
Chapter 19
Golgi Structure and Function in Health,
Stress, and Diseases

Jie Li, Erpan Ahat, and Yanzhuang Wang

Abstract The Golgi apparatus is a central intracellular membrane-bound organelle
with key functions in trafficking, processing, and sorting of newly synthesized
membrane and secretory proteins and lipids. To best perform these functions,
Golgi membranes form a unique stacked structure. The Golgi structure is dynamic
but tightly regulated; it undergoes rapid disassembly and reassembly during the cell
cycle of mammalian cells and is disrupted under certain stress and pathological
conditions. In the past decade, significant amount of effort has been made to reveal
the molecular mechanisms that regulate the Golgi membrane architecture and
function. Here we review the major discoveries in the mechanisms of Golgi structure
formation, regulation, and alteration in relation to its functions in physiological and
pathological conditions to further our understanding of Golgi structure and function
in health and diseases.

19.1 Golgi Architecture and Its Maintenance

The Golgi apparatus is a central intracellular membrane-bound organelle often
located adjacent to the nucleus in mammalian cells. Electron microscope
(EM) images revealed its unique feature as stacks of five to seven flattened cisternae
overlaying one another, with multiple stacks often lined up and interconnected by
tubular structures to form a ribbon (Shorter and Warren 2002; Rabouille and
Kondylis 2007; Wei and Seemann 2010). The Golgi stacks are polarized; they
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receive proteins and lipids from the endoplasmic reticulum (ER) by the cis cisternae
and export them from the trans cisternae and the trans-Golgi network (TGN) to other
intracellular membranes such as the endosomes, lysosomes, plasma membrane, and
outside of the cell (Tang and Wang 2013; Wang and Seemann 2011). While
traversing the Golgi stack, cargo molecules are modified and processed. The
sub-compartments of the Golgi stacks house a set of glycosidases and
glycosyltransferases responsible for the synthesis of glycoproteins and glycolipids.
In the TGN, many secretory proteins are proteolytically cleaved by lumenal pro-
teinases (Huang and Wang 2017; Zhang and Wang 2016; Huttner et al. 1995).

Many efforts have been made to understand the mechanism of Golgi structure
formation. The formation of the Golgi ribbon depends on Golgi matrix proteins and
an intact microtubule organization. Cytosolic dynein moves Golgi membranes along
centrosome-derived microtubules toward the (–) end of the microtubules (Matteis
et al. 2008; Rabouille and Kondylis 2007; Wei and Seemann 2010). Subsequently,
Golgi-oriented microtubules maintain Golgi stacks in the proximity and facilitate
tubular connections between them (Zhu and Kaverina 2013). While dynein and
microtubules are required for the concentration of Golgi stacks in the
pericentrosomal region and Golgi ribbon formation, they are not essential for the
generation and maintenance of the stacked structure, as depolymerization of micro-
tubules disrupts the Golgi ribbon but not the stacks (Thyberg and Moskalewski
1999). From the 1960s, morphological studies have shown connections in the space
between cisternae that might be involved in the adhesion of cisternae into stacks
(Franke et al. 1972; Mollenhauer 1965; Cluett and Brown 1992), which were later
identified as Golgi matrix proteins. These include Golgi stacking proteins and
membrane tethers, as discussed below.

19.1.1 Golgi Matrix Proteins and Golgi Structure Formation

In 1994, the concept of “Golgi matrix” proteins was first introduced (Slusarewicz
et al. 1994). Since then, several Golgi matrix proteins have been identified to be
responsible for maintaining the unique architecture and function of the Golgi
apparatus. Major components of the Golgi matrix are summarized in Table 19.1.
Key proteins involved in Golgi structure formation are discussed below.

19.1.1.1 Golgi ReAssembly Stacking Proteins (GRASPs)

Among all Golgi matrix proteins, the Golgi ReAssembly Stacking Proteins
GRASP65 and GRASP55 (GRASPs, also called GORASP1 and GORASP2, respec-
tively) are best characterized for their roles in Golgi structure formation, including
stacking (Wang et al. 2003, Shorter et al. 1999, Xiang and Wang 2010, Bekier et al.
2017, Shin et al. 2018, Barr et al. 1997), ribbon-linking (Puthenveedu et al. 2006;
Tang et al. 2016; Feinstein and Linstedt 2008), cargo transportation (Kuo et al. 2000;
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D’Angelo et al. 2009; Barr et al. 2001), unconventional secretion (Dupont et al.
2011; Rabouille and Linstedt 2016; Vinke et al. 2011; Gee et al. 2011; Piao et al.
2017), cell cycle regulation (Preisinger et al. 2005; Sutterlin et al. 2005; Yoshimura
et al. 2005; Duran et al. 2008; Tang et al. 2010b), apoptosis (Lane et al. 2002), and
autophagy (Zhang et al. 2018; Zhang and Wang 2018a, b), although the mechanisms
are less well understood.

Both GRASPs share a similar structure: a conserved N-terminal GRASP domain
consisting of two PDZ domains (PDZ1 and PDZ2) and an intrinsically disordered
C-terminal Serine/Proline-Rich (SPR) domain with multiple phosphorylation sites
(Zhang and Wang 2015b) (Fig. 19.1). Both GRASP65 and GRASP55 are peripheral
membrane proteins that are attached to the Golgi membranes via an N-terminal
myristic acid modification and the interaction with their membrane-bound partner
proteins (GM130 and Golgin-45, respectively) and therefore are concentrated at the
interface between the cisternae where stacking occurs (Short et al. 2001; Barr et al.
1998). GRASP65 is concentrated on the cis-Golgi cisternae, whereas GRASP55
localizes to the medial/trans-Golgi cisternae (Barr et al. 1997; Shorter et al. 1999).
Both play complementary roles in Golgi stack formation (Xiang and Wang 2010).

Mechanistically, GRASP proteins form homodimers via the N-terminal PDZ
domains, and dimers from adjacent Golgi cisternae further oligomerize in trans
and function as the “glue” that tethers the cisternae into a stack (Wang et al. 2003,
2005). An in vitro study using modified GRASP domain peptides indicated that
insertion of the myristic acid moiety is required for the oriented association to Golgi
membranes, which ensures the protein-protein interaction in trans. Furthermore, the
conformational change caused by myristoylation affects the tendency of GRASP
domain for self-interaction (Heinrich et al. 2014). Depletion of either GRASP65 or
GRASP55 reduces the number of cisternae per Golgi stack, whereas depletion of
both GRASPs leads to disassembly of the entire Golgi stack (Sutterlin et al. 2005,
Xiang and Wang 2010, Bekier et al. 2017). The GRASPs are tightly modulated by a
phosphorylation and dephosphorylation cycle during cell division, resulting in
mitotic disassembly and post-mitotic reassembly of the Golgi (Feinstein and Linstedt
2008; Cervigni et al. 2015; Lin et al. 2000; Wang et al. 2003; Preisinger et al. 2005;
Tang et al. 2012; Xiang and Wang 2010; Tang et al. 2008; Truschel et al. 2012).

