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Abstract: A key principle of developing a new medicine is that quality should be built in,
with a thorough understanding of the product and the manufacturing process supported by
appropriate process controls. Quality by design principles that have been established for the
development of drug products/substances can equally be applied to the development of analytical
procedures. This paper presents the development and validation of a quantitative method to predict
the concentration of piroxicam in Kollidon® VA 64 during hot melt extrusion using analytical
quality by design principles. An analytical target profile was established for the piroxicam content
and a novel in-line analytical procedure was developed using predictive models based on UV-Vis
absorbance spectra collected during hot melt extrusion. Risks that impact the ability of the analytical
procedure to measure piroxicam consistently were assessed using failure mode and effect analysis.
The critical analytical attributes measured were colour (L* lightness, b* yellow to blue colour
parameters—in-process critical quality attributes) that are linked to the ability to measure the API
content and transmittance. The method validation was based on the accuracy profile strategy and
ICH Q2(R1) validation criteria. The accuracy profile obtained with two validation sets showed that
the 95% β-expectation tolerance limits for all piroxicam concentration levels analysed were within the
combined trueness and precision acceptance limits set at ±5%. The method robustness was tested by
evaluating the effects of screw speed (150–250 rpm) and feed rate (5–9 g/min) on piroxicam content
around 15% w/w. In-line UV-Vis spectroscopy was shown to be a robust and practical PAT tool for
monitoring the piroxicam content, a critical quality attribute in a pharmaceutical HME process.

Keywords: in-line UV-Vis spectroscopy; quality by design; QbD; analytical quality by design; AQbD;
hot melt extrusion; HME; analytical target profile development; analytical procedure validation;
process analytical technology; PAT; real time release testing; RTRT
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1. Introduction

Twin-screw hot melt extrusion (HME) is a continuous process that has been widely used to
enhance the solubility of active pharmaceutical ingredients (APIs) [1,2]. This process applies heat and
shear energy to produce an amorphous solid dispersion (ASD) of an API into a polymer carrier [3,4].
As a continuous process, HME has the potential to be used in combination with in-line analytical
techniques to enable real time monitoring of product quality. The reader is directed to the following
reviews of the principles of pharmaceutical extrusion process, as this is not in the scope of the present
article [5–7].

In-line process analytical technology (PAT) systems are being increasingly used in the
pharmaceutical industry since the release of the FDA’s PAT guidance in 2004 for ‘designing, analysing
and controlling manufacturing through timely measurements of critical quality and performance
attributes of raw and in-process materials and processes with the goal of ensuring final product
quality’ [8]. NIR and Raman spectroscopy have been extensively used as PAT tools for the
characterisation of in-process materials in HME, including determination of polymer composition in
polymer mixtures [9] and quantification of API in a polymer carrier [10–13]

More recently, UV-Vis spectroscopy that involves light measurements between wavelengths of
200 and 780 nm in transmission or reflection modes has been used as a PAT tool. Transmittance values
can be used to calculate a numerical representation of colour by using the International Commission
on Illumination (CIE) colour space called CIELAB [14]. The CIELAB colour space represents colour on
a three-dimensional orthogonal axis formed by the lightness (L*) and two-colour axis. The colours green
to red are described by the axis a*, while blue to yellow are represented by axis b* [14]. Applications of
in-line UV-Vis spectroscopy during HME have been reported in the literature for early phase product
development [15], feasibility of API quantification [16], residence time distribution determination [17]
and monitoring of thermal degradation processes [18]. This technique tends to be both fast to set up
and to provide data that is simple to interpret. The short integration time in the millisecond-range
delivers rapid results with high sensitivity.

Traditional approaches to analytical procedure validation are centred around a one-off validation
exercise in a controlled set of conditions. The quality by design (QbD) methodology has provided
a more systematic and risk-based approach for product and process development [19,20]. Currently,
this concept has evolved to analytical quality by design (AQbD) that is now being explored by
regulators, academia and industry to increase the robustness and promote continuous improvement of
analytical procedures [21–23]. A recent ICH Q2(R2)/Q14 concept paper proposes the application of
AQbD principles to analytical procedure development [24]. This approach emphasizes the importance
of predefined method performance requirements prior to commencing analytical development.
These requirements are identified in the initial steps of method development and are summarised by
the analytical target profile (ATP). Examples of ATPs can be found in a recent publication by Jackson
et al. where they proposed a harmonised approach to the use of the ATP concept [25]. The ATP is
analogous to the quality target product profile (QTPP) and summarises the performance requirements
associated with a measurement (e.g., accuracy and precision) on a quality attribute which needs to be
met by an analytical procedure.

Continuous manufacturing platforms, such as HME, are ideal for the implementation of in-line
analytical technologies using AQbD. In-line PAT can be embedded in quality systems to provide
monitoring of quality and to enable the development of control strategies for real time release testing
(RTRT). This should be based on an in-depth understanding of the relationship between process
parameters, in-process material attributes and product attributes, as described in the European
Medicines Agency guideline for RTRT [26].

