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Abstract

The volume and variety of manufactured chemicals is increasing, although little is known about 

the risks associated with the frequency and extent of human exposure to most chemicals. The EPA 

and the recent signing of the Lautenberg Act have both signaled the need for high-throughput 

methods to characterize and screen chemicals based on exposure potential, such that more 

comprehensive toxicity research can be informed. Prior work of Mitchell et al. using multicriteria 

decision analysis tools to prioritize chemicals for further research is enhanced here, resulting in a 

high-level chemical prioritization tool for risk-based screening. Reliable exposure information is a 

key gap in currently available engineering analytics to support predictive environmental and health 

risk assessments. An elicitation with 32 experts informed relative prioritization of risks from 

chemical properties and human use factors, and the values for each chemical associated with each 

metric were approximated with data from EPA’s CP_CAT database. Three different versions of the 

model were evaluated using distinct weight profiles, resulting in three different ranked chemical 

prioritizations with only a small degree of variation across weight profiles. Future work will aim to 

include greater input from human factors experts and better define qualitative metrics.

Introduction

Little is known about the risks associated with the life cycles of the vast majority of 

chemical compounds (Egeghy et al., 2012; Wilson & Schwarzman, 2009). Given that risk is 

a function of both hazard and exposure, this uncertainty stems from the paucity of reliable 

information regarding the toxicity, and even greater uncertainty about the frequency and 

extent of an individual’s contact with a specific compound given typical utilizations of that 

chemical (e.g., cosmetics, cleaning products, etc.) and individuals’ use patterns given the 

intended utilization (herein “human factors”). Before passage of the Toxic Substances 

Control Act of 1976 (TSCA), chemicals entered commerce without formal risk assessment. 

Since then, the decision regarding the entry of a new chemical into commerce has relied on 

screening-level risk assessment, a simplified method of risk assessment that can be 

conducted with limited data and seeks to address uncertainty by conservatively 

overestimating a chemical’s risk. Upon entry into the marketplace, however, the approved 
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chemical may be used for purposes other than for which it is approved. The Lautenberg Act, 

signed by President Obama in June 2016, mandates risk assessments for the 85,000 

chemicals in the TSCA inventory. The Act requires detailed risk information for chemicals if 

they are identified as high priority, lacking information, one of TSCA’s 83 potential 

candidates for risk assessment designated as “work plan” chemicals, or company-requested 

chemicals. As of the time of the legislation’s signing, less than 2% of chemicals that fit into 

these categories have detailed risk information associated with them in TSCA. The need for 

an efficient and comprehensive method for screening and assessing these chemicals is now 

even more pertinent (Denison, 2016). A variety of high-resolution, high-throughput tools are 

under development within the EPA. They range from those already targeting the chemical 

toxicity and potential human exposure for data-poor chemicals to filling data gaps with read-

across methods like GenRA (Shah, Liu, Judson, Thomas, & Patlewicz, 2016). A database 

that would integrate chemical, exposure, and bioactivity information about a particular 

chemical—currently known as the RapidTox Dashboard—is also in development and a beta 

is expected to be released soon (Crofton, 2016). However, few tools currently exist that are 

able to provide an appropriate level of detail to prioritize future study at nominal cost in 

terms of time and money for evaluating large numbers of chemicals (Csiszar et al., 2016).

Addressing the need of the federal, state, and other agencies to protect human health and 

safety in this data-poor environment, high-throughput methods are being developed to 

characterize and screen chemicals based on exposure potential, with the intention of guiding 

more comprehensive exposure and toxicity research. However, the analytics to support risk 

assessments often lack reliable exposure information, so they often default to broad 

assumptions based on a chemical’s inherent properties, for example, assuming that a 

persistent and bioaccumulating chemical will have the highest exposure potential. To address 

this analytics gap, we present a refinement of one such method that builds on prior high-

throughput screening efforts (Mitchell et al., 2013) to combine exposure and toxicity 

considerations with input from subject-matter experts in both human factors and 

physicochemical properties using multicriteria methods and a web-based expert elicitation 

protocol. This was done by eliciting expert opinion on the relative importance of a suite of 

human and physicochemical factors for prioritizing toxicity research on manufactured 

chemicals. In fact, an ancillary area of methodological research of this investigation was the 

translation of EPA’s expert elicitation guidelines (U.S. Environmental Protection Agency 

Office of the Science Advisor, 2012) to a virtual, webinar format. The EPA guidance was 

exclusively directed to face-to-face, on-site formats. As such, a system consisting of read-

ahead materials and an interactive instrument was developed in preparation of the webinars 

(see Online Appendix 2). Results of a case study with the completed tool are presented using 

a previously defined 51-chemical sample.