Recent studies have identified novel GRASP-binding proteins involved in Golgi
biogenesis and morphology modulation. Recent research of the crystal structure of
GRASP55 bound to the Golgin-45 C-terminal peptide revealed that Golgin-45 pro-
motes the oligomerization of GRASP55 by forming a new interaction between two
neighboring PDZ2 molecules to play an important role in Golgi stacking (Zhao et al.
2017). Meanwhile, using an optimized in vitro system, mammalian enabled homo-
logue (Mena) and DnaJ homolog subfamily A member 1 (DjA1) were identified as
GRASP65 binding partners with potential functions on Golgi structure maintenance
(Tang et al. 2016; Li et al. 2019). Mena is an actin elongation factor recruited to the
Golgi membranes by GRASP65 to facilitate actin polymerization and GRASP65
oligomerization and thus functions with actin as bridging proteins of GRASP65 in
Golgi ribbon linking. DjA1 is a co-chaperone of Heat shock cognate 71 kDa protein
(Hsc70), but the activity of DjA1 in Golgi structure formation is independent of its
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co-chaperone activity or Hsc70, rather, through DjA1-GRASP65 interaction to
promote GRASP65 oligomerization. Thus, DjA1 facilitates Golgi structure forma-
tion through an unconventional Hsc70-independent pathway. These studies further
confirmed GRASP65 as a multifaceted protein in Golgi structure formation and
indicated that an array of GRASP binding proteins could play important roles in
Golgi morphology maintenance (Fig. 19.1). In addition, GRASP55 was reported to
be involved in glucose starvation-induced autophagy (Zhang et al. 2018), where it

GRASP55

GRASP domain: aa1-212 (1-208 in Linstedt structure)
SPR domain: aa213-454
PDZ1: aa1-106 (or 5-75)
PDZ2: aa106-212 (or 86-169)
Golgin 45 binding domain: PDZ1 and PDZ2
LC3 binding site:                F37
Myristoylation site: G2
O-GlcNAcylation sites: S389, S390, T403, T404, T413
Mitotic phospho-sites: S245, T249, and particularly T222 and T225 (ERK)

B

dimerization/oligomerization Phosphorylation/regulation
PDZ1 PDZ2

GRASP65

GRASP domain: aa1-201
SPR domain: aa202-446
PDZ1: aa1-112 (or 16-72)
PDZ2: aa113-201 (or 93-168)
GM130 binding site: aa189-201 (G194,G196, H199, I201)
Mena binding site: aa236-241 (P236/P237/P239/P241)
DjA1 binding site: aa202-320
Myristoylation site: G2
Mitotic phospho-sites: S216/S217 (cdk1), T220/T224 (cdk1), S277 (JNK2, cdk1), S367/S372 

(cdk1), S376 (cdk1), S400 (cdk1)
Interphase phospho-sites: S277 (ERK2)

A

dimerization/oligomerization Phosphorylation/regulation
201

GRASP domain SPR domain

PDZ1 PDZ2

Fig. 19.1 Structure, modification, and binding sites on GRASP65 (a) and GRASP55 (b). Rat
GRASP65 and GRASP55 sequences are used for illustration. Both GRASPs share a similar
structure: a conserved N-terminal GRASP domain consisting of two PDZ domains (PDZ1 and
PDZ2) and a C-terminal Serine/Proline-Rich (SPR) domain with multiple phosphorylation sites
(indicated by asterisks) that are involved in GRASP modulation during the cell cycle. Both
GRASP65 and GRASP55 are peripheral membrane proteins attached to the Golgi membranes via
N-terminal myristoylation and the interaction with their membrane-bound partner proteins (GM130
and Golgin-45, respectively). GRASP65-binding proteins Mena and DjA1 have been identified to
enhance Golgi ribbon linking and stacking, respectively. GRASP55 is regulated by
O-GlcNAcylation depending on the glucose level and interacts with LC3 and LAMP2 to facilitate
glucose starvation-induced autophagy
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interacts with LC3 on autophagosomes and LAMP2 on lysosomes to facilitate
autophagosome maturation, which will be discussed in later sections.

19.1.1.2 Golgins

Golgins are a family of Golgi-associated coiled-coil proteins that are necessary for
vesicle tethering at the Golgi and maintenance of Golgi integrity (Muschalik and
Munro 2018; Witkos and Lowe 2015; Gillingham and Munro 2016). Most golgins
are peripheral membrane proteins anchored on Golgi membranes via their
C-terminus and are associated with small GTPases of Rab, Arf, and Arl families
(Table 19.1) (Munro 2011; Sinka et al. 2008). These interactions mediate both
membrane attachment and selective localization of a specific golgin to a specific
sub-compartment of the Golgi (Witkos and Lowe 2015). Golgins lack significant
sequence homology between the family members and localize to different regions of
the Golgi to play distinct roles in tethering events, membrane traffic, and Golgi
organization. The coiled-coil regions provide the golgins with an extended structure
required for the tethering function, while the interactions with Rab GTPases control
these molecules in their open (extended) or closed (folded) confirmation (Cheung
et al. 2015). In addition, golgins often contain specific sequence and structural
features at the N- and C-terminal ends, which allow them to recognize vesicles
and Golgi cisternal membranes based on the curvature and lipid composition of the
membranes (Drin et al. 2008; Drin et al. 2007; Magdeleine et al. 2016). Detailed
information about golgins and their functions are summarized in Table 19.1.

GM130 was the first identified Golgi matrix protein and is predominantly found
in the central region of the cis-Golgi (Nakamura et al. 1995), where it forms a stable
complex with GRASP65 (Barr et al. 1998). Depletion of GM130 results in the
disruption of the Golgi ribbon and causes protein glycosylation defects
(Puthenveedu et al. 2006). There are two possible ways GM130 contributes to
Golgi ribbon formation. First, GM130 targets GRASP65 to the rim of the cisternae
where GRASP65 promotes lateral linking of cisternae via oligomerization
(Puthenveedu et al. 2006). Mena and actin cytoskeleton may facilitate GRASP65
in this action (Tang et al. 2016). Second, GM130 recruits A-kinase anchoring protein
450 (AKAP450) onto the cis-Golgi and allows Golgi-associated nucleation of
microtubules, which arranges Golgi stacks in close proximity to form a ribbon
(Rivero et al. 2009). Similarly, other golgins may also work with the microtubule
cytoskeleton in a similar way to facilitate Golgi structure organization. For example,
GMAP-210, another cis-Golgi-localized golgin, recruits the γ-tubulin-containing
complexes to the Golgi membranes and promotes the formation of tubulin oligomers
on Golgi membranes. Depletion of GMAP-210 results in extensive Golgi fragmen-
tation, suggesting a role in Golgi ribbon formation (Rios et al. 2004).

In addition to GRASP65, GM130 also interacts with p115 and giantin to form the
GM130-p115-giantin tethering complex (Sonnichsen et al. 1998). The Rab1 effector
p115, when recruited to coat protein complex (COP) II vesicles during the budding
from the ER, interacts with the soluble ATPases N-ethylmaleimide-sensitive factor
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(NSF) attachment protein receptors (SNAREs), a specialized set of COPII
v-SNAREs, to form a cis-SNARE complex that promotes vesicle targeting to the
Golgi apparatus (Allan et al. 2000). Meanwhile, p115 also binds giantin on COPI
vesicles and works with GM130 on Golgi membranes to provide a bridging role for
vesicle tethering (Sonnichsen et al. 1998). Thus, GM130 and p115 are two major
tethering factors in ER-to-Golgi trafficking (Munro 2011).

