y142A leptotene spermatocytes, as in wild-type 

controls, γH2AX displayed apparently normal nuclear accumulation patterns (Figure S2A). 

Upon homolog synapsis in normal meiosis, γH2AX signals diminish from autosomes, and a 

chromosome-wide γH2AX domain is established on the sex chromosomes—a hallmark of 

MSCI (Figure 2A, top panel). In H2ax-Y142A spermatocytes, we detected no sex 

chromosome-wide accumulation of γH2AX; instead, we observed an intense, linear 

accumulation of γH2AX along the XY axes (Fig. 2A, bottom panel). This conclusion was 

confirmed through immunostaining and imaging of testis sections (Fig. 1F, arrows in the 
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upper right panel). Importantly, the linear accumulation of γH2AX along the XY axes 

comprised a completely penetrant phenotype: We observed no H2ax-Y142A spermatocytes 

with a chromosome-wide γH2AX domain (>500 nuclei observed from >10 independent 

H2ax-Y142A mice). Additionally, in staging H2ax-Y142A spermatocytes, we did not 

observe spermatocytes beyond the mid pachytene stage, neither in our analyses of testis 

sections nor in our analyses of chromosome spreads of spermatocyte nuclei. In normal male 

meiosis, a feedforward mechanism mediates the formation of a γH2AX domain on the sex 

chromosomes; this mechanism sees the accumulation of γH2AX along unsynapsed axes 

spread to chromatin loops to form a chromosome-wide domain [3, 6] (Figure 2B). The 

mechanism is centered on MDC1, a γH2AX-binding protein that interacts with TOPBP1 

[26]; the binding of MDC1 to γH2AX enables the progressive activation of ATR kinase 

through its activator protein TOPBP1 [12, 27, 28], which then mediates adjacent γH2AX 

formation on chromatin loops. MDC1 binds γH2AX again and the mechanism continues 

onward. In our previous study of the Mdc1KO mouse model, we observed a strikingly 

similar accumulation of γH2AX signals along sex chromosome axes but not through 

chromatin loops [6].

Despite a completely penetrant sex chromosome phenotype, autosome synapsis was 

unimpaired in H2ax-Y142A spermatocytes as mutant chromosome spreads immunostained 

against SYCP1 (a marker of synapsed chromosome axes) revealed no apparent abnormalities 

(Figure 2C). We corroborated this observation by immunostaining against another marker of 

chromosome synapsis, SIX6OS1 [29] (Figure S2B). Together, these data confirm the 

unimpaired formation of the synaptonemal complex in H2ax-Y142A spermatocytes. 

Furthermore, the partial synapsis of the X and Y chromosomes at an area of homology 

known as the pseudoautosomal region was present in 87.86% of observed H2ax-Y142A 
spermatocytes, a proportion that is slightly lower in comparison to control spermatocytes 

(Figure 2C). A recent study revealed that autosome synapsis is partially defective in H2ax 
null mutants, suggesting that H2AX has additional roles in the regulation of autosome 

synapsis [30]. However, the role of H2AX-Y142 is restricted to the regulation of the sex 

chromosomes. Thus, we conclude that H2ax-Y142A is a separation-of-function mutation for 

the H2ax gene.

To determine the function of H2AX-Y142 in the regulation of DDR signals, we examined 

the localization of ATR and TOPBP1. In H2ax-Y142A spermatocytes, ATR and TOPBP1 

are restricted to the axes of sex chromosomes with no apparent spreading to chromatin 

loops, unlike wild-type spermatocytes (Figures 2D and 2E). These data confirm a function 

for H2AX-Y142 in the establishment of a chromosome-wide domain. In contrast to these 

proteins, in H2ax-Y142A spermatocytes, the localization of BRCA1 and HORMAD2 

(factors that localize to unsynapsed axes to regulate ATR signaling [13, 15, 31]) was 

unchanged (Figures 2F and 2G). Therefore, the function of H2AX-Y142 is specific to the 

XY chromatin domain. Given these findings, we examined the localization of MDC1 on the 

XY chromatin of H2ax-Y142A spermatocytes. Interestingly, we observed punctate MDC1 

foci on H2ax-Y142A sex chromosome axes, unlike the sex chromosome-wide distribution of 

MDC1 in wild-type spermatocytes (Figure 2H). These data suggest that, while MDC1 was 

recruited to the axes of H2ax-Y142A sex chromosomes, MDC1 signals were not amplified 

throughout the XY chromatin. Taken together, we conclude that Y142 of H2AX is required 
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for the MDC1-dependent amplification of DDR signals throughout XY chromatin (Figure 

2B).

To further determine the necessity for H2AX-Y142 in MSCI, we examined the status of 

active transcription on the sex chromosomes. Using slides that preserve the 3D chromatin 

organization of spermatocytes (3D slides) [32, 33], we judged the localization of RNA 

polymerase II (RNAPII) signals with respect to the bulbous chromo-nuclear compartment 

that encompasses XY chromatin in mid pachytene (H1T-positive) spermatocytes. In wild-

type mid pachytene spermatocytes, RNAPII signals were largely excluded from the XY 

body (Figure 3A), consistent with previous reports [6, 32]. However, in stage-matched 

H2ax-Y142A spermatocytes, RNAPII signals were overtly present throughout XY 

chromatin, while DAPI-discernible XY bodies were absent (Figure 3A). Likewise, the 

compaction of the XY axes, another telltale signature of MSCI initiation and XY body 

formation, was not observed in H2ax-Y142A mid pachytene spermatocytes, neither in our 

analyses of testis sections (Figure 3B) nor in our analyses of 3D slides (Figure 3C). 

Interestingly, these observations are essentially the same as those made in studies of other 

mouse models with complete defects in the initiation of MSCI, including loss-of-function 

models for H2AX, MDC1, ATR, and TOPBP1 [5, 6, 14, 28]. Therefore, we conclude that 

H2AX-Y142 is required both for the establishment of MSCI and for formation of the XY 

body.

The initial steps of autosome DSB repair are normal in MSCI-defective mutants

The results presented here demonstrate the H2ax-Y142A model has a completely penetrant 

defect in MSCI initiation, a finding that corroborates the essentiality of MSCI in 

spermatogenesis [5, 6, 13–15, 28, 34]. In turn, this raises the possibility that failure of MSCI 

is a direct cause of meiotic arrest and germ cell demise. However, if DSB repair in meiotic 

recombination were defective, that would suggest a recombination-dependent checkpoint 

operates to trigger germ cell demise in meiotic prophase I [1, 35, 36]. To test the hypothesis 

that MSCI failure is a direct cause of meiotic arrest in H2ax-Y142A spermatocytes, we 

evaluated the status of meiotic recombination on H2ax-Y142A autosomes.

To assess the status of DSB repair in H2ax-Y142A spermatocytes, we evaluated RAD51 foci 

in spermatocyte nuclei. An established surrogate for DSBs, RAD51 foci appear in response 

to SPO11-induced DSBs in leptotene spermatocytes [37]. As leptotene spermatocytes 

advance into the zygotene and pachytene stages, there is a progressive decrease in the 

numbers of RAD51 foci concomitant with the repair of DSBs, which is completed in the 

pachytene stage [38]. In our analyses of H2ax-Y142A spermatocytes, we observed a normal 

accumulation of RAD51 foci in the leptotene and zygotene stages (Figure S3A); as well, we 

observed comparable numbers of RAD51 foci between wild-type and H2ax-Y142A mid 

pachytene spermatocytes (per nucleus, we observed <10 autosomal foci: Figure 4A). These 

data indicate that the initial steps of DSB repair are apparently normal on the autosomes of 

H2ax-Y142A spermatocytes. Interestingly, we observed a slight increase in the numbers of 

RAD51 foci on the sex chromosome axes of H2ax-Y142A mid pachytene spermatocytes 

(wild-type mid pachytene spermatocytes: 17.69 ± 0.67, mean ± s.e.m.; H2ax-Y142A mid 

pachytene spermatocytes: 22.01 ± 0.76, mean ± s.e.m.). This finding further confirms a sex 
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chromosome-specific function for H2AX-Y142—a function apparently extraneous to the 

formation and resolution of autosomal DSBs.