Background

The amount and variety of chemicals manufactured have been steadily increasing, resulting 

in human exposure through air, food, water, and product usage (Wilson & Schwarzman, 

2009). Although manufactured chemical use continues to increase in all sectors of the 

economy, there are gaps in available exposure and toxicity data that limit efforts to identify 

those chemicals that may pose the greatest threats to human and ecological health (Egeghy 
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et al., 2012). Reliable data are limited for even common chemicals used in everyday 

products (e.g., cleaning agents, air fresheners) concerning human exposure potential. The 

lack of resources needed for chemical assessment has driven the need to prioritize which 

chemicals to assess more thoroughly.

The U.S. EPA Office of Chemical Safety and Pollution Prevention has been developing and 

augmenting methods for the prioritization of existing chemicals for risk assessment via the 

use of more reliable exposure information to complement existing hazard information and 

increasingly available high-throughput toxicity screening results. Recently, the Office of 

Chemical Safety and Pollution Prevention performed a prioritization to identify 83 “TSCA 

Work Plan Chemicals” as potential risk assessment candidates, using stakeholder input to 

establish both screening criteria and data sources. In a two-step process, chemicals were 

assessed on the basis of their exposure potential, hazard, persistence, and bioaccumulation. 

The first step involved the identification and selection of 1,235 chemicals meeting one or 

more criteria, primarily known reproductive or developmental effects; persistent, 

bioaccumulative, and toxic (PBT) properties; known carcinogenicity; and presence in 

children’s products. The number of chemicals was narrowed to 345 potential candidates 

once those not regulated under the TSCA and those with physical and chemical 

characteristics that do not generally present health hazards were excluded. The second step 

employed a linear-additive multicriteria decision analysis model (Section 2.1) to score each 

chemical based on three characteristics: hazard, exposure, and persistence or 

bioaccumulation. Of the 345 candidates, chemicals that scored highest were identified as 

work plan chemicals, while those that could not be scored as the result of lacking data were 

identified as candidates for further data gathering (Mitchell et al., 2013).

To address the much needed ability for chemical prioritization on data-poor chemicals, the 

EPA’s Office of Research and Development launched the ExpoCast (Rapid Chemical 

Exposure & Dose Research | Safer Chemicals Research | US EPA, 2016) program to 

advance development of novel methodologies for evaluating chemicals based on their 

biologically relevant potential for human exposure. Combined with toxicity information 

from ToxCast (Richard et al., 2016), a complementary program, the EPA will be able to 

screen and prioritize chemicals based on cutting-edge experimental and computational 

methodologies. The ExpoCast model challenge (U.S. Environmental Protection Agency 

Office of the Science Advisor, 2012) was organized, challenging several scientists to develop 

their own exposure-based prioritization methods on a small set of well-characterized 

chemicals. The results of the model challenge pointed to the need for transparent, rigorous 

methods that are amenable to incorporating varied types of information. A team from the 

U.S. Army Engineer Research & Development Center (ERDC) was asked to develop a 

prioritization tool using methods from the field of decision analysis, drawing upon 

parameters used in the other exposure screening models, notably (Mitchell et al., 2013). A 

virtual expert elicitation was conducted using a web-based survey tool that walked 

individuals through the process of weighting a multicriteria decision analysis model of 

exposure risk.
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Multi-Criteria Decision Analysis

Multicriteria decision analysis (MCDA) (Belton & Stewart, 2002; Keeney & Raiffa, 1976; 

Linkov & Moberg, 2012) is a suite of tools that can help to support complex decisions that 

require consideration of multiple factors. MCDA methods are rooted in risk and decision 

science, providing a systematic and analytical approach for integrating potentially disparate 

sources of information while acknowledging uncertainty and risk preferences. Using 

MCDA, decisionmakers are better able to address the uncertainty and potentially conflicting 

objectives by evaluating, rating, and comparing different alternatives, based on multiple 

criteria, combining both qualitative and quantitative data and information sources. MCDA 

aims to provide decisionmakers with clarity as to the nature of the tradeoffs inherent in their 

decision problems through the evaluation and relative prioritization of alternatives. 