Other than the well-studied GRASP65-GM130 and GM130-p115-giantin com-
plexes, the GRIP domain containing golgins are another group of proteins associated
with the Golgi structure. Most GRIP domain-containing golgins localize to the TGN
via their GRIP domains and are involved in Golgi organization (Luke et al. 2005).
GCC185 is reported to localize independently of Arl1 on TGN and plays an essential
role in Golgi structure formation. Depletion of GCC185 results in fragmentation of
both cis- and trans-Golgi that are dispersed throughout the cytoplasm (Derby et al.
2007). On the other hand, another TGN golgin GCC88 is reported to play a role in
TGN organization and ribbon-linking. Overexpression of GCC88 causes a loss of
the compact Golgi ribbon and dispersal of mini-stacks throughout the cytoplasm,
while knockdown of GCC88 results in a longer ribbon structure (Gosavi et al. 2018).
A recent report suggests that GCC88-induces Golgi ribbon dispersal via actin and
non-muscle myosin IIA. In addition, a novel GCC88-binding partner, the long
isoform of intersectin-1 (ITSN-1), a guanine nucleotide exchange factor for
Cdc42, is identified to be involved in this process (Makhoul et al. 2019).

19.1.2 Other Golgi Structure-Related Proteins

Besides the Golgi matrix proteins and their cofactors described above, other proteins
including SNAREs, kinases, methyltransferases, and GTPases have also been
reported to be related to Golgi structural organization and function. A few examples
are discussed below.

Vesicle-associated membrane protein 4 (VAMP4), a v-SNARE protein located
on the TGN, was first shown to play a role in retrograde trafficking from early
endosomes to the TGN (Steegmaier et al. 1999). It was later reported that depletion
of VAMP4 led to fragmentation of the Golgi ribbon, although Golgi membranes
remained in the juxtanuclear area. EM studies revealed shortened Golgi stacks with a
normal arrangement. Depletion of the cognate SNAREs of VAMP4, syntaxin
6, syntaxin 16, and Vti1a also disrupted the Golgi ribbon. These findings suggest
that the maintenance of the Golgi ribbon structure requires normal retrograde
trafficking, which is likely mediated by the formation of VAMP4-containing
SNARE complexes (Shitara et al. 2013).

Serine/threonine-protein kinase H1 (PSKH1) was primarily characterized with
multiple intracellular localizations, including Brefeldin A-sensitive Golgi compart-
ment, centrosomes, nucleus, and cytoplasm (Brede et al. 2000). PSKH1 targeting to
Golgi depends on dual N-terminal acylation, myristoylation on glycine 2, and
palmitoylation on cysteine 3. Expression of palmitoylation site mutant PSKH1
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results in the disassembly of the Golgi apparatus to a diffused cytoplasmic pattern
without interrupting the microtubule cytoskeleton (Brede et al. 2003). The substrates
of this kinase on the Golgi are so far unidentified.

Protein arginine methyltransferase 5 (PRMT5) localizes to the Golgi apparatus
and forms complexes with several components, including GM130, which was later
identified as a substrate of PRMT5. N-terminal methylation of GM130 does not
affect its Golgi localization but is critical for Golgi ribbon formation. Depletion of
PRMT5 and expression of methylation-defective GM130 mutants result in fragmen-
tation and dispersal of the Golgi ribbon (Zhou et al. 2010).

In addition to the proteins mentioned above, Rab small GTPases are another
group of key regulators of mammalian Golgi organization. Many Rab proteins,
including but not limited to Rab1, Rab2 and Rab8 (Aizawa and Fukuda 2015),
Rab18 and Rab43 (Dejgaard et al. 2008), Rab6/41 (Goud et al. 1990; Martinez et al.
1997; Liu et al. 2013), and Rab30 (Kelly et al. 2012), have been shown to play a role
in Golgi structure organization and reviewed previously in detail (Goud et al. 2018).
Considering that Rab proteins switch between inactive GDP-bound and active
GTP-bound forms, it has been proposed that Golgi organization-related Rab proteins
are divided into two categories. With Class 1 Rabs, the Golgi ribbon is disrupted by
Rab inactivation but appears normal with overexpression, whereas with Class
2 Rabs, Rab inactivation has little effect on Golgi ribbon organization, while
overexpression leads to the redistribution of Golgi enzymes to the ER (Liu and
Storrie 2015). These results indicate that Rabs control the Golgi structure through
modulating membrane tethering and trafficking.

19.2 Golgi Dynamics in the Mammalian Cell Cycle

The Golgi undergoes a series of sophisticated cell cycle-dependent disassembly and
reassembly processes, including the deformation and reformation of Golgi ribbon,
stacks, and cisternae. At the onset of mitosis, the Golgi ribbon unlinks into
ministacks, which further undergo unstacking and vesiculation. These processes
ensure the equal distribution of Golgi compartments into the two daughter cells
(Wang 2008; Wei and Seemann 2010). In telophase, the Golgi vesicles fuse into
cisternae and form stacks. The new stacks then accumulate in the perinuclear region
and further link into a ribbon. The molecular factors that control these processes
include Golgi matrix proteins, kinases and phosphatases, ubiquitin ligases and
deubiquitinating enzymes, vesicle budding and fusion factors, and actin and micro-
tubule cytoskeleton. An in vitro system has been developed to replicate the Golgi
disassembly and reassembly process through sequential treatments of purified Golgi
membranes with mitotic (MC) and interphase (IC) cytosol, or with purified proteins
(Tang et al. 2008, 2010a). This system provides a powerful tool for testing key
proteins in Golgi structure formation, which makes it possible to identify the
minimal machinery and key components that control mitotic Golgi disassembly
and post-mitotic reassembly (Huang and Wang 2017).
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19.2.1 Mechanisms of Golgi Disassembly and Reassembly
in the Mammalian Cell Cycle

The first step of Golgi disassembly at the onset of mitosis is Golgi ribbon unlinking.
At this step, Golgi stacks in the ribbon are disconnected and dispersed. This step
involves disconnecting the tubules between the stacks by the membrane fission
protein CtBP/BARS, which is crucial for G2/M transition (Hidalgo Carcedo et al.
2004; Colanzi et al. 2007). Further, GRASPs undergo mitotic phosphorylation
which are also required for ribbon-unlinking. The extracellular-signal-regulated
kinase (ERK) directly phosphorylates GRASP55 and blocks its activity in both
Golgi ribbon formation and trans-oligomerization (Feinstein and Linstedt 2008),
while GRASP65 is phosphorylated by c-Jun N-terminal kinase (JNK) on Serine
277 (S277), which causes the separation of the Golgi stacks (Cervigni et al. 2015).