While we judged DSB resolution to be grossly normal, a small-but-vitally important 

proportion of DSBs resolve via a specialized crossover recombination repair pathway that 

facilitates the reshuffling of genetic information between maternal and paternal chromatids 

[23–25]. Thus, we sought to evaluate crossover recombination repair in H2ax-Y142A and 

control spermatocytes. In H2ax-Y142A spermatocytes, we noted a distinct absence of 

MLH1 foci (Figure S3B), which mark sites of crossover recombination [39]. We infer this is 

due to the inability of H2ax-Y142A spermatocytes to advance past the mid pachytene stage 

into the late pachytene stage, when the vast majority of MLH1 focal accumulation takes 

place (Figure S3B). In a previous report of Mdc1KO spermatocytes, we noted a phenotype 

that is essentially the same as that in H2ax-Y142A spermatocytes: The absence of MLH1 

foci was concomitant with completely defective MSCI [6]. This commonality suggests that 

the initiation of MSCI is necessary for meiotic progression to the stage of MLH1 focal 

accumulation.

In a previous report analyzing chromosome spreads of spermatocyte nuclei [40], it was 

demonstrated that future sites of crossover exhibit focal accumulation of another crossover 

marker, MLH3, prior to the accumulation of MLH1 foci. To evaluate the initial step of 

crossover recombination, prior to the arrest of mid pachytene spermatocytes, we scored the 

numbers of MLH3 foci in control and H2ax-Y142A spermatocytes. In early pachytene 

(H1T-negative) spermatocytes from both control and H2ax-Y142A mice, MLH3 foci were 

detected at similarly low levels (Figure 4B). However, in mid pachytene (H1T-positive) 

spermatocytes, the numbers of MLH3 foci differed between wild-type and H2ax-Y142A: In 

wild-type samples, MLH3 focal accumulation showed a marked increase (8.72 ± 0.61, mean 

± s.e.m.; Figure 4B); in H2ax-Y142A samples, we noted reduced numbers of MLH3 foci 

(2.01 ± 0.23, mean ± s.e.m.; Figure 4B). In wild-type late pachytene spermatocytes, the 

numbers of MLH3 foci reached their zenith (>20, with at least one per chromosome; Figure 

S3C), similar to the focal accumulation of MLH1; this suggests MLH3 focal accumulation 

grows in and through the mid pachytene stage. Meiotic arrest likely takes place early in the 

mid pachytene stage, when MLH3 focal accumulation is in its initial growth phase (Figure 

4C). Importantly, this timing coincides with the formation of the XY body, a distinct, DAPI-

discernible chromo-nuclear compartment at the periphery of the mid pachytene nucleus 

(Figure 4D) [32]. In the early pachytene stage, the diffuse, indistinct chromosome-wide 

accumulation of γH2AX on XY chromatin represents the initiation of MSCI, and it is not 

until the mid pachytene stage that a bulbous, bounded, and distinctly compartmentalized XY 

body appears at the nuclear periphery [15, 41, 42]. We infer that the complete death of 

H2ax-Y142A spermatocytes is linked to the failure to form an XY body.

To further define the molecular events that occur in response to defective MSCI, we 

analyzed meiotic DSB repair in Mdc1KO mice, a separate, independent genetic model 

exhibiting complete failure of MSCI [6]. We did not examine other mutants for direct 

regulators of MSCI, such as H2AX, ATR, and TOPBP1, because they are directly involved 

in meiotic recombination [5, 14, 28, 30]. Similar to our analyses of H2ax-Y142A and 

control mice, the numbers of RAD51 foci were comparable on the mid pachytene autosomes 
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of Mdc1KO and control mice (Figure 4E). Interestingly, RAD51 foci on Mdc1KO sex 

chromosomes were comparable with wild-type sex chromosomes (Figure 4E); this is in 

contrast to the slight increase in RAD51 focal accumulation observed on H2ax-Y142A sex 

chromosomes (Figure 4A), suggesting that RAD51 foci on the sex chromosomes may be 

regulated by H2AX-Y142 but not MDC1. Taken together our findings indicate that the 

initial steps of meiotic DSB repair are grossly normal in Mdc1KO spermatocytes, thereby 

confirming that MSCI deficiency does not disturb the initial steps of meiotic recombination. 

Furthermore, reduced numbers of MLH3 foci were observed in mid pachytene 

spermatocytes of Mdc1KO mice (Figure 4F). Thus, based on findings from two independent 

mouse models, we conclude that meiotic arrest takes place in the midst of the mid pachytene 

stage prior to the full accumulation of MLH3 foci (Figure 4C). Importantly, we have 

excluded the possibility that the meiotic arrest observed in H2ax-Y142A mice is caused by 

the reduction of MLH3 foci because MLH3-deficient spermatocytes are capable of reaching 

the metaphase stage of meiosis I [43]. Also, our results further suggest the successful 

initiation of MSCI is required for stage progression, which enables crossover formation in 

male meiosis.

Finally, we evaluated meiosis in female H2ax-Y142A mice and confirmed normal meiotic 

recombination (Figure S4). Consistent with the normal fertility of H2ax-Y142A females, 

MLH1 foci were observed in H2ax-Y142A pachytene oocytes (Figure S4A). Therefore, 

Y142 of H2AX is dispensable for the formation of MLH1 foci in female meiosis. This result 

underscores specific functions for H2AX-Y142 in male-specific MSCI. In support of this 

notion, regulators of MSCI—such as MDC1, H2AX, BRCA1, and HORMAD2—are not 

required for female meiosis, and female models for the loss-of-function of these factors are 

fertile [6, 22, 31, 44, 45].

ATR-associated DDR signals are sequestered from autosomes to the sex chromosomes at 
the onset of MSCI

Our results suggest the establishment of MSCI permits the timely progression of male germ 

cells through meiotic prophase. By definition, checkpoints monitor the completion of 

essential cellular events, enabling cells to progress to their next stages. In meiosis, it is 

generally thought meiotic checkpoint mechanisms coordinate genetically distinct and/or 

independent meiotic processes [1]. Since genetic evidence, including the current study, 

shows that meiotic arrest and subsequent cellular demise ensue when MSCI is abrogated [5, 

6, 13–15, 31, 45, 46], we reasoned that the initiation of MSCI functions as a checkpoint to 

coordinate and pace precise meiotic stage progression during normal meiosis.

A previous study proposed that, in response to defective MSCI, germ cell death results from 

the ectopic expression of sex chromosome-linked genes [34]. However, DDR signaling—

and particularly ATR signaling—is directly involved in the meiotic checkpoints of various 

organisms, including yeast, worms, and flies [1]. These observations, in combination with 

our new results, compelled us to hypothesize that DDR signaling itself functions as a 

checkpoint in MSCI. This is a novel model for the MSCI checkpoint (see Discussion). To 

test this hypothesis, we sought to identify DDR signaling phenotypes common to both the 

H2ax-Y142A and Mdc1KO models, which exhibit specific MSCI defects.
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In our previous evaluation of mid pachytene Mdc1KO spermatocytes, we observed persistent 

γH2AX and TOPBP1 foci on autosomes axes when MSCI is abrogated [6]. In H2ax-Y142A 
spermatocytes in the mid pachytene stage, we observed that γH2AX and TOPBP1 foci were 

present largely at autosome axes (Figures 2A and 5A). On the other hand, in the transition 

from the early-to-mid pachytene stages in wild-type spermatocytes, these DDR signals 

progressively faded from autosomes. This retention of TOPBP1 foci on autosome axes was 

comparable between H2ax-Y142A and Mdc1KO spermatocytes (Figures 5A–5C: 65.95 ± 

4.26, mean ± s.e.m. for H2ax-Y142A; 76.09 ± 2.76, mean ± s.e.m. for Mdc1KO). 