Applications of MCDA are increasing and span across interdisciplinary risk management 

issues in scientific and technical domains (Collier, Trump, Wood, Chobanova, & Linkov, 

2016; Kurth, Larkin, Keisler, & Linkov, 2017; Malloy, Trump, & Linkov, 2016), from 

alternative assessments (Malloy et al., 2017) in broadly defined risk-based decision making 

to specific applications in infrastructure (Karvetski, Lambert, & Linkov, 2009) and 

economics (Linkov et al., 2006) to policy making and environmental science (Cegan, Filion, 

Keisler, & Linkov, 2017; Kiker, Bridges, Varghese, Seager, & Linkov, 2005).

Present Effort

The present effort advances the work of Mitchell et al. (2013) in developing models useful 

for high-throughput exposure assessment for chemical prioritization. They identified two 

needs: (1) characterizing the most important physicochemical and human factors that 

increase the likelihood of exposure; and (2) weighting those factors based on expert 

judgment. To meet those needs, this study provides a decision analytic framework (Belton & 

Stewart, 2002; Keeney & Raiffa, 1976; Linkov & Moberg, 2012) for identifying chemicals 

for further risk-based screening in a high-throughput manner (Mitchell et al., 2013). The 

development of a high-level, initial screening tool using MCDA is detailed later.

Methods

Decision Model

The decision model from Mitchell et al. (2013) was improved in several ways (Fig. 1). 

Chemical property metrics related to chemical properties, or the properties of a chemical 

that contribute to the exposure potential for human beings, were unchanged for this iteration, 

but data used to assess each chemical on these properties were reviewed for accuracy and 

completeness. As a result, 42 of 51 chemicals were retained for further analysis. Next, the 

half of the model dedicated to life cycle properties, or the characteristics of a chemical’s use 

throughout its life ranging from production to disposal, has been enhanced (Table I). Each 

chemical’s exposure potential is described in terms of its chemical properties and by its life 

cycle properties, shown in detail in Fig. 1. The life cycle properties metrics, however, were 

edited to reflect additional considerations. Life cycle properties are defined by exposure 

potential at three major stages in the life cycle: production, consumer use, and disposal. 

Production refers to the stage in the chemical-producing process that results in human 

exposure; consumer use refers to the stage in the chemical or product use period that results 
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in human exposure; and disposal refers to the stage in the product or product receptacle 

disposal that results in human exposure. Metrics that could be used to define exposure in 

each of the life cycle stages were then determined, fitting in four distinct categories: 

ubiquity, or how widespread the chemical is; activity, or how the physical activity performed 

when using the chemical affects exposure; subject, or how physiological and social 

characteristics of the anticipated user affect exposure; and environment, or how chemical use 

affects human exposure via environmental pathways. These criteria are further defined in 

Online Appendix 1. Although life cycle property metrics were approximated by subject-

matter experts, the model’s core taxonomy is a synthesis of prior attempts at identifying and 

categorizing chemical exposure factors (Egeghy, Vallero, & Cohen Hubal, 2011; Mitchell et 

al., 2013).

The exposure score E for chemical or product alternative a is calculated as:

E(a) = w1f(ai1) + w2f(ai2) + ⋯ + wif(ai)

where ai is the score of alternative a on criterion i evaluated on the basis of some metric 

(e.g., Kow) f(ai) is the value function that normalizes the score based on its minimum and 

maximum values on a scale [0,1] with higher scores indicating potentially greater risk and 

need for screening, and w1 is our preference for considering risk(s) from criterion i relative 

to other criteria. All wi are subject to the constraint ∑wi = 1 for each tier of the model, and 

weights across levels of the value hierarchy are combined by multiplying each child weight 

by its parent until a single vector of i weights is remaining, thus complying with the form 

above. The resulting exposure score E(a) ranges on a scale [0,1) where higher values 

indicate greater potential for exposure and greater likelihood of subsequent hazard.