Sequential phosphorylation of GRASP65 on multiple sites by cyclin-dependent
kinase 1 (Cdk1) and polo-like kinase 1 (Plk1) results in its conformational changes
and subsequent de-oligomerization (Lin et al. 2000; Preisinger et al. 2005; Wang
et al. 2003; Tang et al. 2012; Vielemeyer et al. 2009). On the other hand, GRASP55
is phosphorylated by ERK and partially by Cdk1 (Xiang and Wang 2010). In
addition to the unique phosphorylation sites in the SPR domains of GRASPs,
S189 within the GRASP domain of GRASP65 is modified by Plk1, which causes
conformational change and impaired self-association (Sengupta and Linstedt 2010).
An in vivo membrane-tethering activity assay using a construct of full-length
GRASP55 fused to the C-terminal mitochondrial anchoring sequence shows that
the tethering activity is diminished by introducing a phosphomimic S189D mutant.
This result suggests that S189 might be a Plk1 target site on both GRASPs, although
direct evidence remains to be provided (Truschel et al. 2012). GRASP65 is
dephosphorylated by PP2A in late mitosis and the trans-oligomer reformation is
therefore rehabilitated to promote cisternae stacking (Tang et al. 2008).

The unstacked cisternae further disassemble into vesicles, which depends on
COPI vesicle formation and blockage of vesicle docking and membrane fusion. As
mentioned above, the GM130-p115-giantin complex promotes COPII vesicle
docking to the Golgi. Cdk1 phosphorylation of GM130 on S25 during mitosis
inhibits p115-interaction and therefore blocks vesicle docking (Lowe et al. 1998).
Inhibition of Cdk1 causes Golgi vesiculation failure, suggesting an essential role of
Cdk1 activity in mitotic Golgi vesiculation. However, expression of the GM130
S25A non-phosphorylatable mutant in GM130-depleted cells causes no apparent
defects in Golgi vesiculation and mitotic progression, indicating the existence of
GM130 S25 phosphorylation-independent pathways that ensure Golgi vesiculation
and mitotic progression in mammalian cells (Sundaramoorthy et al. 2010).

Recently, the recruitment and activation of Aurora kinase family member Aurora
A at the centrosomes in M phase was reported to depend on Golgi ribbon unlinking
in G2 phase (Barretta et al. 2016). Aurora A functions in centrosome maturation,
mitotic entry, and bipolar spindle formation during mitosis (Nikonova et al. 2013;
Carmena et al. 2009; Kimura et al. 2013). This finding indicates a potential link
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between Aurora A activity and cell cycle-associated Golgi structure modulation.
Indeed, it was later confirmed that knockdown or inhibition of Aurora A induces
Golgi dispersal without affecting the GM130 protein level in interphase. Further
investigation revealed that interference of Aurora A causes Golgi dispersal only after
mitosis via the dissociation of the Golgi and centrosome (Kimura et al. 2018). These
studies revealed a novel relationship between G2 phase Golgi unlinking, M phase
Aurora A activation, and interphase Golgi structure formation.

19.2.2 Post-mitotic Golgi Membrane Fusion and Its
Regulation

Two AAA ATPases, NSF and p97/VCP, are involved in membrane fusion during
post-mitotic Golgi reassembly, and their activities are regulated by phosphorylation
during mitosis (Rabouille et al. 1995). For NSF-catalyzed fusion, the p115-GM130
tethering complex is disrupted by GM130 phosphorylation during mitosis (Lowe
et al. 1998), while post-mitotic phosphorylation of p115 by a casein kinase II (CKII)-
like enzyme is required for cisterna reassembly (Dirac-Svejstrup et al. 2000).
Contemporarily, homotypic fusion of Golgi membranes mediated by p97 is also
blocked upon phosphorylation of p47 and p37. p97 uses these two distinct cofactors
for its membrane fusion function: p47 is essential for the regrowth of Golgi cisternae
from mitotic Golgi fragments (Kondo et al. 1997), while p37 is required for the
maintenance of the Golgi structure in interphase as well as for its reassembly in late
mitosis (Uchiyama et al. 2006). Both pathways are regulated by Cdk1-mediated
phosphorylation. Phosphorylation of p47 on S140 abolishes its binding to Golgi
membranes, resulting in mitotic inhibition of the p97/p47 pathway (Uchiyama et al.
2003). Phosphorylation on S56 and Threonine 59 (T59) disables p37 from binding to
Golgi membranes and consequently blocks p97/p37-mediated Golgi membrane
fusion at late mitosis (Kaneko et al. 2010).

In addition to phosphorylation, p97/p47-mediated Golgi membrane fusion is also
regulated by ubiquitination (Tang and Wang 2013). Tang et al. discovered that the
Homologous to the E6-AP Carboxyl Terminus (HECT) domain containing ubiquitin
ligase HACE1 is targeted to the Golgi membrane through the interaction with Rab1
and participates in post-mitotic Golgi biogenesis (Tang et al. 2011). Depletion of
HACE1 or expression of an inactive mutant impairs post-mitotic Golgi membrane
fusion. The identification of HACE1 as a Golgi-localized ubiquitin ligase provides
evidence that ubiquitin has a critical role in Golgi biogenesis during the cell cycle
(Tang et al. 2011). Later, the Golgi t-SNARE syntaxin 5 was identified as a
ubiquitination substrate (Huang et al. 2016). Syntaxin 5 is monoubiquitinated by
HACE1 in early mitosis and deubiquitinated by the de-ubiquitinase VCIP135 in late
mitosis (Wang et al. 2004). The monoubiquitination of syntaxin 5 at Lysine
270 (K270) in the SNARE domain impairs the interaction between syntaxin 5 and
the cognate v-SNARE Bet1 but increases its binding to the p97 adaptor p47 through
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the UBA domain of p47, which is required for post-mitotic Golgi membrane fusion
(Meyer et al. 2002). Expression of the syntaxin 5 K270R mutant in cells impairs
post-mitotic Golgi reassembly. Therefore, monoubiquitinated syntaxin 5 recruits
p97/p47 to the mitotic Golgi fragments and promotes post-mitotic Golgi reassembly
upon ubiquitin removal by VCIP135 (Huang et al. 2016). VCIP135 was originally
identified as a p97 interacting protein (Kano et al. 2005). It was later shown to be a
de-ubiquitinating (DUB) enzyme involved in p97/p47-mediated membrane fusion
(Wang et al. 2004). VCIP135 DUB activity, as well as its interaction with p97 and
association with Golgi membranes, is regulated by phosphorylation (Zhang and
Wang 2015a; Zhang et al. 2014). In mitosis, VCIP135 is phosphorylated at S130
by Cdk1 and thus is inactivated, allowing syntaxin 5 to be ubiquitinated by HACE1;
in telophase, VCIP135 is dephosphorylated and reactivated, removing ubiquitin
from syntaxin 5 to allow p97-mediated membrane fusion (Huang and Wang 2017;
Wang 2008). These studies revealed a novel mechanism that monoubiquitination
regulates Golgi membrane dynamics during the mammalian cell cycle.