Importantly, the retention of γH2AX and TOPBP1 foci in H2ax-Y142A and Mdc1KO mice 

was largely independent of persistent DSBs: The numbers of autosomal γH2AX and 

TOPBP1 foci were much higher than those of RAD51 foci, and we did not observe 

differences in the numbers of RAD51 foci between controls and mutants (Figures 4A and 

4E). Since TOPBP1 is an ATR activator [47], we also examined the retention of ATR foci. In 

normal meiosis, γH2AX and ATR foci are confined to the XY body in the mid pachytene 

stage. In contrast, we confirmed the retention of γH2AX and ATR foci on autosome axes in 

H2ax-Y142A and Mdc1KO pachytene spermatocytes (Figures 5D and 5E). Furthermore, we 

found that ATR interacting protein (ATRIP), a binding partner of ATR in checkpoint 

signaling [48] and a protein that binds unsynapsed meiotic chromosome axes [49], was 

retained on autosome axes in H2ax-Y142A pachytene spermatocytes (Figure S5). These 

results raise a compelling possibility: In the early pachytene stage, MDC1-dependent 

amplification of DDR signals on the XY chromatin sequesters the DDR signaling to the sex 

chromosomes and away from autosomes (Figure 6). Although another interpretation is 

possible: MDC1 and H2AX-Y142 are required for the release of DDR signals from 

autosomes axes. We believe this possibility is unlikely because the release of DDR signals 

from chromosome axes takes place normally in H2ax-Y142A pachytene oocytes (Figure 

S4B and S4C).

Discussion

In this study, we show that H2ax-Y142A is an H2ax separation-of-function mutation that 

exhibits specific defects in MSCI. We capitalized on this model to dissect the molecular 

events that occur in response to defective MSCI. In interpreting our results in the context of 

the literature, we propose a new model for the MSCI checkpoint wherein MSCI sequesters 

ATR-mediated DDR signaling from autosomes to permit meiotic progression (Figure 6).

The Y142 residue of H2AX is essential for MSCI

We show that H2AX-Y142 is important for the function of MDC1 in MSCI. In H2ax-
Y142A mutants, the localization of MDC1 to the XY axes was significantly reduced (Fig. 

2H); this raises the possibility that the binding of MDC1 to H2AX with an A142 point 

mutation is less than the binding of MDC1 to unphosphorylated H2AX-Y142. This 

interpretation is in line with results reported for somatic cells [50, 51]: In response to 

irradiation-induced DNA damage, an H2AX-Y142A point mutation abolishes the binding of 

MDC1 to γH2AX (i.e., H2AX phosphorylated at S139). However, the PI3-kinases that act 

in response to irradiation-induced DNA damage in somatic cells differ from those that act in 

MSCI. At sites of irradiation-induced DSBs, the kinase ATM is thought to amplify γH2AX 
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signals in conjunction with MDC1 [52]; in contrast, ATR-mediated γH2AX is amplified in 

conjunction with MDC1 in MSCI. Since ATR-mediated γH2AX is linked to stalled 

replication forks in somatic cells [20], the current study supports a model in which the ATR-

mediated DDR pathway that induces MSCI is an adapted version of the ATR-mediated DDR 

pathway that recognizes replication stress in S phase of somatic cells [3, 6].

Importantly, the initial steps of DSB repair and ATM-mediated γH2AX signaling take place 

normally in both H2ax-Y142A and Mdc1KO meiosis [6]. Therefore, we conclude H2AX-

Y142 and MDC1 are not required for ATM-dependent processes in meiosis, such as the 

control of DSB numbers [53]. This is in contrast to a recent study postulating H2AX and 

MDC1 are involved in ATM-dependent processes in meiosis [30]. However, the normal DSB 

repair found in the current study suggests the ATM-related recombination-dependent 

checkpoint—triggered by persistent DSBs in early pachytene spermatocytes [35, 36, 54, 55]

—may not be activated in H2ax-Y142A and Mdc1KO spermatocytes. Interestingly, H2ax 
null mice exhibited additional defects beyond those of H2ax-Y142A mice, including 

chromosome synapsis abnormalities [30]. Such defects may represent H2AX functions 

genetically distinct from H2AX-Y142.

The numbers of RAD51 foci on the male sex chromosomes in H2ax-Y142A spermatocytes 

were slightly increased in comparison to wild-type sex chromosomes. In somatic cells, 

H2AX controls recombination both of homologous chromosomes and sister chromatids [56]. 

Since sister chromatids comprise the only templates for DSB repair of the male sex 

chromosomes, we postulate that H2AX-Y142 has a critical role in the control of H2AX-

mediated sister chromatid recombination. Alternatively, H2AX may be a key factor in a 

proposed role for MSCI in the suppression of illegitimate recombination between 

unsynapsed regions of the X and Y chromosomes [57]; as well, H2AX may be critical for 

proposed roles of meiotic silencing in suppressing nonhomologous recombination on 

unsynapsed axes [4]. However, in the above scenarios, the function of H2AX is likely 

independent of MDC1, since we did not observe increased numbers of RAD51 foci on sex 

chromosomes in Mdc1KO mice.

A novel model for the MSCI checkpoint

The biological function of MSCI remains a major unsolved question. We propose a novel 

function for MSCI: Initiation of MSCI sequesters DDR factors from autosomes to the sex 

chromosomes. According to this model, when MSCI is defective, the retention of ATR-

mediated DDR signaling on autosomes directly induces cell arrest and demise (Figure 6). 

We postulate that this ATR-mediated surveillance mechanism directly functions in the MSCI 

checkpoint, which, in establishing MSCI, results in an XY body that sequesters ATR-

mediated DDR signaling to permit the timely progression of male meiosis (Figure 6). In our 

reasoning, MSCI can be interpreted as a checkpoint since classical checkpoints function to 

coordinate essential cell cycle-related events [58, 59]. In support of this, ATR-mediated 

DDR signaling—including its regulatory mechanisms (e.g., those enabled by BRCA1 and 

HORMAD1/2)—is tightly linked to the control of meiotic progression, as has been 

demonstrated in many previous studies [11, 13, 15, 31, 45, 46, 60]. In concert with a 

possible role for ATR in the MSCI checkpoint, ATR functions to regulate checkpoints in 
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other contexts too, including the intra-S replication checkpoint in somatic cells as well as the 

G2 DNA damage checkpoint in somatic cells [61, 62]. Importantly, CHEK2, a downstream 

effector of ATR, was shown to be critical in an oogenic checkpoint [63], further indicating 

the direct function of DDR signaling in certain checkpoints.

Interestingly, there may exist a specific threshold for the amount of ATR-mediated DDR 

signaling that triggers mid pachytene cell death. The retention of small amounts of ATR-

mediated DDR signaling on autosomes is compatible with meiotic progression through the 

mid pachytene stage as in, for example, small genomic regions of asynapsis; yet apparently, 

larger amounts lead to arrest and apoptosis [64, 65]. Furthermore, MSCI is attenuated but 

not defective in response to a hypomorphic mutation of the Atr gene, and persistent DDR 

signaling on autosomes is associated with cell death beyond the mid pachytene stage [66]. 

The current work reveals an intriguing finding: The retention of ATR-mediated DDR 

signaling on autosomes is largely independent of DSB repair. Therefore, the MSCI 

checkpoint is functionally separable from the recombination-dependent checkpoint resulting 

from persistent DSBs [35, 36, 54, 55]. In relation to the MSCI checkpoint model presented 

here, the depletion of CHEK1, another downstream effector of ATR, results in the 

accumulation of DSB-independent DDR signaling on autosomes as well as abnormal 

meiotic progression [41]. A previous study demonstrated that the amounts of DDR factors 

present in pachytene spermatocytes are fixed [46]; thus, extensive autosome asynapsis may 

attenuate MSCI by overdrawing from a limited bank of DDR proteins. Thus, our new model 

provides a logical explanation for why an ATR-mediated DDR pathway recognizes the 

asynapsis of autosomes and then eliminates germ cells with chromosome abnormalities.

Although the unique characteristics of the MSCI checkpoint do not invalidate other kinds of 

checkpoints, we need to carefully distinguish between our new model of the MSCI 

checkpoint and previously described meiotic checkpoint mechanisms. This is because no 

protein has been identified that, when absent, bypasses the arrest linked to MSCI defects. 

ATR itself has functions in meiotic recombination [66, 67], and ATR loss-of-function is 

associated with cell death in the mid pachytene stage [14]. According to our MSCI 

checkpoint model, sequestration of DDR signaling from autosomes to the XY body, a 

chromo-nuclear compartment isolated from the rest of the nucleus, permits meiotic 

progression at the mid pachytene stage. It can be reasonably assumed that, in spermatocytes, 

a variety of proteins must be sequestered to the XY body at certain thresholds to ensure 

continued stage progression and gamete development. Notably, in such a scenario, then, the 

depletion or mutation of a given DDR protein cannot bypass the meiotic checkpoint to 

permit meiotic progression.