Expert Elicitation

A convenience sample of experts in human and physiochemical exposure factors was 

identified through professional connections of the fourth and eighth authors and contacted 

with the request that they take part in a web survey for a project conducted by the EPA and 

U.S. Army Corps of Engineers. They were sent materials explaining the goals of the project, 

the process of expert elicitation, and instructions on how to navigate the website for the 

survey. A total of 32 experts completed the web survey. In terms of organizational affiliation, 

six reported their affiliation as EPA, 14 reported their affiliation as non-EPA, and 12 did not 

disclose. Concerning expertise, 20 self-identified as experts in chemical properties, three as 

human factors experts, and the remaining nine selected “other” or did not answer the 

question. This sample size is on the order employed by other expert elicitation research 

(Bridges et al., 2013; U.S. Environmental Protection Agency Office of the Science Advisor, 

2012; Wood, Kovacs, Bostrom, Bridges, & Linkov, 2012).

The survey asked experts to use the Max100 method for assigning relative preference. The 

Max100 method of elicitation was used as it has been shown to have a high level of 

reliability and has been reported as being easier and simpler to use than comparable 

elicitation methods (Bottomley & Doyle, 2001). Participants were first asked to rank the 

decision model criteria in order of importance, and then to assign a score of 100 to the top 
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criteria. Remaining criteria within each segment of the model were then assigned a score 

from 0 to 99, expressing how much less that criterion was valued in comparison to the top-

ranked criterion. At each stage they were allowed to insert comments explaining how they 

chose to rank the criteria, and each of the criteria included a definition to reduce confusion 

(Table I). Pop-ups were embedded into the survey that reminded participants of definitions 

for each criteria, and data validation controls were put in place to ensure that each 

participant understood and provided information consistent with the Max100 approach.

At the conclusion of the survey, participants were given space to report their comments or 

concerns about the survey and asked to report additional criteria to be considered. Experts 

were first asked to compare the importance of chemical properties and life cycle properties 

in evaluating human exposure. They were then asked to compare subcriteria of chemical 

properties (physical hazard potential, persistence, bioaccumulation, and ADME) and life 

cycle properties subcriteria (production, consumer use, and disposal). Finally, experts were 

asked to compare ubiquity, environment, subject, and activity in each of the life cycle 

properties subcriteria (Fig. 1).

Of the 32 experts, two did not follow instructions for the Max100 method. The first provided 

a score of 100 for one criterion in each cluster and gave no value or a value of zero for 

others. The second provided scores that summed to 100. Since it was unclear in both cases 

what their intent would have been if using the Max100 method properly, their data were 

discarded. Two additional experts did not provide weights for life cycle properties data, their 

other scores were retained. From the remaining responses normalized weights for each 

criterion and subcriterion were calculated reflecting relative preference for each criterion/

subcriterion. Though a small subset of the interviewees deviated from the instructions, this 

does not suggest that this deviation factors a stable direction of influence into the results. 

The job of the expert is to provide his or her best professional judgment in lieu of firm 

quantitative evidence, and we do not believe any stability would be gained by removing the 

deviated data from the rest of the sample.

Human Factors Metrics

Mitchell et al. defined metrics measuring chemical ubiquity and activity for the three life 

cycle stages; however, no metrics had been created to evaluate chemical subject and 

environment. Thus, this update of the Mitchell et al. model includes an additional three 

metrics that capture both subject and environmental effects on exposure for each of the life 

cycle stage subcriteria. To encapsulate the effects of subject on exposure, a count of the 

number of use categories from U.S. EPA’s CPCat (Dionisio et al., 2015) was used to 

estimate the number of different contexts in which a subject might come into contact with 

the chemical in question. Metrics were developed to assess general likelihood of exposure 

based on potential uses (category count), and to measure exposure specifically to babies and 

children by counting the number of occurrences of Baby_use and Child_use categories for 

each chemical. These counts were tabulated for each life cycle stage are described in Table 

II.

For environment, the type of space metric (Table II) assumes default values for each stage in 

the life cycle, which means that the values qualitatively selected for that part of the model do 
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not differ chemical to chemical. Production is always assumed to occur in a large indoor 

space, such as a manufacturing facility; consumer use is always assumed to occur in a small 

indoor space, such as a home; and disposal is always assumed to occur outdoors. Although 

we understand that these assumptions will not be true for each chemical, we were unable to 

devise a way to identify the chemicals that stray from these assumptions without further 

guidance. However, we believe Type of Space to be the best approximation of the 

environmental category that we currently have, and left it in as a placeholder until better data 

to properly populate the Type of Space metric can be acquired or a comparable concept can 

be substituted.