The ICH Q2(R1) defines the methodology for validation of analytical procedures, mostly based
on HPLC [27,28], but it does not provide specific guidance on PAT methods. The revision to ICH
Q2 is intended to include validation of spectroscopy techniques reliant on multivariate models [24].
Alternative validation approaches for spectroscopic techniques have been used and referred to as the
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‘accuracy profile’. This validation approach was developed by the Societé Française des Sciences et
Techniques Pharmaceutiques (SFSTP) based on trueness and precision. The accuracy profile has been
successfully applied to analytical procedure validation of on-line and at-line NIR and in-line Raman in
HME processes [29–33].

Previous work published by our group reported the benefits of using in-line UV-Vis spectroscopy
as a rapid analytical technology with applications in the early phase product development of HME
processes [15]. Following this work, optimisation of the manufacturing process of piroxicam (PRX) in
Kollidon® VA 64 (KOL) was carried out for the intended QTPP of immediate release tablets containing
20 mg of API. The design space for the identified critical process parameters (CPPs) and materials
attributes was stablished as: concentration of API in the polymer carrier: 10 ≤ API ≤ 20% w/w; barrel
and die-temperature range 130–140 ◦C; API/polymer mixture feed rate 5–10 g/min; and screw speed
200–300 rpm. Based on this information, the process conditions selected to develop the analytical
procedure were barrel temperature profile 120–140 ◦C, die-temperature 140 ◦C, API/polymer mixture
feed rate 7 g/min and screw speed 200 rpm.

In this paper, AQbD principles and an accuracy profile approach are applied to develop and
validate a method to quantify piroxicam content in a Kollidon® VA64 carrier using in-line UV-Vis
spectroscopy during HME. This includes a failure mode effect analysis of the analytical procedure and
the development of an ATP to determine the content of piroxicam in Kollidon® VA 64.

2. Materials and Methods

2.1. Materials

Piroxicam (Medex, Rugby, UK) was the active ingredient and Kollidon® VA64 (donated by BASF,
Ludwigshafen, Germany) the polymer carrier. Stock mixtures of 32% w/w PRX in KOL were prepared.
These were later diluted by adding further KOL to reach the desired concentrations. The powder
mixtures were thoroughly blended using a V-cone mixer (Pharmatech, Coleshill, UK) for 10 min
and using 75% of the volume fill. Off-line UV-Vis calibration curve was performed to check content
uniformity and 10 min was considered the optimal time for blending. The rationale for using piroxicam
and Kollidon® VA64 is described in [15].

2.2. Extrusion Setup

The extruder used in the HME process was a Leistritz Nano 16 (Somerville, NJ, USA), which is
a co-rotating twin screw extruder (screw diameter 16 mm) with three heating zones and a die
zone. The feeder used was an FW20 FlexWall feeder (Brabender Technologie, Duisburg, Germany).
A schematic diagram of the hot melt extrusion process is presented in Figure 1. Optimised process
conditions (extruder temperature 120 (zone 1), 130 (zone 2) and 140 ◦C (zone 3 and die), screw speed
200 rpm and feed rate 7 g/min) were used to develop and validate the analytical procedure for API
around 15% w/w. The method robustness was tested by evaluating the effects of screw speed (150–250
rpm) and feed rate (5–9 g/min) on piroxicam content around 15% w/w.

2.3. In-line UV-Vis Spectroscopy

The UV-Vis spectrophotometer (Inspectro X ColVisTec, Berlin, Germany) was setup using the
optical fibre cables with two probes (TPMP, ColVisTec, Berlin, Germany) installed into the extruder die
in a transmission configuration, as presented in Figure 1. A reference UV-Vis transmittance signal was
obtained with empty die at the selected process temperature, 140 ◦C. Transmittance data was collected
from 230 to 816 nm with a resolution of 1 nm. Data collection frequency was 0.5 Hz and each spectrum
was taken as the average of 10 scans. The spot size of the used UV-Vis spectrophotometer probes was
2 mm diameter and measured sample volume of typically 2.5 mm3.
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Figure 1. Schematic of the hot melt extrusion process. 

As described earlier, CIELAB colour space is an approach to express colour using three 
parameters: ‘lightness’ (L*), ‘green to red’ (a*) and ‘blue to yellow’ (b*) defined by the International 
Commission on Illumination (CIE). These parameters are calculated from the UV-Vis transmittance 
spectra in the range from 380 to 780 nm. Figure 2 illustrates the spectral tristimulus values Xഥ, Yഥ and Zത that are used to calculate X, Y and Z using Equations (1)–(4), where T is the transmittance spectrum, 
S is the relative spectral power and λ is the wavelength. Then, L*, a* and b* are calculated using 
Equations (5)–(7), where Xn, Yn and Zn are the spectral tristimulus values of the nominally white 
object. The values of Xഥ, Yഥ, Zത, S and further explanation are available in [14]. 
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Figure 1. Schematic of the hot melt extrusion process.