MSCI defects are compatible with cell survival in the early pachytene stage but result in 

meiotic arrest and death with impressive exactitude in the mid pachytene stage. Indeed, XY 

bodies are invariably absent in mutants with defective MSCI and/or chromosome synapsis 

abnormalities [5, 6, 15, 46], indicating a tight, underlying link between the formation of an 

isolated XY body and meiotic progression. We infer the biological function of the XY body 

is to sequester specific nuclear components, including DDR signals/checkpoint machinery, 

from the remainder of the nucleus. The phenotypes of Spo11−/− spermatocytes, which 

display extensive chromosome asynapsis abnormalities and undergo cell death, could arise 
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from an inability to isolate such nuclear components. While SPO11-deficient spermatocytes 

manifest one or more diffuse sites of ectopic meiotic silencing—termed “pseudo-XY 

bodies”—they are not compatible with meiotic progression since pseudo-XY bodies do not 

constitute distinct, bounded, physically isolated chromo-nuclear compartments like true XY 

bodies [11, 15]. On the other hand, mutants deficient for XY-body markers that function 

downstream of the ATR-mediated DDR pathway that initiates MSCI—including, but not 

limited to, AGO4, RNF8, SCML2, FANCB—are not associated with mid pachytene arrest 

[68–71]. These XY-body markers may function subsequent to progression through the MSCI 

checkpoint.

Interestingly, our recent study suggests the 3D chromatin organization of the sex 

chromosomes during MSCI arises from phase separation [72], a physical process in which 

membraneless organelles form and behave as liquid droplets [73, 74]. Following on this, it is 

intriguing to speculate that MDC1-dependent amplification of γH2AX gives rise to nuclear 

environments in which it is energetically favorable for DDR signals to coalesce, a liquid-

liquid condensation that sequesters DDR signals/checkpoint machinery from their initial 

sites of accumulation on autosome axes and chromatin. In the absence of such a mechanism, 

DDR signaling is retained on autosomes.

In contrast to our new model, a previous study suggested another potential cause of meiotic 

cell death in mutants with defective MSCI: Derepression of toxic genes from sex 

chromosomes such as the Y-linked genes Zfy1 and Zfy2 [34]. Given our growing knowledge 

of spermatogenesis, and given that both ZFY1 and ZFY2 function in normal 

spermatogenesis [75–77], derepression of sex-linked genes is unlikely to be the sole 

mechanism inducing cell death. As well, the extended timespans, noise, and cell-to-cell 

variability of transcription- and translation-dependent biological processes suggest toxic 

gene derepression is likely not compatible with the complete, clockwork nature of mid 

pachytene cell death. In our previous study of Scml2KO mice, the abnormal expression of 

sex-linked genes in the pachytene stage was found to be compatible with meiotic 

progression [70], and Zfy1 and Zfy2 were derepressed in Scml2KO pachytene 

spermatocytes (Figure S6). Furthermore, SCML2 and FANCB are examples of X-linked 

gene products that function on the XY body [70, 71], indicating that sex-linked gene 

products can exert physiological functions even after transcriptional silencing via MSCI. 

Since gene dosage of the sex chromosomes is a critical determinant of fertility [78], it is 

possible this gene dosage is monitored by quality control mechanisms apart from the MSCI 

checkpoint. The monitoring of gene dosages and checkpoints are unlikely to be mutually 

exclusive. Thus, continued investigation will be important to more precisely identify the 

molecular mechanisms underlying the MSCI checkpoint.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents should be directed to the Lead Contact, 

Satoshi H. Namekawa (satoshi.namekawa@cchmc.org). H2ax-Y142A mice are available for 

sharing.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse lines—H2AX tyrosine 142-to-alanine 142 point mutation mice (H2ax-Y142A 
mice or H2ax-Y142A) used in this study were generated via CRISPR-Cas9 gene editing 

technology in the Transgenic Animal and Genome Editing Core Facility of Cincinnati 

Children’s Hospital Medical Center. The methods for the design of sgRNAs, the design of 

donor oligos, and the production of animals have been described [79]. The sgRNA target 

sequences (5′ GCCTCTCAGGAGTACTGAGG 3′) were cloned through established 

methods [80] into a modified pX458 vector (Addgene, 48138); the pX458 vector contains an 

optimized sgRNA scaffold and a high-fidelity Cas9 [81, 82]. Editing activity was validated 

via T7 Endonuclease 1 mismatch assays in mouse mK4 cells [83] in side-by-side 

comparisons with Tet2 sgRNA, which is known to work efficiently in mouse embryos [84]. 

Validated sgRNA was transcribed in vitro using the MEGAshortscript T7 Transcription Kit 

(ThermoFisher Scientific, AM1354), purified by the MEGAclear Transcription Clean-UP 

Kit (ThermoFisher Scientific, AM1908), and then stored at −80°C. To prepare the injection 

mix, we incubated sgRNA and Cas9 protein (ThermoFisher Scientific, A36498) at 37°C for 

10 minutes (min) to form ribonucleoproteins; then, we added the single-strand DNA donor 

oligo (IDT) to the mixture. The final concentrations were as follows: 50 ng/μl sgRNA, 100 

ng/μl Cas9 protein, and 100 ng/μl DNA donor oligo. Using a piezoelectric microinjection 

technique [85], mutant mice were generated via microinjections of the mix into the 

cytoplasm of fertilized eggs on a C57BL/6 background. On the same day as the 

microinjections, the eggs were transferred into the oviduct ampulla of pseudopregnant CD-1 

female mice.

Pups were born and genotyped by PCR with AflII (NEB, R0520S) enzyme digestion. 

Animals were housed in a controlled environment with a 12-hour (h) light/12-h dark cycle 

and with free access to water and a standard chow diet. For genotyping, the wild-type allele 

and point mutation allele —which codes alanine instead of tyrosine at H2AX residue 142—

were distinguished via the following forward primers: wild-type allele, 5′ CGC AGG CCT 

CTC AGG AGT AC 3′; mutant allele, 5′ CGC AGG CCT CTC AGG AGG CT 3′. The 

reverse primer was 5′ CTG CGG AGG GAC TAA CCT TC 3′. Heterozygous males and 

females were bred to produce homozygous mutant males (i.e., H2ax-Y142A mice). The 

Mdc1 knockout (Mdc1KO) mice used in this study are described in our previous report [6]. 

For analyses of H2ax-Y142A and Mdc1KO mice, homozygous mice bearing wild-type 

alleles were used as littermate controls unless otherwise described in the figures and/or 

figure legends. All mouse tissue samples used in this study were harvested at 5–12 weeks of 

age unless otherwise noted in the figures and/or figure legends. For analysis of female 

meiocytes, fetal ovaries were harvested at day 17.5 of pregnancy (where observation of 

vaginal plug is counted as day 0.5). All subsequent experimental work was performed under 

protocol no. IACUC2018–0040 approved by the Institutional Animal Care and Use 

Committee of Cincinnati Children’s Hospital and Medical Center.