Results

Weight Results

Weights were calculated as the average of the responses received from the web survey 

(Figure 2). Weight results were compared to an equal-weight model where no differential 

preference was expressed across criteria. One-sample t-tests were conducted to identify 

differences between expected weights if no preference was expressed, and the weights 

expressed by the expert sample. Chemical Properties and Life Cycle Properties were 

weighted equally by experts (Figure 3). Of the Chemical Properties, Physical Hazard 

Potential was determined to be the least important criterion, M = 0.16, t(29) = −4.03, p < 

0.001 (Figure 4). Of the Life Cycle criteria, Consumer Use phase was considered the most 

important, M = 0.47, t(28) = 3.58, p = 0.001, while Production, M = 0.27, t(28) = −2.72, p = 

0.011 and Disposal, M = 0.26, t(28) = −2.98 p = 0.006, were similarly important (Figure 5). 

Within the Production phase, both Subject, M = 0.19, t(28) = −3.05, p = 0.005, and 

Environment, M = 0.19, t(28) = −3.18, p = 0.004, held less importance (Figure 6), while 

within the Consumer Use phase, Environment was the only criterion that differed 

statistically from an equal weights model, M = 0.16, t(28) = −6.43, p < 0.001 (Figure 7). In 

the Disposal phase, Ubiquity was considered most important, M = 0.39, t(28) = 3.22, p = 

0.003, while Subject was considered least important, M = 0.17, t(28) = −463, p = 0.0001 

(Figure 8).

Survey Comments

Twenty-two experts provided comments on at least one of the questions in order to add a 

detailed explanation for their weights and ranks, or provide other caveats or questions 

related to their participation. Although participants generally found the format of the survey 

to be clear and easy to take, some had concerns with the definitions used. One participant 

felt that a longer definition for each of the criteria would have been helpful, and others were 

unclear about the meaning of different individual criteria. A summary of select comments 

related to criteria definitions is provided in Table III. In general, these comments were 

focused on clarifications of criterion definitions or how criteria as defined might interact. 

The most commonly reported issue was a difficulty to understand the distinction between 

“activity” and “subject,” which four out of the 32 participants expressed some sort of 

confusion over. Some participants felt that the questions were too general and the 

importance of different categories would alter drastically based on the chemical, product, or 

population in question. In regards to the content of the web survey, one participant felt it 
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lacked detail about the physical properties of the chemical whereas another noted that while 

the survey’s results reflect the importance of criteria in terms of human health, they could 

not be applied in terms of ecological health. Other comments focused on smaller details 

(e.g., X could be clearer).

Qualitative & Count Metric Results

Number of total predicted uses was counted for each life cycle phase (Fig. 9). Values 

associated with production ranged from zero to 1,020 possible uses (M = 93, median = 0); 

values associated with consumption ranged from zero to 539 uses (M = 67, median = 0); and 

values of disposal count ranged from 0 to 114 uses (M = 8.7, median = 0). Number of 

vulnerable populations potentially interacting with the chemical was calculated for the 

consumer use life cycle phase (Fig. 10). The values range from 0 to 4 (M = 0.412, median = 

0).

MCDA Results

Three versions of the model were run and compared: one where both chemical properties 

criteria and life cycle criteria were weighted equally, one where chemical properties criteria 

have been weighted according to the expert elicitation values, and one where both chemical 

properties criteria and life cycle criteria have been weighted according to the expert 

elicitation values. A version of the model in which only life cycle criteria were weighted 

according to the expert elicitation values was not run as a result of the limited sample of life 

cycle experts. In cases where multiple metrics contribute to a single subcriterion, the 

contribution of each metric was weighted equally. Online Appendix 1 shows how the 

ranking of 42 chemicals changed for each weighting scheme. Table IV highlights variations 

in rank for the top 10 chemicals under the equal-weight scheme compared to the others.