19.3 Golgi Stress Response

As stated above, the Golgi apparatus in mammalian cells forms a unique stacked
structure under normal growth conditions, which undergoes a regulated disassembly
and reassembly process during the cell cycle. However, the Golgi structure and
function could be impaired under stress conditions, such as DNA damage, energy
and nutrient deprivation, and pro-apoptotic conditions. This could be attributed to
perturbation of microtubule organization or phosphorylation, degradation, or cleav-
age of Golgi structural proteins. Additionally, many signaling molecules have been
identified to be associated with the Golgi. Thus, it has been proposed that the Golgi
could sense and transduce stress signals and therefore serves as a hub in the cellular
signaling network (Farhan and Rabouille 2011; Mayinger 2011; Makhoul et al.
2019).

19.3.1 Apoptotic Stress and Golgi Fragmentation

Apoptosis, also known as programmed cell death, is a cell suicide mechanism
carried out by organelle-directed regulators such as the Bcl-2 proteins and ultimately
executed by the caspase family proteases (Nicholson and Thornberry 1997).
Organellar response to apoptotic initiation includes death receptor endocytosis,
mitochondrial and lysosomal permeabilization, ER calcium release, and Golgi
fragmentation. The Golgi is one of the first organelles to be affected during apoptosis
(Mukherjee et al. 2007; Aslan and Thomas 2009). During apoptosis, several Golgi
matrix proteins related to Golgi structure maintenance are cleaved by caspases,
leading to Golgi fragmentation (Hicks and Machamer 2005). Apoptotic Golgi
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fragmentation is one of the most extensively studied Golgi stress responses.
Reported caspases-cleaved Golgi proteins include GRASP65, golgin-160, GM130,
p115, syntaxin 5, and giantin (Lane et al. 2002; Mancini et al. 2000; Walker et al.
2004; Chiu et al. 2002; Lowe et al. 2004; Machamer 2015), as summarized in
Table 19.2 and discussed below.

19.3.1.1 Golgin-160

Golgin-160 is a golgin that plays a role in vesicle tethering and trafficking (Misumi
et al. 1997). It is cleaved by caspase-2, caspase-3, and caspase-7 during apoptosis.
Under pro-apoptotic conditions stimulated by staurosporine, the Golgi senses and
transduces apoptotic signals using a local caspase, caspase-2. Caspase-2 is special in
a way that it has both the property of initiator caspases and the substrate specificity of
executioner caspases (Mancini et al. 2000). Although it is unclear how caspase-2 is
activated by pro-apoptotic signals, in vitro and in vivo caspase cleavage assays
showed that caspase-2 cleavage of golgin-160 at aspartate 59 (D59) happens prior to
golgin-160 cleavage by caspase-3 and 7 at D139 and D311 (Mancini et al. 2000).
Expression of the D59A cleavage-defective mutant of golgin-160 delays Golgi
disintegration under staurosporine treatment (Machamer 2003; Hicks and Machamer
2005).

Table 19.2 Apoptotic cleavage of Golgi proteins

Names Apoptosis inducer Caspases
Cleavage
site Golgi structural change

Golgin-
160

STS; CH11 Caspase-
2, 3 and 7

D59,
D139,
D311

Golgi fragmentation (Mancini
et al. 2000; Mukherjee et al.
2007; Nozawa et al. 2002; Hicks
and Machamer 2002; Maag et al.
2005)

GRASP65 Anisomycin; STS Caspase-3 D320,
D375,
D393

Golgi fragmentation (Lane et al.
2002; Cheng et al. 2010)

p115 STS;
4-hydroxytamoxifen;
CH11; CA

Caspase-3
and 8

D757 Golgi fragmentation (Chiu et al.
2002; How and Shields 2011;
Mukherjee et al. 2007;
Mukherjee and Shields 2009;
Woldemichael et al. 2011)

GM130 CH11 Caspase-3 – Golgi fragmentation (Walker
et al. 2004; Lowe et al. 2004;
Mukherjee et al. 2007)

Syntaxin 5 STS; anisomycin Caspase-3 D1882,
D1083

Secretion inhibition (Lowe et al.
2004)

Giantin STS; anisomycin Caspase-3 D263 Secretion inhibition (Lowe et al.
2004; Nozawa et al. 2002)

CA carminomycin I, CH11 an anti-Fas monoclonal antibody, D aspartic acid, STS staurosporine
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Subsequently, it was shown that an N-terminal 85 amino acid fragment of golgin-
160 contains both a Golgi localization signal and a nuclear localization signal (Hicks
and Machamer 2002). Expression of a non-cleavable golgin-160 mutant inhibits ER
stress or ligation of death receptor-induced apoptosis (Maag et al. 2005). Latterly,
yeast two hybrid screening revealed that GCP60 preferentially binds to one of the
caspase cleavage products of golgin-160, aa 140-311, to inhibit its nuclear localiza-
tion (Sbodio et al. 2006). Overexpression of GCP60 sensitizes cells to staurosporine-
induced apoptosis, while nuclear localization of a golgin-160 apoptotic cleavage
fragment (aa 140-311) protects cells from apoptosis. However, another report
indicates that golgin-160 depletion does not affect the Golgi morphology nor
constitutive secretion (Williams et al. 2006). Therefore, the mechanism of how
golgin-160 transduces apoptotic signals and regulates the apoptotic response needs
to be further studied.

19.3.1.2 GRASP65

GRASP65 is cleaved in apoptosis induced by oxygen- and glucose-deprivation
(OGD) as in ischemia-induced cerebral vascular endothelial injury (Yin et al.
2010) and in staurosporine- or Fas ligand-induced apoptosis (Lane et al. 2002,
Cheng et al. 2010). In apoptosis, GRASP65 is cleaved by caspase-3 on D320,
D375, and D393. Expression of a cleavage-resistant form of GRASP65 delays
Golgi fragmentation in apoptosis and protects cells from Fas/CD95-mediated apo-
ptosis, whereas expression of an N-terminal caspase-cleaved fragment dramatically
sensitizes cells to Fas/CD95-mediated apoptosis (Lane et al. 2002, Cheng et al.
2010). Further results revealed that the C-terminal fragments of GRASP65 produced
by caspase cleavage promotes Fas/CD95-mediated apoptosis via being targeted to
mitochondria by binding to Bcl-XL (Cheng et al. 2010). However, the mechanism of
how the C-terminal cleavage fragment of GRASP65 regulates apoptosis at the
mitochondria and the role of Bcl-XL in this process are still unknown. The Golgi
fragmentation phenotype induced by apoptotic GRASP65 cleavage is similar to that
of GRASP65 phosphorylation in mitosis (Warren 1995). There is evidence that
several kinases involved in mitotic GRASP65 phosphorylation such as Cdk1 and
ERK are activated during apoptosis and regulate apoptosis by phosphorylating
caspase and Bcl-2 family proteins (Terrano et al. 2010; Yamaguchi et al. 2008; Lu
et al. 2011). Whether these kinases directly regulate apoptotic Golgi fragmentation
by phosphorylating GRASP65 or other Golgi proteins remains unclear (Ji et al.
2013).