METHOD DETAILS

Western blotting—The following western blot experiments were replicated twice; for 

each experiment, all samples were run on the same gel. To confirm the absence of 

phosphorylated Y142 of H2AX via western blots, detunicated testis pieces were 
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homogenized in RIPA buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.1% SDS, 1% 

Triton X-100, 1% sodium deoxycholate) containing cOmplete Protease Inhibitor Cocktail 

(Roche, 11697498001) and Phosphatase Inhibitor Cocktail 2 (Sigma, P5726); then, the 

homogenate was incubated on ice for 30 min. After DNA fragmentation by sonication and 

subsequent centrifugation at 10,000×g at 4°C, the supernatant was transferred to a new tube 

before total protein concentration was quantified via Bradford assays. Volumes of lysates 

containing 20 μg proteins were separated by electrophoresis on 10% SDS-PAGE gels. Then, 

the proteins were transferred onto a PVDF membrane (EMD Millipore, IPVH00010). The 

membranes were blocked with StartingBlockTM T20 (TBS) Blocking Buffer (ThermoFisher 

Scientific, 37543) at room temperature (RT) for 30 min before incubation with anti-H2AX-

pY142 antibody (Millipore, 07–1590), diluted 1/1000 in Tris-buffered saline containing 

0.1% Tween 20 detergent (TBST), at 4°C overnight. On the next day, after washing three 

times in TBST, 5 min per wash, the blot was incubated with VeriBlot for IP Detection 

Reagent (HRP) (Abcam, ab131366), diluted 1/5000 in TBST at RT, for 1 h. The blot was 

washed three times in TBST, 5 min per wash, before incubation in Immobilon Western 

Chemiluminescent HRP Substrate (EMD Millipore, WBKLS0500) at RT for 1 min; then, 

the blot was imaged using Super RX-N x-ray film (Fujifilm) and a FluorChemQ MultiImage 

III instrument (Alpha Innotech). To blot loading controls, the initial blot was stripped with 

Restore Western Blot Stripping Buffer (ThermoFisher Scientific, 21059) at RT for 10 min; 

then, the stripped blot was washed two times in TBST, 5 min per wash, prior to incubation 

with anti-Lamin B1 antibody (Abcam, ab16048), diluted 1/2000 in TBST, at RT for 1 h. 

After washing the blot three times in TBST, 5 min per wash, the blot was incubated with 

VeriBlot for IP Detection Reagent (HRP), diluted 1/5000 in TBST, at RT for 1 h, and bands 

were visualized through the procedures described above.

To detect H2AX protein expression in wild-type and H2ax-Y142A mouse heart, liver, and 

testis tissues, whole tissue lysates were isolated and prepared from mice at two weeks of 

age. We selected this timepoint because spermatogenesis is in its semi-synchronized “first 

wave;” thus, the vast majority of testis cells are early pachytene spermatocytes. To prepare 

tissue lysates, ~20 mg of heart tissue, ~20 mg of liver tissue, and two whole testes were 

processed as described above. Volumes of lysates containing 20 μg proteins were separated 

by electrophoresis on a 15% SDS-PAGE gel. After transferal to a PVDF membrane and 

blocking, the membrane was cut into two pieces and trimmed. One piece was used for the 

detection of H2AX, and the other piece was used for the detection of a-tubulin, a loading 

control. Thus, one portion of the split membrane was incubated with anti-H2AX antibody 

(Cell signaling technology, 2595), diluted 1/2000 in TBST; and the other portion was 

incubated with anti-α-tubulin antibody (Abcam, ab7291), diluted 1/5000 dilution in TBST. 

The membranes were incubated at 4°C overnight. The next day, after washing (described 

above), the membranes were incubated with VeriBlot for IP Detection Reagent (HRP; 

described above). After additional washing (described above), the membranes were 

incubated with Immobilon Western Chemiluminescent HRP Substrate (described above); 

then, the blots were imaged using an Amersham Imager 680 (GE Healthcare).

Preparation and immunofluorescence of meiotic chromosome spreads—
Meiotic chromosome spreads from testes were prepared essentially as described [42, 86]; 
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here, we briefly describe our protocol, including a small number of deviations from the cited 

literature. Testes were excised, detunicated, and placed in 1× phosphate-buffered saline 

(PBS). Seminiferous tubules were dissociated from whole testes in the following amounts: 

from wild-type or heterozygous models, approximately one-quarter of an adult testis; from 

an experimental model—i.e., H2ax-Y142A or Mdc1KO—a whole adult testis. Seminiferous 

tubules were transferred to a four-well dish (Nunc 4-Well Dishes: ThermoFisher Scientific, 

144444) kept on ice. Three of the four wells contained 1 mL PBS, while the fourth well 

contained 1 mL hypotonic extraction buffer [HEB: 30 mM Tris base, 17 mM trisodium 

citrate, 5 mM ethylenediaminetetraacetic acid (EDTA), 50 mM sucrose, 5 mM dithiothreitol 

(DTT), 1× cOmplete Protease Inhibitor Cocktail (Sigma, 11836145001), 1× phosphatase 

inhibitor cocktail 2 (Sigma, P5726–5ML), pH. 8.2]. In the first well containing 1 mL PBS, 

seminiferous tubules were gently unraveled into small clumps with fine-point tweezers; care 

was taken not to tear or mince the tubules. The clumps of seminiferous tubules were 

transferred to the second and third wells of 1 mL PBS for additional unraveling before 

transfer to the fourth well containing 1 mL HEB. Once there, fine-point tweezers were used 

to carefully expose the surface area of tubules to HEB. The seminiferous tubules were 

incubated in HEB on ice for approximately 2 h with gentle stirring every 30–45 min. After 

incubation, a small clump of seminiferous tubules—approximately four-to-six seminiferous 

tubules—was gently pulled and mashed between tweezer tips in 30 μL of sucrose (100 mM) 

on a plain, uncharged microscope slide (Gold Seal: ThermoFisher Scientific, 3010–002). 

After approximately 15–25 mashes, a semi-translucent cell suspension was formed. An 

additional 30 μL of sucrose (100 mM) was added to the suspension, and the suspension was 

mixed via gentle pipetting up and down several times. The diluted cell suspension was 

applied to positively charged slides (Probe On Plus: ThermoFisher Scientific, 22-230-900) in 

30 μL volumes; before application of the suspension, the slides had been incubating in 

chilled fixation solution (2% paraformaldehyde, 0.1% Triton X-100, 0.02% sodium 

monododecyl sulfate, adjusted to pH 9.2 with sodium borate buffer) for a minimum of 2 

min. After applying the cell suspension/sucrose mixture, the slide was slowly, gently tilted 

up and down at slight angles (<10°) to mix the cell suspension/sucrose mixture with 

remaining fixation solution. The slides were placed in “humid chambers” (closed pipet tip 

boxes filled to approximately two-thirds volume with water) at RT for a minimum of 1 h 

(maximum overnight). Then, the slides were washed in a low-concentration surfactant, 0.4% 

Photo-Flo 200 (Kodak, 146– 4510), at RT two times, 2 min per wash. Slides were dried 

completely at RT (~30 min) before staining or storage in slide boxes at −80°C.

Chromosome spreads of oocytes at embryonic day 17.5 were prepared as described [42]. 

Briefly, fetal ovaries at embryonic day 17.5, which contain oocytes in the midst of meiotic 

prophase, were harvested. Ovaries were in incubated in HEB on ice for 45–60 min with 

gentle stirring every 15 min. Then, a suspension of oocytes was generated by pulling and 

mashing an ovary between tweezer tips in 30 μL of sucrose (100 mM) on an uncharged 

microscope slide. 30 μL of the suspension was applied to positively charged slides and all 

subsequent steps are the same as those described in the previous paragraph.

For immunostaining experiments, testis and ovary chromosome spreads were incubated in 

PBS containing 0.1% Tween 20 (PBST) for 5–30 min before blocking in antibody dilution 

buffer (PBST containing 0.15% BSA) for an additional 30–60 min. Primary and secondary 
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antibodies (described below) were diluted in antibody dilution buffer. Then, chromosome 

spreads were coated with 100 μL of the antibody/antibody dilution buffer solution, gently 

covered with Parafilm (Parafilm M All-Purpose Laboratory Film, Bemis Company, Inc.), 

and stored in “humid chambers” (described in [87]) at RT or 4°C for a minimum timespan of 

6 h to a maximum timespan of overnight (~15 h). This study made use of the following 

primary antibodies at the following dilutions [format: host anti-protein (source or company 

with product/catalog number if applicable), dilution]: rabbit anti-H2AX-pY142 (Millipore, 

07–1590), 1/200; rabbit anti-SYCP3 (Novus, NB300–232), 1/500; mouse anti-H2AX-pS139 

(γH2AX: Millipore, 05–636), 1/5000; rabbit anti-SYCP1 (Abcam, ab15090), 1/200; mouse 

anti-SYCP3 (Abcam, ab97672), 1/5000; rabbit anti-TOPBP1 (gift from Dr. Junjie Chen 

[88]), 1/2000; rabbit anti-BRCA1 (generated in the Namekawa Lab [6]), 1/500; sheep anti-

MDC1 (Bio-Rad, AHP799), 1/500; rabbit anti-RAD51 (Millipore, PC130), 1/50; guinea pig 

anti-H1T (gift from Dr. Mary Ann Handel [19]), 1/2000; rabbit anti-ATR (Millipore, 

PC538), 1/2000; rabbit anti-SIX6OS1 (gift from Dr. Alberto M. Pendás [89]), 1/4000; rabbit 

anti-HORMAD2 (gift from Dr. Attila Tóth [90]), 1/800; rabbit anti-MLH3 (gift from Dr. 