As described earlier, CIELAB colour space is an approach to express colour using three parameters:
‘lightness’ (L*), ‘green to red’ (a*) and ‘blue to yellow’ (b*) defined by the International Commission
on Illumination (CIE). These parameters are calculated from the UV-Vis transmittance spectra in the
range from 380 to 780 nm. Figure 2 illustrates the spectral tristimulus values X, Y and Z that are used
to calculate X, Y and Z using Equations (1)–(4), where T is the transmittance spectrum, S is the relative
spectral power and λ is the wavelength. Then, L*, a* and b* are calculated using Equations (5)–(7),
where Xn, Yn and Zn are the spectral tristimulus values of the nominally white object. The values of X,
Y, Z, S and further explanation are available in [14].
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a∗ = 500×

 3
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Xn
−

3

√
Y
Yn

, (6)

b∗ = 200×

 3

√
Y
Yn
−

3

√
Z
Zn

. (7)

2.4. HPLC Reference Analytical Procedure

HPLC was performed as an off-line method to assay PRX content in the extruded samples.
Assay values obtained from this reference method were used as true content values in the development
and validation steps of the UV-Vis quantification method. The equipment used was an Agilent
1100 system with a Phenomenex C-18 column (Kinetix 4.6 × 250 mm, 5 µm); and methanol:sodium
dihydrogen phosphate buffer 45:55 mobile phase (LiChropur, Millipore, Waltford, UK); pH 3.0;
flow rate 1.2 mL/min. A calibration curve was constructed using PRX standard solutions with
concentrations ranging from 10 to 80 µg/mL and the measured respective peak areas (mAU*s) at
360 nm. The milled extrudate (312 mg) was dissolved in 100 mL of 0.01M methanolic hydrochloric acid
(Fisher, Loughborough, UK), which was diluted by a factor of 10 to obtain a sample solution. Sample
solutions were homogenised by mechanical agitation (Stuart, Stone, UK) for 5 min. All samples were
prepared in triplicate.

2.5. UV-Vis Spectra Data Analysis Tools

Analysis of the in-line UV-Vis spectral data was performed using Matlab (Matlab R2018a, Natick,
MA, USA) functions for multivariate analysis with mean-centred data, for method validation criteria
calculation and data plotting.

2.6. Experimental Design

The experimental design for the method development combined one calibration and two validation
data sets that were collected on different days. The calibration experiment comprised of five defined
PRX concentrations of 10.58, 12.46, 14.45, 16.54 and 18.46% w/w. The validation data sets comprised
of four PRX concentrations within the calibration data set range with concentrations of 11.66, 13.45,
15.45 and 17.50% w/w produced on different days. All PRX-containing samples were analysed by
off-line HPLC assay and reported as true values for the used concentration ranges. It is important to
note that the API concentration range is not restricted to high values. Feasibility studies performed by
our research group show that this PAT tool can also detect low analyte concentrations, but this is out of
the scope of this paper.

The robustness of the proposed method was evaluated by performing experiments using samples
with 14.5% w/w of PRX and varying feed rate (5–9 g/min) and extrusion screw speed (150–250 rpm)
within the design space range obtained from the process optimisation, as described at the end of the
introduction section. The critical analytical attribute; parameter b*, was used to determine steady state
during HME process and absorbance values were used to build the calibration model described in the
next section.

3. Results and Discussion

3.1. Analytical Quality by Design

A quality by design approach to analytical method design was used to develop and validate
an analytical procedure. This included defining the method performance requirements via an ATP [34]
and the use of structured, risk-based approach to method development and evaluation using failure
mode and effects analysis and multivariate experimental design.
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3.1.1. Analytical Target Profile

The ATP concept considers the maximum permitted measurement uncertainty associated with
the reportable value, based on the accuracy and precision performance requirements of the analytical
method. The analytical target profile (ATP) was to measure the content of piroxicam in Kollidon® VA64
carrier during HME process as showed in Table 1. The limits presented in the ATP show a combined
accuracy and precision uncertainty of ±5% with 95% probability. Also, these accuracy and precision
limits are commonly accepted by the pharmaceutical regulatory agencies [25].

Table 1. Analytical target profile (ATP) to determine the content of piroxicam (PRX) in Kollidon® VA
64 (KOL).