19.3.1.3 p115

The ER-to-Golgi membrane tether, p115, is cleaved by caspase-3 and caspase-
8 during apoptosis. Expression of a caspase-resistant form of p115 delays Golgi
fragmentation in apoptosis. Exogenous expression of a p115 C-terminal apoptotic
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fragment leads to apoptosis and Golgi fragmentation (Chiu et al. 2002). The extreme
C-terminal fragment, generated by caspase cleavage during apoptosis, translocates
into the nucleus and further activates the apoptosis machinery. Interestingly, trans-
location of the p115 C-terminal fragment happens prior to major Golgi structural
changes, indicating it as an early event (Mukherjee and Shields 2009). The p115
C-terminus is SUMOylated, which regulates its nuclear translocation and amplifi-
cation of apoptosis signals in a p53-dependent manner (How and Shields 2011;
Mukherjee and Shields 2009). In a high-throughput screen, Carminomycin I
(CA) was discovered to inhibit cell proliferation of Von Hippel-Lindau (VHL)
defective Clear Cell Renal Cell Carcinoma (VHL�/� CCRCC) (Woldemichael
et al. 2011). CA activates caspase-2 and caspase-3 to cleave p115, which inhibits
CCRCC proliferation (Woldemichael et al. 2011).

19.3.1.4 Other Proteins

Several other Golgi structural proteins are also involved in apoptosis or cleaved by
caspases. The level of GM130 is reduced during Fas-mediated apoptosis but not in
staurosporine-induced apoptosis (Walker et al. 2004). However, it is not clear
whether the reduction is due to GM130 cleavage or degradation. Syntaxin 5 and
giantin are also cleaved by caspase-3 during apoptosis, which inhibits ER-to-Golgi
transport (Lowe et al. 2004). Golgin-95 and golgin-97 are cleaved during necrosis
but not apoptosis (Nozawa et al. 2002). Cleavage of golgin-95 and golgin-97 during
necrosis is also caspase-dependent, since pretreatment of the cells with pan-caspase
inhibitor, zVAD-fmk, abolished the cleavage of these two proteins (Nozawa et al.
2002).

Some of the Golgi proteins are also reported to regulate apoptosis. The Golgi
SNARE GS28 is involved in cisplatin-induced apoptosis in a p53-dependent manner
(Sun et al. 2012). Overexpression of GS28 sensitizes HEK293 cells to the apoptosis-
inducer cisplatin via the accumulation of p53 and Bax and the stimulation of p53
pro-apoptotic phosphorylation at S46. It was also shown that GS28 forms a complex
with the p53 ubiquitin E3 ligase Murine Double Minute 2 (MDM2) to inhibit its
function and consequential p53 ubiquitination and degradation (Sun et al. 2012).
Therefore, GS28 promotes cisplatin-induced apoptosis by stabilizing and regulating
pro-apoptotic phosphorylation of p53.

A well-studied mediator of intracellular vesicle fusion, NSF attachment protein α
(αSNAP), has been reported to have pro-survival functions (Naydenov et al. 2012).
Depletion of αSNAP triggers apoptosis in epithelial cells by reducing the anti-
apoptotic protein Bcl-2. Depletion of αSNAP in p53 null or Bax null cells still
results in apoptosis, indicating that the anti-apoptotic function is independent of p53
and Bax. Interestingly, αSNAP depletion induces apoptosis independent of the
cleavage of Golgi proteins such as GRASP65, golgin-160, and p115 but rather by
dysregulation of ER-Golgi vesicle cycling and possibly through ER stress
(Naydenov et al. 2012). Some other Golgi proteins, including human Golgi anti-
apoptotic protein (h-GAAP) (Gubser et al. 2007; Saraiva et al. 2013) and Golgi
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integral membrane protein 4 (GOLIM4) (Bai et al. 2018), are also reported to have
anti-apoptotic functions. GOLIM4 is overexpressed in some head and neck cancers,
and depletion of GOLIM4 reduces cell proliferation and cell viability by inducing
apoptosis (Bai et al. 2018).

Although microtubule and actin filaments play important roles in Golgi orienta-
tion and structure, Golgi fragmentation in apoptosis occurs prior to cytoskeleton
disorganization (Mukherjee et al. 2007; Yadav and Linstedt 2011). Furthermore, the
level of actin and tubulin did not change during apoptosis, while Golgi structural
proteins are cleaved as discussed above. Therefore, Golgi fragmentation in early
apoptosis is independent of microtubule and actin filament disorganization.

19.3.2 GOLPH3 and DNA Damage-Induced Golgi
Fragmentation

The Golgi phosphoprotein 3 (GOLPH3) is a peripheral membrane protein that
regulates vesicle budding and TGN-to-plasma membrane trafficking (Dippold
et al. 2009). GOLPH3 is localized to the TGN by binding to phosphatidylinositol
4-phosphate (PI4P). Depletion of PI4P leads to GOLPH3 dissociation from the
TGN. GOLPH3 also binds to the actin-based motor protein MYO18A to link
Golgi membranes with the actin cytoskeleton. This bridging effect creates a tension
required for vesicle budding, trafficking, and maintenance of the Golgi ribbon.
Depletion of GOLPH3 or MYO18A leads to the loss of the tensile force, resulting
in the shrinkage of the Golgi ribbon and a reduction of vesicles formed at the TGN
(Dippold et al. 2009; Bishe et al. 2012; Ng et al. 2013). GOLPH3 is an oncogene
known to be overexpressed in some solid tumors, including lung cancer and breast
cancer (Scott et al. 2009; Zeng et al. 2012). It is also reported that GOLPH3 increases
cell proliferation and cell size by regulating cell proliferation through the interaction
with the retromer complex and activation of the mammalian target of rapamycin
mTOR (Scott et al. 2009). GOLPH3 induces cell proliferation in breast cancer cells
by inhibiting the tumor suppressor transcription factor FOXO1 through activating
AKT (Zeng et al. 2012). These findings demonstrate that a trans-Golgi protein can
serve as an oncogene (Scott et al. 2009; Buschman et al. 2015; Kuna and Field
2018).

Interestingly, DNA damage causes Golgi dispersal in a GOLPH3-dependent
manner. DNA damage activates the DNA-PK kinase to phosphorylate GOLPH3
on T143/T148, which aberrantly increases the tensile force for the Golgi to fragment.
Golgi fragmentation in this scenario increases cell survival with an unknown
mechanism (Farber-Katz et al. 2014). Depletion of GOLPH3 or MYO18A increases
cancer cells’ sensitivity to DNA damage inducing agents, suggesting that GOLPH3
phosphorylation-induced Golgi fragmentation may serve as a protective mechanism
(Farber-Katz et al. 2014). Considering that GOLPH3 is overexpressed in many solid
tumors, it is reasonable to speculate that this may be a mechanism of how cancer
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cells escape DNA damage-induced apoptosis (Farber-Katz et al. 2014; Buschman
et al. 2015; Li et al. 2016b).

In addition to its high expression level in some cancer cells, GOLPH3
overexpression is also reported in mouse N2A cells under oxygen-glucose depriva-
tion and reoxygenation (OGD/R), a model mimicking severe oxidative injury
(Li et al. 2016a). In this OGD/R model, GOLPH3 is overexpressed and forms puncta
in the cytosol, which induces the formation of reactive oxygen species (ROS) and
lipidation of LC3. Opposed to its anti-apoptotic role in cancer cells, depletion of
GOLPH3 in OGD/R desensitizes the cells to apoptosis (Li et al. 2016a).