Paula E. Cohen [43]), 1/1000; rabbit anti-MLH1 (Santa Cruz, sc-11442), 1/500; mouse anti-

SYCP3 conjugated with Alexa 488 fluorophore (Abcam, ab205846), 1/500 in Figure 5D, 

5E; mouse anti-H2AX-pS139 (γH2AX) conjugated to Alexa 647 fluorophore (Millipore, 

05–636-AF647), 1/500 in Figure 5D, 5E; rabbit anti-ATRIP (gift from Dr. Stephen J. 

Elledge [48]), 1/100. After incubation of the primary antibodies, slides were washed three 

times in PBST, 5 min per wash. Then, the slides were incubated with appropriate secondary 

antibodies conjugated to Alexa 488, 555, and/or 647 fluorophores (ThermoFisher 

Scientific). All secondary antibodies were diluted 1/500 in antibody dilution buffer. Slides 

were coated with 100 μL of the antibody/antibody dilution buffer solution; then, they were 

gently covered with Parafilm for 1-h incubation at RT in humid chambers in darkness. After 

slides were washed three times in PBST in darkness, 5 min per wash, they were 

counterstained with the DNA-binding chemical 4′,6-diamidino-2-phenylindole (DAPI; 

Sigma, D9542–5MG) diluted to 1 μg/mL concentration in PBS. Finally, slides were mounted 

using 20 μL undiluted ProLong Gold Antifade Mountant (ThermoFisher Scientific, P36930). 

Slides were either imaged immediately or stored at 4°C in darkness. For long-term storage, 

stained slides were kept at 4°C in darkness.

Images were obtained with an ECLIPSE Ti-E microscope (Nikon) equipped with a Zyla 5.5 

sCMOS camera (Andor Technology) and an 60× CFI Apochromat TIRF oil immersion 

objective NA 1.4 (Nikon), and were processed with NIS-Elements Basic Research (Nikon), 

Photoshop (Adobe), and Illustrator (Adobe).

3D slide preparation and immunostaining—To conserve the gross conformation of 

meiotic chromatin, specialized slides that preserve the relative three-dimensional nuclear 

organization of testis germ cells (3D slides) were prepared as described [33]. Briefly, 

seminiferous tubules underwent permeabilization in cytoskeleton buffer [CSK buffer: 100 

mM sodium chloride, 300 mM sucrose, 10 mM 1,4-Piperazinediethanesulfonic acid 

(PIPES), 3 mM magnesium chloride, 0.5% Triton X-100], fixation by 4% paraformaldehyde 

in PBS, and then mechanical dissociation with fine-point tweezers before being cytospun via 

specialized centrifuge (Shandon, Cytospin 2) onto positively charged slides (Superfrost Plus: 
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ThermoFisher Scientific, 12-550-15). Immunostaining was performed following procedures 

described above. Briefly, 3D slides were blocked with antibody dilution buffer at RT for 30 

min, then the following primary antibodies were diluted in antibody dilution buffer and 

applied to the slides: rabbit anti-BRCA1 antibody (generated in the Namekawa Lab), diluted 

1/2000; mouse anti-RNA Polymerase II antibody (Millipore, 05–952), diluted 1/200. 3D 

slides were incubated at 4°C overnight in a humid chambers. On the following day, 3D 

slides were washed three times in PBST, 5 min per wash, before incubation with secondary 

antibodies conjugated to Alexa 488 or Alexa 555 fluorophores (ThermoFisher Scientific); 

the secondary antibodies were diluted 1/500 in antibody dilution buffer, then incubated at RT 

for 1 h in darkness. After washing the 3D slides three times in PBST, 5 min per wash, they 

were counterstained with DAPI as described above and then mounted using 20 μL undiluted 

ProLong Gold Antifade Mountant (ThermoFisher Scientific, P36930). Slides were imaged 

immediately thereafter.

Images were obtained with an ECLIPSE Ti-E microscope (Nikon) equipped with a Zyla 5.5 

sCMOS camera (Andor Technology) and an 100× CFI Apochromat TIRF oil immersion 

objective NA 1.4 (Nikon), and were processed with NIS-Elements Basic Research (Nikon), 

Photoshop (Adobe), and Illustrator (Adobe).

Immunohistochemistry and TUNEL assay—For the preparation of testis paraffin 

blocks, excised testes in tunicae albugineae were fixed with 4% paraformaldehyde at 4°C 

overnight. Testes were dehydrated and embedded in paraffin. For histological analyses, 6 

μm-thick paraffin sections were deparaffinized. Standard periodic acid-Schiff staining was 

performed; for immunostaining, sections were autoclaved in Target Retrieval Solution, 

Citrate pH 6.1 (DAKO, S-1700), 121°C, 100 kPa (15 psi) for 10 min. The sections were 

blocked with Blocking One Histo (Nacalai USA, 06349–64) at RT for 10 min; then, the 

sections were incubated with primary antibodies diluted in PBS at 4°C overnight. The 

following antibodies were used in the following dilutions [format: host anti-protein (source 

or company with product/catalog number), dilution]: mouse anti-γH2AX (Millipore, 05–

636), 1/2500; guinea pig anti-H1T (gift from Dr. Mary Ann Handel), 1/2500; rabbit anti-

BRCA1 (generated in the Namekawa Lab), 1/2000. The resulting signals were detected with 

appropriate secondary antibodies conjugated to Alexa 488 and 555 (ThermoFisher 

Scientific), diluted 1/1000 in PBS and incubated at RT for 1 h. TUNEL assays were 

performed using an In Situ Cell Death Detection Kit (Roche, 11684795910) per the 

instructions in the manual. Sections were counterstained with DAPI as described above. 

Images were obtained with an A1RSi Inverted Confocal Microscope (Nikon) and processed 

with NIS-Elements Basic Research (Nikon), Photoshop (Adobe), and Illustrator (Adobe).

QUANTIFICATION AND STATISTICAL ANALYSIS

The details for statistical analyses performed in this study are described in relevant portions 

of the Results section, figures, figure legends, supplementary figures, and/or supplementary 

figure legends. Sample sizes used for analyses are described in relevant portions of the 

Results section, figures, figure legends, supplementary figures, and/or supplementary figure 

legends. In predetermining sample sizes, we sought to analyze a minimum of three 

independent control-mutant littermate pairs except for western blot experiments, in which 
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we analyzed two independent control-mutant littermate pairs; no statistical calculations were 

used to predetermine sample sizes. No data were excluded from analyses. The experiments 

were not randomized, and investigators were not blinded to allocation during experiments 

and outcome assessment. Measurements were recorded in Excel (Microsoft) and Prism 8.0 

(GraphPad). Statistical tests were performed with Prism 8.0 (GraphPad).