Attribute
Range

Requirements
(Criteria)

Attribute
Range

Requirements
1 (Rationale)

Specificity
(Criteria)

Accuracy
Requirement

(Criteria)

Accuracy
Requirement
(Rationale)

Precision
Requirement

(Criteria)

Precision
Requirement
(Rationale)

Content
80–120%

label claim
(LC)

Covers
typical
content

specification
range of

95.0–105.0%
LC

Specific to
Piroxicam in
the presence
of Kollidon®

VA64

Mean
relative bias
of ≤2.0% LC
of theoretical

across the
attribute

range

Ensures difference
between true and
estimated mean is

within the
specification range

and allows adequate
proportion of widest

specification range for
analytical and process

variability

Relative
standard
deviation

(RSD) ≤1.8%
across the
attribute

range

Ensures that the
analytical

variation around
the estimated

mean lies within
the widest

specification
range

1 Attribute range is typically 90.0–110% for US market and 95.0–105.0% for EU.

3.1.2. Failure Mode and Effects Analysis of the Analytical Procedure

The goal of this risk analysis was to understand and control potential sources of variation, so the
robustness of the analytical procedure can be evaluated, improved and verified. The scores for
criticality were based on severity (S), occurrence (O) and detectability (D). A risk priority number
(RPN) was calculated by multiplying the three scores, i.e., RPN = S × O × D. The RPN is used to
identify the most impactful failure modes through ranking. It should be noted that the composition of
the team performing the Failure Mode Effect Analysis (FMEA) can influence the rankings, however,
by using the same team and ranking method before and after the implementation of the controls,
the RPN scores before and after the implementation of controls/mitigations will be subjected to the
same scoring decisions.

The severity scale was based on the impact that the sources of variability (identified previously
through using an Ishikawa Diagram [21]) have on the ability of the analytical procedure to measure
the PRX content (i.e., impact the ability to meet any of the criteria in the ATP, see Table 1.

The scales for ranking were: Severity: 1 = not severe, 4 = slightly severe, 7 = moderately severe,
10 = extremely severe; occurrence: 1 = infrequently, 4 = fairly infrequent, 7 = fairly frequently,
10 = frequently; detectability: 1 = almost certain, 4 = highly likely, 7 = moderate, 10 = impossible.
Severity scores of 7 or 10 represent failure modes where a large or small change respectively in the
variable has a significant impact on some of the ATP criteria.

The main focus of risk mitigations activities was to reduce the occurrence and/or improve the
detection of these failure modes. The results before and after mitigations were implemented are
presented in Table 2. For example, for the probes/fibres set up (Table 2, index number 1) precision
o-ring spacers have been used to provide the same gap between the probes. The changes of gap size as
a function of temperature and cleanness of the probe lenses have also been investigated. The probe
setup procedure was part of the standard operational procedure (SOP) for the manufacturing process.
Any variation in gap size, e.g., from different day setup was within the analytical method validation
model. The average gap size for the experimental conditions used was 0.77 ± 0.05 mm.
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Seven potential failure modes were initially identified as high risk (RPN≥ 196). Standard operations
following good laboratory practice and specific data analysis procedures that were identified must
be followed to mitigate the risks related to probe temperature, steady-state determination, sample
selection within steady state and variability between different days samples. Spectral variable selection
is equally important and only the parts of the spectra that describe changes in API content should be
selected using the loadings of the first principal component (PC1). Under or over-fitting of partial least
squares regression (PLS) model can also be critical to the accuracy and precision of the model. This can
be mitigated by holdout cross-validation with 20% of the data set used to test and optimise the number
of latent variables used in the PLS model.

After risk mitigation, all seven risk areas identified as high risk could be controlled to acceptable
risk level scores (RPN ≤ 40). Figure 3 shows the RPN scores before and after the implementation of
control measures for the method.
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Table 2. FMEA for the analytical procedure. The ATP performance characteristic affected are specificity, accuracy and precision.

Index
Number

Risk Area Potential Failure Mode Potential
Failure Effects

S O D RPN Mitigations Revised Ranking

S O D RPN

1 Probes/Fibres Probe position (gap) and cleanliness. Fibres
alignment and movement.

Accuracy and
precision 7 4 4 112

Measure gap size with feeler gauge. Clean optical lenses after
this process. Fix fibres to avoid movement. Make sure the

probes are aligned and the optical lenses are clean.
7 4 1 28

2 UV-Vis
spectrometer

Number of scans averaged and data collection
frequency. Noise level

Accuracy and
precision 7 1 7 49 Optimise values for the process. 7 1 1 7

3 UV-Vis
spectrometer Number of lamp flashes. Saturation of light Accuracy and

precision 7 4 4 112 Optimise values for the process. Follow guideline from
equipment supplier. 7 1 1 7

4 UV-Vis
spectrometer

Variable blank measurement for different
day experiments

Accuracy and
precision 10 7 4 280 Take measurement following standard operating procedures. 10 4 1 40

5 UV-Vis
spectrometer

Probe temperature changes causing variability
on the reference spectrum

Accuracy and
precision 10 7 4 280 Wait for the signal to stabilise. Make sure the die temperature

is stable. Perform the blank reference again, if necessary. 10 4 1 40

6 Data
management

Steady-state determination. Signal to
noise ratio

Accuracy and
precision 7 7 4 196 Use the b* values to assess steady-state condition. The value

should stabilise and reach a plateau. 7 4 1 28

7 Data
management

Manual data logging. The operator logs the
data for each step change of the process to
connect time point with process condition

Accuracy and
precision 7 4 4 112 Implement standard operating procedures and automated

data logging. 7 1 1 7

8 Data
management Data transfer and data integrity Accuracy and

precision 4 4 4 64 Save and copy the data for further analysis. Develop protocols
that can be followed by operators. 4 1 1 4

9 Data analysis
Data not in steady state. Method validation

outside limits of ATP (RMSE, R2, relative bias,
repeatability, intermediate precision).