19.3.3 Golgi in Autophagy Regulation

Most recently, the Golgi stacking protein GRASP55 was reported to regulate
autophagy upon energy deprivation (Zhang et al. 2018; Zhang and Wang 2018a,
b). Under normal growth condition, GRASP55 is O-GlcNAcylated and localizes in
the medial- and trans-Golgi for stacking. However, under glucose starvation, a pool
of de-O-GlcNAcylated GRASP55 translocates to the interface between
autophagosomes and lysosomes to facilitate autophagosome-lysosome fusion.
After a short-term energy deprivation, the Golgi structure is only mildly affected,
possibly due to sufficient GRASP55 molecules remaining in the Golgi to maintain its
structure. Among over a dozen Golgi proteins tested, only GRASP55, but not
GRASP65, GM130, or golgin-45, is O-GlcNAcylated under growth conditions
and targets to autophagosomes upon energy deprivation, indicating that GRASP55
serves as an energy sensor on the Golgi to regulate both intracellular trafficking and
autophagy. Significantly, the same scenario may be seen in autophagy induced by
amino acid starvation and inhibition of mTOR (Zhang et al. 2018).

In addition to Golgi fragmentation, GCC88 overexpression also induces
autophagy via reducing the activity of mTOR. A considerable pool of mTOR is
localized and activated on the Golgi, which is dependent on the ribbon structure for
recruitment but independent of lysosomal mTOR activation (Gosavi et al. 2018).
These findings indicate the Golgi ribbon as an important location for the functional
regulation of mTOR activity.

Additionally, autophagosomes may directly form on Golgi membranes (Guo
et al. 2012) or obtain membranes from the Golgi (Geng et al. 2010; Geng and
Klionsky 2010). The only recognized transmembrane ATG protein, ATG9, localizes
at the trans-Golgi network and late endosomes and is essential for autophagosome
formation (Yamamoto et al. 2012), although the detailed mechanism awaits further
investigation (Orsi et al. 2012). Recently, the endoplasmic reticulum-Golgi interme-
diate compartment (ERGIC) is proposed to serve as a key membrane source for
autophagosome formation (Ge et al. 2013). Under normal condition, COPII vesicles
are generated from the ER-exit sites (ERES) for ER-Golgi membrane trafficking,
while upon starvation, the COPII assembly activator Prolactin Regulatory Element-
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Binding protein (PREB)/SEC12 relocates to the ERGIC and triggers ERGIC-COPII
vesicle formation as membrane templates for LC3 lipidation.

19.4 Alteration of Golgi Structure and Function in Diseases

Golgi structure defects and dysfunctions have been observed in many diseases,
including pathogen infection, neurodegenerative diseases, and cancer (Aridor and
Hannan 2000). Generally, the mechanisms of Golgi fragmentation include imbal-
anced membrane flux, altered microtubule dynamics, and posttranslational modifi-
cations or proteolytic cleavage of Golgi structural proteins (Wei and Seemann 2017).
In many cases, the correlation between Golgi defect and disease progression is
unclear. A few interesting cases reported recently are discussed below.

19.4.1 Alzheimer’s Disease (AD)

AD is an age-related neurodegenerative disease of the central nerve system charac-
terized by progressive loss of cognition and memory. Golgi fragmentation occurs in
neurons of patients with AD since the earliest stages of disease development
(Sundaramoorthy et al. 2015). Some cases of early-onset AD are related to mutations
in the Amyloid Precursor Protein (APP) or Presenilin 1 and 2 (PSN1 and 2). The
amyloid-beta (Aβ) peptide is a proteolytic product of APP, which is considered to be
the major inducer of AD (Selkoe and Hardy 2016). Aβ accumulation is likely the
direct cause of Golgi fragmentation, as Aβ-treatment causes reversible Golgi frag-
mentation in cultured neurons (Joshi et al. 2014).

Present research supports that activation of Cyclin-dependent kinase 5 (Cdk5) by
Aβ accumulation via the [Ca2+]-calpain-p25 pathway may be the major trigger of
Golgi fragmentation in AD (Lee and Linstedt 2000; Joshi et al. 2015; Joshi and
Wang 2015; Evin 2015; Ayala and Colanzi 2017). Cdk5 may function in two ways.
First, Cdk5 phosphorylates GM130 at S25 and inhibits its interaction with the Golgi
tethering protein p115 (Sun et al. 2008). Second, Cdk5 phosphorylates GRASP65 at
T220/T224, which inhibits GRASP65 function in Golgi stack formation and ribbon
linking (Joshi et al. 2014). Furthermore, inhibiting Cdk5 or expressing
non-phosphorylatable GRASP65 mutants both rescued the Golgi structure and
reduced Aβ secretion by elevating the α-cleavage of APP (Joshi and Wang 2015;
Joshi et al. 2014), indicating that GRASP65 phosphorylation may be the main reason
for AD-induced Golgi fragmentation. These studies not only provide molecular
mechanisms for Golgi fragmentation but also suggest Golgi as a potential drug
target for AD treatment (Joshi et al. 2015; Joshi and Wang 2015; Ayala and Colanzi
2017).
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19.4.2 Amyotrophic Lateral Sclerosis (ALS)

ALS is a fatal neurodegenerative disorder specifically targeted to motor neurons.
Fragmented Golgi has been observed in numerous models of superoxide dismutase 1
(SOD1), TDP-43, FUS, and optineurin-associated ALS (Fujita et al. 2008; Soo et al.
2015; Van Dis et al. 2014; Wallis et al. 2018). SOD1 inhibits ER-to-Golgi transport
and causes Golgi fragmentation (Atkin et al. 2014) by reducing the β-COP protein
level, accumulating the ER-Golgi v-SNAREs GS15 and GS28, and destabilizing
microtubules by the upregulation of Stathmins 1 and 2 (Bellouze et al. 2016; Atkin
et al. 2014). FUS and TDP-43 impair the incorporation of secretory cargo into COPII
vesicles (Soo et al. 2015). Furthermore, expression of ALS-related optineurin
mutants impairs myosin VI-mediated protein trafficking from Golgi to plasma
membrane, which also induces Golgi fragmentation (Sundaramoorthy et al. 2015).
Conclusively, impairment of distinct protein trafficking pathways by different
ALS-linked proteins are specific triggers for Golgi fragmentation in ALS.

19.4.3 Parkinson’s Disease (PD)

PD is pathologically characterized by the loss of dopamine-containing neurons and
by the formation of intracellular protein aggregates known as Lewy bodies in which
α-synuclein has been recognized as a major constituent (Forno 1996; Wakabayashi
et al. 1998). Golgi fragmentation can be detected in early-stage PD brains (Fujita
et al. 2006) and is strongly correlated to the presence of prefibrillar α-synuclein
(Gosavi et al. 2002). Since then, emerging studies have provided important insights
into the mechanisms of how α-synuclein causes pathological Golgi fragmentation
and neuronal degeneration. The primary effect of α-synuclein aggregation is the
inhibition of ER-to-Golgi transport (Lashuel and Hirling 2006), which can be
rescued by the overexpression of Rab1 and Rab8 and depletion of Rab2 and syntaxin
5 (Rendon et al. 2013; Coune et al. 2011). In a most recent report, mutations in the
leucine-rich repeat kinase 2 (LRRK2), a major genetic cause of autosomal-
dominantly inherited PD, markedly enhance Rab7L1 phosphorylation on S72,
resulting in TGN fragmentation (Fujimoto et al. 2018).