Quantification of RAD51, TOPBP1, and MLH3 foci in the pachytene stage—To 

carefully detail the phenotypes of MSCI-deficient mice, we scored foci numbers for the 

proteins RAD51, TOPBP1, and MLH3 in wild-type and mutant spermatocytes in the initial 

portion of the mid pachytene stage. In H2ax-Y142A mice, spermatogenesis is arrested in 

epithelial stages IV, when tubules bear H1T-positive spermatocytes that have just entered the 

mid pachytene stage of meiotic prophase I. Thus, in our analyses of mutant meiotic 

chromosome spreads, we judged nuclei to be in the initial portion of the mid pachytene stage 

based on H1T staining—i.e., H1T-positive H2ax-Y142A nuclei were considered to be mid 

pachytene spermatocytes. However, we did not rely solely on H1T staining for identification 

of wild-type mid pachytene spermatocytes: Since all spermatocytes at and after the mid 

pachytene stage—as well as all spermiogenic cells—are H1T-positive, an H1T-positive 

status alone is insufficient for this task. To make direct comparisons with H1T-positive 

H2ax-Y142A spermatocytes, we precisely identified wild-type spermatocytes in the initial 

portion of the mid pachytene stage drawing on techniques described in our recent chapter in 

the Methods in Molecular Biology series (SpringerProtocols, Humana Press) [87]. Briefly, 

we focused on the following chromo-nuclear features to stage spermatocytes in the initial 

portion of the mid pachytene stage: (1) After immunostaining (described above), 

spermatocyte nuclei exhibited positive-but-weak H1T signal intensity relative to late 

pachytene and diplotene spermatocyte nuclei; (2) the pseudoautosomal region (PAR) of the 

sex chromosomes was clearly visible. After determining the substages of pachytene 

spermatocytes, we scored clearly visible RAD51, TOPBP1, and/or MLH3 foci overlapping 

SYCP3-labeled chromosomes axes.

Quantification of XY chromatin compaction—To evaluate chromatin compaction of 

the sex chromosomes, 3D slides stained with antibodies raised against BRCA1 and H1T, and 

counterstained with DAPI, were used as described [6]. Wild-type and H2ax-Y142A H1T-

positive mid pachytene spermatocytes were evaluated. After obtaining 10 z-sections (0.2 μm 

interval) for each spermatocyte, we selected a z section containing in-focus XY centromeres 

for analysis. To quantify chromatin compaction of the sex chromosomes, a straight line was 

drawn to represent the widest spans of distance between the axial ends of the sex 

chromosomes as detected via anti-BRCA1 immunostaining (a) in H1T-positive nuclei; then, 

the widest spans were divided by the diameters of the nuclei (b). Distances were measured 

using NIS-Elements Basic Research (Nikon). The relative distances (i.e., the a/b distance 

ratios)in Figure 3 represent distances between XY centromeres with respect to nuclear 

diameters.

RNA-seq analysis—RNA-seq datasets were obtained from published work (GEO 

GSE55060) [70]. .fastq files were aligned to the Mus musculus mm10 reference genome via 

Spliced Transcripts Alignment to a Reference (STAR; version 2.4.2a)[91]; only unique 
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alignments were allowed with a maximum of two errors per alignment. Datasets were 

processed and visualized through the BioWardrobe Experiment Management Platform [92].

DATA AND CODE AVAILABILITY

The RNA-seq datasets analyzed in this study are available at NCBI Gene Expression 

Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE55060. 

Software used in this study is described in context under portions of the METHOD 

DETAILS and/or QUANTIFICATION AND STATISTICAL ANALYSIS headings, and in 

the Key Resources Table. Software used for this study: NIS-Elements Basic Research 

(Nikon), Excel (Microsoft), Prism 8.0 (GraphPad), and the BioWardrobe Experiment 

Management Platform (biowardrobe.com, https://github.com/Barski-lab/biowardrobe) [92]. 

The manuscript was constructed using Word (Microsoft), Photoshop (Adobe), and Illustrator 

(Adobe).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

The Y142 residue of H2AX is essential for MSCI and XY-body formation.

The initial steps of autosomal DSB repair are normal in MSCI-defective mutants.

ATR-associated DDR signals are sequestered from autosomes at the onset of MSCI.

Novel model for the MSCI checkpoint: MSCI permits meiotic progression.
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Figure 1. H2AX-Y142 is an essential amino residue for completing spermatogenesis.
(A) Schematic: Induction of a point mutation and resulting sequence alteration. The 

introduction of an AflII target site was used to screen mutant mice.

(B) Wild-type (WT) and H2ax-Y142A mice at 36 days post-partum (dpp). Body weights are 

shown as mean ± s.e.m. from 4 independent pairs of WT and H2ax-Y142A mice. ** p < 

0.01, unpaired t test.

(C) Testes from WT and H2ax-Y142A mice at 87 dpp. Scale bar: 1 cm. Ratios of testis 

weight (mg) to body weight (g) shown as mean ± s.e.m. for 4 independent pairs of WT and 

H2ax-H142A mice. **** p < 0.0001, unpaired t test.

(D) Western blot of WT and H2ax-Y142A lysates from whole mouse testes with anti-

H2AX-pY142 antibody. 20 μg protein samples were loaded in each lane. Two independent 

samples for WT and H2ax-Y142A are shown. Loading control: Lamin B1.

(E) Chromosome spreads of WT and H2ax-Y142A pachytene spermatocytes immunostained 

with antibodies raised against SYCP3 and H2AX-pY142. Dashed circles indicate the sex 

chromosomes. Scale bars: 10 μm.

(F) Testis sections from WT and H2ax-Y142A mice immunostained with antibodies raised 

against H1T and γH2AX. Dashed squares are magnified in panels to the right. White 

arrowheads indicate γH2AX signals on sex chromosomes in mid pachytene (H1T-positive) 

spermatocytes. Scale bars in larger panels: 100 μm; scale bars in smaller panels: 10 μm.

See also Figure S1.
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Figure 2. H2AX-Y142 is required for the initiation of MSCI
(A, C–H) Chromosome spreads of wild-type (WT) and H2ax-Y142A pachytene 

spermatocytes immunostained with antibodies raised against the following proteins: SYCP3 

(A, C–H), γH2AX (A), SYCP1 (C), ATR (D), TOPBP1 (E), BRCA1 (F), HORMAD2 (G), 

and MDC1 (H). Dashed squares are magnified in the panels to the right.

(B) Model of the initiation of MSCI. ATR and its activator, TOPBP1, are recruited to 

unsynapsed axes in an MDC1- and Y142-H2AX-independent manner, resulting in 

phosphorylation of H2AX to generate γH2AX on axes (left). γH2AX then recruits MDC1, 

which facilitates progressive recruitment of ATR and TOPBP1, resulting in γH2AX and 

MDC1 spreading throughout loops (right).

(C) Percentages of mid pachytene chromosome synapsis for autosome and sex 

chromosomes, shown as mean ± s.e.m.. Total numbers of analyzed nuclei obtained from 3 
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independent littermate pairs are indicated in the panel. n.s., not significant; * p < 0.05, 

unpaired t test. Scale bars: 10 μm unless otherwise described in the panels.

See also Figure S2.

Abe et al. Page 28

Curr Biol. Author manuscript; available in PMC 2021 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Impaired XY body formation in H2ax-Y142A mouse.
(A) Wild-type (WT) littermate control and H2ax-Y142A pachytene spermatocytes on 3D 

slides (see STAR METHODS) immunostained with antibodies raised against RNAPII and 

BRCA1. Although not shown in the panel, the spermatocytes were also immunostained with 

an anti-H1T antibody to determine their stage; the spermatocytes shown are H1T-positive. 

Dashed circles indicate the sex chromosomes.

(B) WT littermate control and H2ax-Y142A testis sections immunostained with antibodies 

raised against BRCA1 and H1T. Dashed squares are magnified in the panels to the right. 

White arrowheads indicate the axes of sex chromosomes in H1T-positive pachytene 

spermatocytes. Nuclei were counterstained with DAPI. Scale bars: 100 μm and, in the panels 

to the right, 10 μm.