Accuracy and
precision 10 4 7 280 Sample selection by applying PCA to the pre-filtered data

from the experiment to verify if the steady state was reached. 10 4 1 40

10 Data analysis
Variabilities between samples. Method

validation outside limits of ATP
(Intermediate precision).

Accuracy and
precision 10 7 4 280

Data normalisation by collecting polymer spectrum and use it
as reference to normalise the sample spectra. This minimises

variability between different day experiments.
10 4 1 40

11 Data analysis
Low signal to noise ratio. Method validation

outside limits of ATP (RMSE, R2, relative bias,
repeatability, intermediate precision).

Accuracy and
precision 10 7 7 490

Spectral variable selection by identifying the parts of the
spectra that are connected to change in amount of API using

the loadings of PC1.
10 4 1 40

12 Data analysis Under and over-fitting of PLS model depending
on the number of latent variables used.

Accuracy and
precision 10 7 7 490

Optimizing the number of latent variables to use by doing
holdout cross-validation with 20% of the data set used to test

and calculate RMSECV, Rcv
2.

10 1 1 10

S = severity, O = occurrence, D = detectability, RPN = risk priority number. Risk code of RPN by colour: red = high, yellow = medium, green = low, PCA = principal component analysis,
API = active pharmaceutical ingredient, PC = principal component, PLS = partial least squares.
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3.2. Calibration Model Development

The procedure to build predictive models to read out real-time API concentration during HME
process using in-line UV-Vis spectra is summarised in Figure 4. The methodology consists of four main
data processing steps, which are sample selection, normalisation, variable selection and number of
latent variables. Details of each step are presented in the sub-sections below.

For this UV-Vis analytical procedure, the samples are the spectra collected during the HME process
and variables are the spectral wavelengths of interest. A normalisation procedure was developed to
improve method intermediate precision. Also, a methodology to prevent over and under-fitting in
partial least squares models was applied.
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3.2.1. Sample Selection

Steady state detection is difficult to achieve during continuous processing, and it is usually
demonstrated through time defined end points [8]. When the data are acquired during the transition
period, the predictive model trueness and precision are negatively affected by the unstable signal.
For the data sample selection, it is important to remove measurements that did not reach steady
state in both calibration and validations data sets. Steady-state condition during the HME process
was determined using b* colour parameter from UV-Vis data. A linear positive correlation between
PRX content and b* values is shown in Figure 5. The data in the visible region (380 to 780 nm) of
the spectrum is used to calculate the b*, and as presented in Figure 6 is where the change because
of the amount of PRX occurs. However, if the API does not absorb in the visible region, a principal
component analysis (PCA) can be used to detect the variations in the spectra after data acquisition and
improve data set precision and accuracy. There are noticeable differences in the absorbance that enable
quantification of the PRX across the range studied.
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Principal component 1 (PC1) of the absorbance spectra represents the greatest variations within
the data set [35]. As the only variable investigated is the API content, the PC1 scores are correlated
to the variations of the absorbance spectra caused by this parameter (Figure 7). Figure 8 shows the
PC1 scores as a function of acquisition time from low to high concentrations of PRX with data in
transition period. The grey points show the transition from pure KOL used to clean the extruder
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between runs to the next PRX sample. Figure 9 depicts PC1 scores only in the steady-state region and
the explained variance of the first principal component is improved from 92.88% (Figure 8) to 93.52%
(Figure 9). This means that the PLS model will be enhanced because less unwanted spectral variability
will be added to it. Hence, when PC1 scores reach a plateau, this means that the ASD has a stable API
content and the process is in steady state. By using the PC1 scores instead of time defined end points,
the method become more accurate and precise.
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3.2.2. Normalisation

The reference UV-Vis spectrum was obtained in a cleaned, empty extruder, producing a baseline
for the transmittance measurements, however when the equipment is calibrated on a different day,
this baseline may slightly change. To minimise day to day variability, KOL readings from each
experiment day were used to normalise the transmittance spectra of the samples. Studies with Raman
and NIR use other common pre-processing techniques such as derivatives [30], standard normal
variate transformation [32] and multiple scatter correction [36]. These techniques can be complex to
implement [37] and for the UV-Vis were not required. Only normalisation was used to pre-process
the spectra.

Polymer batch variation should not influence the results as long as the same batch is used for the
reference and API/polymer mixtures. The normalisation procedure using the polymer spectra should
also eliminate effects of inter-batch polymer variations as only the normalised spectrum is used to
determine the API content.