19.4.4 Cancer

Golgi disorganization may be related to cancer progression and metastasis in the
following aspects: aberrant glycosylation, abnormal expression of Ras GTPase,
dysregulation of kinases, and hyperactivation of myosin motor proteins (Petrosyan
2015). Perturbation of the Golgi morphology in cancers results in an increase of
sialylation which is associated with a metastatic cell phenotype (Schultz et al. 2012).
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Overexpression of sialylated antigens is significantly correlated with tumor progres-
sion and therapy resistance due to an anti-apoptotic effect (Lee et al. 2008; Park et al.
2012; Petrosyan et al. 2014). Over-activation of Rabs, which coordinate with golgins
in protein transportation and Golgi structure maintenance, has been reported in
different types of cancers (Goldenring 2013). Furthermore, Golgi disorganization-
related kinases, including Src, ERK9, and P21-activated protein kinase (Pak1), are
found elevated in tumor cells (Chia et al. 2014; Ching et al. 2007; Weller et al. 2010).
The ubiquitin ligase HACE1, which regulates p97-mediated Golgi membrane fusion
as discussed above, is reported as a tumor suppressor downregulated in multiple
tumors including Wilms’ tumor (Anglesio et al. 2004), resulting in Golgi fragmen-
tation (Tang et al. 2011; Cui and Wang 2012). Additionally, hyperactivation of
Golgi-associated myosins, including MYO18A that directly binds to GOLPH3 to
promote Golgi dispersal (Dippold et al. 2009; Allan et al. 2002), is detected in many
aggressive cancers. Golgi fragmentation is one of the essential and earliest events in
apoptosis, where several golgins and GRASP65 are cleaved by activated caspases,
as described in previous sections.

19.4.5 Viral Infection

Several membrane structures including the Golgi are used by viruses as viral
factories to replicate, concentrate, and assemble the viral genome and proteins into
viral particles (Miller and Krijnse-Locker 2008; Netherton et al. 2007; Salonen et al.
2005). As a highly dynamic organelle, Golgi serves as a membrane scaffold for
multiple viruses, including infectious hepatitis C virus, enteroviruses, poliovirus,
foot-and-mouth-disease virus, dengue virus, coronavirus, Kunjin virus, tick-borne
encephalitis virus, rubella virus, and bunyamwera virus (Miller and Krijnse-Locker
2008; Harak and Lohmann 2015; Risco et al. 2003; Salanueva et al. 2003; Delgui
et al. 2013; Westerbeck and Machamer 2015), and is frequently fragmented after
infection (Campadelli et al. 1993; Salanueva et al. 2003; Yadav et al. 2016; Avitabile
et al. 1995; Lavi et al. 1996; Hansen et al. 2017; Rebmann et al. 2016). Viruses use
Golgi membranes directly and/or hijack master controllers of Golgi biogenesis and
trafficking to generate vesicles that are used as the site of viral RNA replication
(Quiner and Jackson 2010; Hansen et al. 2017; Short et al. 2013), wrapping (Sivan
et al. 2016; Alzhanova and Hruby 2007; Alzhanova and Hruby 2006; Nanbo et al.
2018; Lundu et al. 2018; Procter et al. 2018), intracellular transduction
(Nonnenmacher et al. 2015), and secretion (Zhang et al. 2016b). Viral infection
triggers Golgi fragmentation via diverse mechanisms, ranging from phosphorylating
key Golgi structural proteins such as GRASP65 (Rebmann et al. 2016), activating
the Src kinase to phosphorylate the Dynamin 2 GTPase (Martin et al. 2017),
targeting the immunity-related GTPase M (IRGM) to the Golgi to induce GBF1
phosphorylation (Hansen et al. 2017), modulating vesicular trafficking (Yadav et al.
2016; Johns et al. 2014), to impeding the major histocompatibility complex (MHC)
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class I trafficking, antigen presentation, and/or cytokine secretion (Moffat et al.
2007; Rohde et al. 2012).

19.5 Conclusions and Perspectives

The Golgi is the central hub in the secretory pathway, where proteins and lipids are
processed, sorted, and dispatched to distinct destinations. As a well-organized
polarized membrane structure, Golgi function is tightly related to its structural
integrity. Thus, the first key question in Golgi biology concerns how the stacked
Golgi structure forms. During the past decades, proteins with a variety of functions
have been identified in the maintenance of Golgi structure and regulation of Golgi
function, including but not limited to GRASPs, golgins, kinases, phosphatases,
ubiquitin E3 ligases, and deubiquitinases, as summarized above. More detailed
investigations need to be done to investigate how Golgi structural proteins and
their interacting molecules cooperate together to form the stacked Golgi structure.

Golgi structural and functional defects have been increasingly reported in stress
and disease conditions. In addition to its central role in protein sorting and traffick-
ing, the Golgi has been more recently recognized as a hub of signaling pathways,
which facilitates Golgi reaction upon stresses and diseases. Thus, the second key
question in Golgi biology concerns how the Golgi structure becomes defective in
stress and disease conditions. In this regard, much effort and some progress have
been made, such as Golgi fragmentation in AD by Cdk5-mediated GRASP65
phosphorylation as discussed above. However, many questions remain. For exam-
ple, is there an unfolded protein response (UPR)-like mechanism at the Golgi to cope
with different stresses? Is there a common stress sensor on the Golgi? How do the
signaling pathways on the Golgi sense and transduce stress signals? Apparently, a
more systematic analysis of Golgi response to different stressors is necessary. Gene
expression profile and posttranslational modification analysis of Golgi structural
proteins, Golgi enzymes, and signaling molecules will fast forward the field and
shed light on new directions. Considering lipid organization and modification are
important for Golgi function and certain lipids can work as signaling molecules,
more attention may be put on lipids at the Golgi, in addition to proteins.

The third key question in Golgi biology concerns how Golgi structure alteration
affects its function in trafficking, glycosylation, and sorting. The consequence of
Golgi fragmentation in different diseases is likely different, but it has been reported
that Golgi cisternal unstacking by depleting GRASP proteins enhances protein
trafficking. This, however, impairs accurate glycosylation and causes missorting of
lysosomal enzymes to the extracellular space (Xiang et al. 2013; Zhang and Wang
2016; Bekier et al. 2017; Wang et al. 2008). Consistently, Golgi fragmentation in
AD enhances APP trafficking and Aβ production, while rescue of the Golgi causes
APP accumulation in the Golgi and reduces Aβ secretion (Joshi et al. 2014). Most
recently, we have obtained evidence that Golgi structure disassembly by GRASP
depletion reduces cell attachment and migration while accelerating cell growth and
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cell cycle progression (Ahat et al. 2019). It will be interesting to investigate how
Golgi fragmentation enhances cancer cell proliferation and metastasis in the future.
Future efforts may also aim at developing small chemicals or molecular tools to
rescue the Golgi structure in diseases, which may delay the disease development.
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