(C) WT and H2ax-Y142A pachytene spermatocytes on 3D slides immunostained with an 

antibody raised against BRCA1. Although not shown in the panel, the spermatocytes were 

also immunostained with an anti-H1T antibody to determine their stage; the spermatocytes 

shown are H1T-positive. The relative distances are shown in a box-and-whisker plot: The 

central line is the median, the bottom edge of the box is the first quartile, the top edge of the 

box is the third quartile, and the whiskers encompass, from top to bottom, the first to ninth 

decile. Total numbers of analyzed nuclei, obtained from 3 independent wild-type mice and 4 

independent H2ax-Y142A mice, are indicated in the panel. **** p < 0.0001, Mann-Whitney 

U test. Nuclei were counterstained with DAPI. Scale bars: 10 μm.
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Figure 4. Initial steps of DSB repair take place normally on autosomes of MSCI defective 
mutants.
(A, B, E, F) Chromosome spreads of wild-type (WT) littermate control and H2ax-Y142A 
(A, B) or Mdc1KO (E, F) mid pachytene spermatocytes immunostained with antibodies 

raised against SYCP3 (A, B, E, F), HIT (A, B, E, F), RAD51 (A, E), or MLH3 (B, F). Sex 

chromosomes in dashed squares are magnified in the panels to the right (A, E). Autosomes 

in dashed squares are magnified in the panels to the right, and the dashed circles indicate the 

sex chromosomes (B, F). Dot plots indicate the numbers of autosome RAD51 foci (A, E), 

sex chromosome RAD51 foci (A, E), or MLH3 foci (B, F) per mid pachytene (HIT-positive) 

spermatocyte, shown as mean ± s.e.m. for 3 independent H2ax-Y142A littermate pairs (A, 
B) and 3 independent Mdc1KO littermate pairs (E, F). Total numbers of analyzed nuclei are 

indicated in the panels. n.s.: not significant; **** p < 0.0001, unpaired t tests. XY chr.: XY 

chromosomes. Scale bars: 10 μm.

(C) Model of the MSCI checkpoint and its relationship to meiotic recombination.
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(D) DAPI counterstaining of a 3D slide (see STAR METHODS). The dashed circle indicates 

the XY body. Scale bar: 10 μm.

See also Figures S3 and S4.
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Figure 5. DDR factors centered on ATR signaling are sequestered from autosomes to the sex 
chromosomes at the onset of MSCI.
(A, B, D, E) Chromosome spreads of wild-type (WT) littermate control and H2ax-Y142A 
(A, D) or Mdc1KO (B, E) mid pachytene spermatocytes immunostained with antibodies 

raised against SYCP3 (A, B, D, E), TOPBP1 (A, B), H1T (A, B), γH2AX (D, E), and ATR 

(D, E). Yellow arrowheads indicate the sex chromosomes, and red arrowheads indicate ATR 

foci that persist on H2ax-Y142A autosomes (D, E). Scale bars: 10 μm.

(C) Numbers of TOPBP1 foci on autosomes in mid pachytene (H1T-positive) 

spermatocytes, shown as mean ± s.e.m. for 3 independent H2ax-Y142A littermate pairs 

(left) and 3 independent Mdc1KO littermate pairs (right). Total numbers of analyzed nuclei 

are indicated in the panels. **** p < 0.0001, Mann-Whitney U test.

See also Figure S5.
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Figure 6. A model of the MSCI checkpoint: The physical sequestration of DDR factors from 
autosomes to the XY body is a critical checkpoint in meiosis progression and gamete 
development.
At the onset of MSCI, DDR factors (shown as red spheres) are sequestered from autosomes 

to the sex chromosomes. The physical sequestration of DDR factors on/at a sex 

chromosome-specific chromo-nuclear compartment, the XY body, is a critical step in the 

MSCI checkpoint in the mid pachytene stage of meiotic prophase I. While the MSCI 

checkpoint ensures meiotic stage progression in normal meiosis, the abolishment of MSCI 

enables the ectopic retention of DDR signals on/at autosomes; these, in turn, trigger 

complete meiotic arrest and cell death in response to the checkpoint.

See also Figure S6.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit Anti-Histone H2A.X, phospho (Tyr142) Millipore Cat# 07–1590, RRID:AB_1977237

Rabbit Anti-Lamin B1 Abcam Cat# ab16048, RRID:AB_443298

Mouse Anti-alpha Tubulin [DM1A] Abcam Cat# ab7291, RRID:AB_2241126

Rabbit Anti-Histone H2A.X Cell Signaling Technology Cat# 2595, RRID:AB_10694556

Mouse Anti-SYCP3 Abcam Cat# ab97672, RRID:AB_10678841

Guinea pig Anti-H1t [19] N/A

Mouse Anti-Histone H2A.X, phospho (Ser139) Millipore Cat# 05–636, RRID:AB_309864

Rabbit Anti-SYCP1 Abcam Cat# ab15090, RRID:AB_301636

Rabbit Anti-TOPBP1 [88] N/A

Rabbit Anti-BRCA1 [6] N/A

Sheep Anti-Human MDC1 Bio-Rad Cat# AHP799, RRID:AB_323725

Mouse Anti-RNA Polymerase II, C-Terminus Domain Millipore Cat# 05–952, RRID:AB_492629

Rabbit Anti-Rad51 Millipore Cat# PC130, RRID:AB_2238184

Rabbit Anti-ATR Millipore Cat# PC538, RRID:AB_2063178

Mouse Anti-SCP3 conjugated with Alexa Fluor 488 Abcam Cat# ab205846, RRID: N/A

Mouse Anti-phospho Histone H2A.X (Ser139) conjugated with 
Alexa Fluor 647

Millipore Cat# 05–636-AF647, RRID: N/A

Rabbit Anti-MLH3 [43] N/A

Rabbit Anti-MLH1(H-300) Santa Cruz Biotechnology Cat# sc-11442, RRID:AB_2145332

Rabbit Anti-ATRIP [48] N/A

Rabbit Anti- SIX6OS1 [89] N/A

Rabbit Anti-HORMAD2 [90] N/A

VeriBlot for IP Detection Reagent (HRP) Abcam N/A

Donkey Anti-Sheep IgG (H+L) Alexa Fluor 647 Jackson ImmunoResearch 
Labs

Cat# 713-606-147, RRID:AB_2340752

Goat Anti-Guinea Pig IgG (H+L) Alexa Fluor 555 Thermo Fisher Scientific Cat# A-21435, RRID:AB_2535856

Donkey Anti-Mouse IgG (H+L) Alexa Fluor 555 Thermo Fisher Scientific Cat# A-31570, RRID:AB_2536180

Donkey Anti-Mouse IgG (H+L) Alexa Fluor 488 Thermo Fisher Scientific Cat# A-21202, RRID:AB_141607

Donkey Anti-Rabbit IgG (H+L) Alexa Fluor 555 Thermo Fisher Scientific Cat# A-31572, RRID:AB_162543

Donkey Anti-Rabbit IgG (H+L) Alexa Fluor 488 Thermo Fisher Scientific Cat# A-21206, RRID:AB_2535792

Donkey Anti-Sheep IgG (H+L) DyLight 488 Jackson ImmunoResearch 
Labs

Cat# 713-486-147, RRID:AB_2340741

Goat Anti-Rabbit IgG (H+L) antibody F(ab’)2 Fragment Cy3 Jackson ImmunoResearch 
Labs

Cat# 111-166-003, RRID:AB_2338007

Donkey Anti-Guinea Pig IgG (H+L) antibody F(ab’)2 Fragment 
Alexa Fluor 647

Jackson ImmunoResearch 
Labs

Cat# 706-606-148, RRID:AB_2340477

Chemicals, Peptides, and Recombinant Proteins

Phosphatase inhibitor cocktail 2 Sigma Cat# P5726–5ML

cOmplete™ Protease Inhibitor Cocktail Sigma Cat# 11836145001
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REAGENT or RESOURCE SOURCE IDENTIFIER

StartingBlockTM T20 (TBS) Blocking Buffer ThermoFisher Scientific Cat# 37543

Restore™ Western Blot Stripping Buffer ThermoFisher Scientific Cat# 21059

Critical Commercial Assays

In Situ Cell Death Detection Kit, Fluorescein Sigma Cat# 11684795910

Deposited Data

RNA-seq data (Scml2KO) [70] GEO: GSE55060

Experimental Models: Organisms/Strains

Mouse: H2ax-Y142A This study N/A

Mouse: Mdc1KO [52] N/A

Oligonucleotides

Primer: H2ax-Y142A WT Forward: CGC AGG CCT CTC AGG 
AGT

This study N/A

Primer: H2ax-Y142A KI Forward: CGC AGG CCT CTC AGG 
AGG CT

This study N/A

Primer: H2ax-Y142A Common Reverse: CTG CGG AGG GAC 
TAA CCT TC

This study N/A

sgRNA for generating H2ax-Y142A: 
GCCTCTCAGGAGTACTGAGG

This study N/A

Software and Algorithms

BioWardrobe Experiment Management Platform [92] https://biowardrobe.cchmc.org/frontend/
Home

Prism 8 GraphPad software https://www.graphpad.com/
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