After the normalisation, the transmittance, T, collected from the UV-Vis spectrometer was converted
to absorbance, A, using the Beer–Lambert’s law:

A = − log10(T). (8)

3.2.3. Spectral Variable Selection

Spectral variable selection is performed in spectroscopic techniques, because otherwise the model
would be affected by unwanted variability in the spectra instead of the analyte of interest [38]. Therefore,
quantitative models based on Raman and NIR uses selected spectrum ranges [30–33], hence the same
is performed for UV-Vis in this study.

The wavelength range was selected to maximise the contribution of the API to the absorbance
spectrum features and minimise the effects of unrelated information. There are many methods for
variable selection [39,40] and PCA was applied in this work because of its simplicity.

A PCA was applied to the calibration set and the PC1 loadings were used to select the wavelength
range with high signal to noise ratio, because in a univariate experiment the PC1 loadings indicated
that the variables were mainly influenced by the API content.

Figure 10a present the loadings of PC1 using the entire spectrum for the PCA. It is noticed that
the loadings are close to 0 below 446 nm and above 540 nm. Using only the wavelength range from
446 nm to 540 nm for the PCA, the percentage of variation explained by PC1 is improved to 98.38%
compared to 93.52% when using the entire spectrum (Figure 10b). The use of selected variables assisted
the conformance of the method with the ATP.
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3.2.4. Number of Latent Variables

The number of latent variables (LVs) used in a PLS calibration model is important, as too many or
too few may cause over or under-fitting of the model. The number of LVs was selected based on the
model population analysis developed by Deng et al. [41].

The calibration data set was randomly divided into two sets, one set containing 20% of the data
that was assigned to a cross-validation subset and the remaining 80% to a calibration subset. Then,
ten PLS models were built using the calibration subset with 1 to 10 LVs. The coefficient of determination
(Rcv

2) and root mean square error (RMSECV) of the cross-validation subset were calculated for each
PLS model, in a similar fashion as reported in literature for other spectroscopy techniques [30–32].

The Rcv
2, RMSECV and regression vector were plotted versus the number of LV used in the

model as presented in Figure 11. The number of LV with maximum Rcv
2 and minimum RMSECV

was computed using the data presented in Figure 11a,b, located at the end of the elbow of the
charts. Additionally, visual selection of the regression vector with less incorporated noise (Figure 11c)
supported the previous observation. Hence, four LVs were selected to use in the PLS model.
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3.2.5. Predictive Model

A PLS calibration model was developed using true API content validated with HPLC as responses
(Y) containing 10.58, 12.46, 14.45, 16.54 and 18.46% w/w of PRX in KOL. The predictors (X) of the PLS
model were 600 absorbance spectra, 120 for each concentration level, in the range of 446 to 540 nm and
4 LV. The calibration model Rc

2 and RMSEC were respectively 0.9990 and 0.0905% w/w.
The developed methodology to build PLS predictive models using in-line UV-Vis spectra based on

PCA and cross-validation linearity have previously been applied to Raman and NIR spectra as reported
in [30–33,35,42]. The methodology to build predictive models using in-line UV-Vis spectra can be
widely applied to other APIs and polymers during production of ASD using HME. This methodology
can offer analytical scientists a useful case study on how to tackle the validation of similar methods
deploying the use of PLS.

3.3. Analytical Procedure Validation

The quantitative analytical procedure validation used here was based on ICH Q2(R1) guideline
and the accuracy profile concept suggested by an SFSTP commission as reported in the literature [32,33].
This commission produced a summary report on the validation of quantitative procedure divided in
three parts. In the first part, the authors proposed the accuracy profile, as a strategy to harmonize
approaches to analytical procedure validation [43]. In the second part, the commission presents
a protocol for experimental design required for the method validation based on the accuracy profile [44].
In the third publication, the commission provides a numerical example that illustrates all the steps to
build an accuracy profile [45].

The validation sets comprised four PRX concentration levels with 50 UV-Vis replicate
measurements for each concentration, on each day. The true PRX concentration, measured by
HPLC, and the mean predicted concentration from the UV-Vis model for each validation day are
in close agreement as presented in Table 3. The UV-Vis based method and the standard analytical
technique produced comparable results. For the validation criteria and accuracy profile the true and
predicted PRX contents used were averages of the results obtained in both days.

Table 3. Predicted PRX content in each validation day.

Day True PRX Concentration (% w/w) Mean Predicted PRX Concentration (% w/w)

1 11.56 11.59
2 11.75 11.70
1 13.46 13.44
2 13.44 13.59
1 15.44 15.31
2 15.46 15.50
1 17.50 17.38
2 17.49 17.57

3.3.1. Validation Criteria

The parameters defined in ICH Q2(R1) for the validation of an analytical procedure for
quantification of API are trueness, precision, linearity, limit of quantitation and range [46]. Furthermore,
uncertainty and total error were calculated. Robustness was also assessed as discussed in Section 3.3.3.