Although the weighting schemes were included in the model to account for expert views, 

variation in chemical ranks across weighting schemes was small. Small change in exposure 

scores from each weighted scenario can also be explained by the type of space metric in the 

MCDA. For this metric, all chemicals assumed the default value, therefore reducing the 

variance of overall exposure scores and effectively ignoring these factors as contributors. 

This can be remedied by using an expert elicitation process similar to that used for criteria 

weighting, with one or more experts familiarized with the metrics and the criteria that they 

should be contributing.

The top 10 chemicals vary little across weighting schemes; the chemicals ranked 1–4 are in 

the top five across weighting schemes, and only a few substitutions are seen between 

chemicals in the top 10 for each weighting scheme. Looking at the scores adjusted for 

chemical property weight only, formaldehyde ranked higher from the inclusion of expert 

elicitation. Experts rated Physical Hazard low relative to other chemical property metrics, 

and formaldehyde has a significantly higher than average physical hazard score. 

Formaldehyde is a commonly cited dangerous chemical, as it was one of the first chemicals 

to be recognized for its potential for harmful human exposure. However, as experts were not 

asked to rate the importance of chemical property metrics with formaldehyde specifically in 

mind, we do not believe formaldehyde’s increased prioritization when chemical property 
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expert weights were considered was the result of its notoriety (Morgan, 1997). In fact, its 

relative rank decreased even further when life cycle weights were considered; the high 

counts it received in “subject” metrics are discounted, as subject is weighted less than 

activity and ubiquity for each life cycle stage. However, trifluralin’s exposure score 

increases when expert weights are considered, and gets an increase in rank. High ADME 

chemical property scores and high consumption scores—particularly in activity and ubiquity 

categories—can account for its increase in exposure score and rank.

Discussion

The decision analysis approach produced a ranked prioritization of manufactured chemicals 

that can be used to inform research investments in chemical categorization, consistent with 

goals of the exposure challenge. An expert elicitation generated weights different from a no-

preference, equal-weight model and led to some variation in chemical prioritization. Readily 

available database measures of chemical exposure risk were augmented with derived metrics 

and qualitative assessments to provide human factors assessments of many chemicals.

Future work can improve on this analysis in several ways. First, representation of human 

factors experts in the weighting sample should be increased. In the convenience sample here, 

only three human factors experts provided weight information despite deliberate efforts to 

increase participation from this group. To increase the model’s robustness, a better balance 

between the physiochemical human factors experts is needed. Qualitative metric data used 

here could also be improved. Individually determining values for each chemical and each 

life cycle stage associated with that chemical other than the default values set in this analysis 

(e.g., type of space) is a time-consuming process and can lead to poor data reliability based 

on differences in the quantity and type of expertise held by those assessing those metrics. In 

the case of this study, most of the qualitative metrics were set at a default value and a case 

could not be made for changing from the default for any chemicals.

Several comments of clarification were provided by participants. Although this work 

represents a proof-of-concept of a high-throughput screening approach using well-

understood chemicals with well-described chemical properties, future work should 

incorporate this feedback in both refining definitions of screening criteria for the purpose of 

the weighting exercise, and identify more appropriate or additional metrics for evaluating 

chemicals. These metrics and resulting model exposure scores should be validated against 

more robust but slower laboratory tests or other measurement tools to ensure some level of 

consistency with established methods.

A quick and dependable process for data acquisition is needed to make these qualitative 

judgments more useful, either by using a small independent expert sample to provide 

assessments on these factors, or by developing clearer guidance and example chemicals for 

each level of each qualitative measure that can be used to make a relative comparison to 

some unknown new chemical. Lack of variation across chemicals for any metric produces 

the consequence of ignoring the subcriterion it is associated with when only one metric 

contributes to a subcriterion, and reducing the impact of a subcriterion proportional to the 

number of metrics without variation when multiple metrics aggregate to the same 
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subcriterion. Strictly speaking, metrics should be replaced or removed from a decision 

analysis when they do not vary across the set of items being assessed.

An attempt was made to use the European Chemical Agency’s REACH exposure database to 

fill in information about the spaces where chemicals are typically used to improve these 

scores and inject some natural variation. REACH was implemented by the European Union 

to identify human health and environmental risks associated with particular chemicals and 

easily provide that information to the E.U. chemicals industry, such that the industry remains 

competitive. However, while the collection of physical and chemical data provided is vast, 

information about environmental pathways is redundant with the information used in the 

Chemical Data section of the model. To avoid violating MCDA’s assumptions about 

independence of criteria, the default values of “2,” “3,” and “1” for production, 

consumption, and disposal, respectively, were left as designated when quantifying the type 

of space metric.