The trueness represents the closeness of the average to the true value [47]. The precision of
an analytical procedure is the closeness of agreement amidst same sample measurements from various
sampling under the same process conditions. Linearity is the ability of an analytical procedure
to produce results that are directly proportional to API content in the required range. The limit
of quantification is the lowest sample concentration that can be quantitatively determined with
appropriate accuracy and precision [46].
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The uncertainty is a dispersion of measured values from the expected value. It is calculated as
uncertainty of the bias, measurement uncertainty and expanded uncertainty [47]. The total error is
the sum of the absolute bias and intermediate precision standard deviation, which are the effects that
cause the measured value to be different from the true value.

The validation criteria were calculated using the true and predicted PRX contents average of
the results obtained in both experiment days (Table 3). The results for trueness presented as relative
bias and recovery are displayed in Table 4. Relative bias varied from −0.29 to 0.47%, markedly lower
than the limit ±2% defined in the ATP. The recovery results ranged from 99.71 to 100.47% from the
true value.

The precision is related to the ruggedness of the method [48] and is obtained with repeatability
and inter-day intermediate precision [49], both calculated through relative standard deviation (RSD).
The highest value for repeatability and intermediate precision were 0.80% and 1.09% lower than 1.8%
defined in the ATP (Table 4). The RSD% values of both intermediate precision and repeatability were
close, demonstrating that day-to-day variability did not contribute much noise to the spectral data [30].
These results demonstrate that the mitigation strategies presented in Table 2 prevented failure modes
to impact the method precision. The relative β-expectation tolerance limits are calculated based on the
trueness and precision; these are used to build the accuracy profile presented in the next section.

Table 4. Trueness, precision and accuracy results for each concentration level in the validation data sets.

True PRX
Concentration

(% w/w)

Mean Predicted
PRX

Concentration
(% w/w)

Trueness Precision Accuracy

Relative
Bias (%)

Recovery
(%)

Repeatability
(RSD%)

Intermediate
Precision
(RSD%)

Relative
β-Expectation

Tolerance
Limits (%)

11.66 11.65 −0.12 99.88 0.55 0.84 [−2.92; 2.68]
13.45 13.51 0.47 100.47 0.54 0.95 [−3.51; 4.45]
15.45 15.40 −0.29 99.71 0.65 1.05 [−4.05; 3.47]
17.50 17.48 −0.14 99.86 0.80 1.09 [−3.13; 2.85]

Linearity is presented in Figure 12 for the introduced concentration and the predicted concentration
by the model. The results obtained for Rv

2 and RMSEV are 0.9963 and 0.1108% w/w, showing that the
spectral correlation with API content is preserved across data sets produced on different days.
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The total error is presented as absolute and relative total error and the results are tabulated in
Table 5. The values of absolute and relative total error did not exceed 0.22 and 1.42%, respectively.
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The results for uncertainty are obtained with uncertainty of the bias, measurement uncertainty
and expanded uncertainty. Table 5 shows all uncertainty results and illustrates that the dispersion of
the measured values was very low. The limit of quantitation was 11.66% w/w of PRX, since this was the
lowest validated API content.

Table 5. Error and uncertainty results for each concentration level in the validation data sets.

True PRX
Concentration

(% w/w)

Mean Predicted
PRX Concentration

(% w/w)

Error Uncertainty

Absolute
Total
Error

Relative
Total Error

(%)

Uncertainty
of the Bias

(% w/w)

Measurement
Uncertainty

u(Y) (% w/w)

Expanded
Uncertainty

U(Y) (% w/w)

11.66 11.65 0.11 0.96 0.05 0.11 0.22
13.45 13.51 0.19 1.42 0.07 0.15 0.30
15.45 15.40 0.21 1.34 0.09 0.19 0.37
17.50 17.48 0.22 1.23 0.09 0.21 0.43

The trueness and precision of the UV-Vis are similar to the NIR method presented in [30],
furthermore Raman results for these two criteria are slightly worse than the values presented
here [31–33]. The Rv and RMSEV obtained in this study were better than the results reported using
NIR and Raman spectroscopy [30–33].

3.3.2. Accuracy Profile

The accuracy profile is a visual tool to illustrate the analytical procedure performance.
This approach applies total error to evaluate the risk of measurement failure. The β-expectation
tolerance limits are calculated for each concentration level and 95% of the measurements should fall
within the acceptance limits [50]. The acceptance limit, λ (Equation (9)), is the difference between the
predicted API concentration by the model

(
y′i

)
and the true value (yi,t), and was set to 5% for API

determination [43,47,51]. ∣∣∣y′i − yi,t
∣∣∣ < λ (9)

The values of relative bias of every measurement and mean relative bias for each concentration
level are plotted along with the acceptance limits and β-expectation tolerance limits to build the
accuracy profile [47,52].