The chemical-by-chemical analysis could also limit the estimation of risk associated with a 

given product, as most manufactured items are composed of multiple chemicals that have the 

potential to react with one another. Analytics need to show, for example, whether a particular 

chemical that may not be harmful on its own may warrant a higher ranking when used in 

conjunction with another chemical. An additional layer of the MCDA tool could combine 

the hazards associated with each chemical in the product’s make-up and rank based on the 

manufactured item, not the individual chemical. To do this, the composition ratio of a series 

of products would have to be known, as well as a metric assessing the potential synergistic 

or antagonistic effects of chemical–chemical interactions.

Changes of prioritization objective leads to, in a small way, changes to prioritization of 

chemicals, but the absence of a common database and a more developed human factors 

model limits the magnitude of the results. The collection of data for future studies of this 

nature may become easier as a result of the work presently underway in the National Center 

for Computational Toxicology. Its recently released Comptox Dashboard integrates 

experimental and predicted data for over 720,000 individual chemical structures, and meshes 

together other data, including the ToxCast bioassay screening data, exposure modes, and the 

CPCat product categories database. Experimental data points have been used to develop a 

new suite of prediction models (known as NCCT_Models) and have been applied to the 

prediction of properties across the database (U.S. Environmental Protection Agency, 2016). 

The integration of experimental and predicted data over multiple sources enhances our 

ability to predict and identify chemical properties for new and less evaluated chemicals.

Despite the shortcomings described for this application, a tool like the one presented here 

could be beneficial in a number of other contexts (e.g., Linkov et al., 2017). For example, 

analytics associated with novel technologies like nanomaterials could benefit from the 

ranked list the tool provides. Some data for these materials are available, but that 

information has not yet been organized in such a way as to inform holistic risk management 

decisions. Comparisons of nanomaterials or other emerging materials would require both 

knowledge of the materials’ intrinsic chemical properties given their size and method of 

manufacture, as well as knowledge of how human users would interact with the material. 
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Thus, nanomaterial evaluation provides a direct analogy to further application of the 

approach. Another possible application for the tool is an evaluation of a hypothetical 

portfolio of products (e.g., cosmetics). If a company has a portfolio of products, and a set of 

chemicals that would be included in those products, the tool could rank the exposure risk of 

products in that portfolio based on toxicity and the manner in which the product is to be 

used. This research may also show the need for a more robust understanding of exposure 

characterization factors, such as those that are present in traditional life cycle assessments, 

as well as improving the basis on which an exposure factor would be created. These 

characterization factors exist to serve as a comparison to the risk associated with commonly 

quantified events, such as global warming or coastal flooding risks, and highlighting the 

need for an aggregation of exposure data advances the eventual development of that metric. 

A point of comparison for the chemicals evaluated here could aid audiences and users in 

appropriate level of concern or reasonable actions to take given threats presented by those 

chemicals.

An ancillary finding of the study was that EPA’s expert elicitation guidelines can readily be 

adapted to webinars and interactive forums. Future research should address the extent to 

which this approach is amenable to other programs in addition to chemical ingredients in 

products.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Model developed to assess exposure potential. The elements in blue are taken from Mitchell 

et al. (2011). New elements are in pink.
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Figure 2: 
Model developed with weights provided by experts from web survey
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Figure 3: 
Normalized main criteria weights. Dashed line represents equal-weight model, bars 

represent mean weights, and points represent individual weights.
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Figure 4: 
Normalized Chemical Properties weights. Dashed line represents equal-weight model, bars 

represent mean weights, and points represent individual weights.
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Figure 5: 
Normalized Life Cycle Properties weights. Dashed line represents equal-weight model, bars 

represent mean weights, and points represent individual weights.
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Figure 6: 
Production Phase weights.
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Figure 7: 
Consumer Use weights.
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Figure 8: 
Disposal Phase weights.
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Figure 9: 
Count of “number of Total Predicted Uses” for all 42 chemicals
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Figure 10: 
Count of Number of Child or Baby Uses metric for all 42 chemicals.
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