The 95% β-expectation tolerance limits obtained in the accuracy profile for PRX content is within
the acceptance limits of ±5% for determination of active ingredients in dosage forms as observed in
Figure 13 and Table 4. This result indicates that the mitigation strategies presented in Table 2 were
adequate to develop an analytical method with enough ruggedness and robustness to comply with the
ATP presented in Table 1.

The UV-Vis method β-expectation tolerance limits were within ±5% acceptance limits.
Other authors have applied accuracy profile for quantitative method validation using inline
spectroscopy techniques during HME, however the acceptance limits used by them was ±10% [32] and
±15% [33]. These studies were performed using Raman and high drug loads.
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3.3.3. Robustness

The robustness of a method is its ability to remain unaltered by deliberate variations to the
optimised parameters [46]. As mentioned at the end of the introduction section, a previous study was
done to define the optimised conditions of the HME process using PRX in KOL. A design of experiment
was performed to assess the robustness of the in-line UV-Vis analytical procedure under the process
conditions within the design space for optimised conditions.

Table 6 presents the predicted PRX content, feed rate and screw speed from the robustness
experiment. The concentration limits were defined based on the maximum mean relative bias value
defined in the ATP, that was ±2%. Hence, the lower and upper limits were determined as 14.15 and
14.75% w/w, respectively. The mean predicted API concentration relative bias in the robustness design
of experiments (DoE) exceeded the limit defined on the ATP in runs 1, 3, 4, 7, and 8.

Table 6. Predicted PRX content in each DoE run.

True PRX Concentration
(% w/w)

Feed Rate
(g/min)

Screw Speed
(rpm)

Mean Predicted PRX
Concentration (% w/w)

Relative Bias
(%)

14.45 5 150 13.77 −4.72
14.45 5 200 14.54 0.61
14.45 5 250 14.82 2.56
14.45 7 150 13.90 −3.77
14.45 7 200 14.60 1.04
14.45 7 200 14.60 1.01
14.45 7 250 14.94 3.37
14.45 9 150 13.28 −8.09
14.45 9 200 14.16 −2.00
14.45 9 250 14.59 0.95

A contour profiler is a graphical tool to display the influence of process parameters on a response
variable. Here, the profiler was used to calculate the impact of feed rate and screw speed upon the
concentration of PRX predicted by the PLS model (Figure 14). The white area is where the predicted
content is within the relative bias acceptable limits defined by the ATP. According to the contour
profiler, it is possible to work within a broad feed rate range but narrow screw speed range. Therefore,
the screw speed has a higher impact than feed rate on the predicted result.
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Figure 14. Contour profiler showing the influence of the interaction of screw speed and feed rate on
the predicted PRX amount using the PLS model. The red line indicates the predicted PRX content of
14.45% w/w. The black cross marks the optimised extruder parameters. The black dashed lines indicate
the upper and lower limits defined respectively 14.75 and 14.15% w/w of PRX.

A method operable design region (MODR) is the region in which parameter variations do not
affect the performance of the method [34]. The contour profiler was used to support the determination
of the MODR. To produce samples within the ATP, the MODR for screw speed and feed rate were
defined in the green area of Figure 14. The feed rate and screw speed process variables impact the
method, but they have been constrained across an optimised range. The corners of the MODR are
presented in Table 7, with the lower and upper screw speed limit linearly increasing with the increase
of feed rate.

Table 7. Method operable design region for feed rate and screw speed.

Feed Rate (g/min)
Screw Speed (rpm)

Lower Limit Upper Limit

6 190 215
8 200 225

The robustness DoE was deliberately defined over a wider range (where the method performance
meets the ATP [34]) to gain further knowledge of the conditions and greater operational flexibility.
The MODR was defined using narrower ranges (Table 7) than used in the DoE. The MODR identified
in the robustness experiments included ranges of screw speed and feed-rate that spectral data met the
relative bias limit established in the ATP (Table 1). Therefore, the in-line UV-Vis analytical method
was successfully developed and validated for in-line monitoring of PRX content in HME process
underpinned by the AQbD approach.

4. Conclusions

An in-line UV-Vis method for API quantification during hot-melt extrusion processes was
developed and validated according to the AQbD framework. AQbD concepts have not typically been
applied to the PAT methods and the use of the analytical target profile to define and validate the
performance requirements of an in-line method is novel. Failure mode and effects analysis was used to
mitigated the risks during analytical procedure development and validation. Additionally, the AQbD
approach is aligned with latest industry and regulatory thinking.

The predictive model was developed using a multivariate approach and an innovative
methodology that assisted the analytical procedure agreement with ICH Q2(R1) criteria and accuracy
profile validation strategy.
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The results show that UV-Vis spectroscopy for HME is less complex than techniques such as NIR
and can reliably detect variations in piroxicam content in a pharmaceutical HME product. The same
methodology for the development and validation can be applied to different API/polymer systems to
develop quantitative models based on UV-Vis for in-line HME monitoring.

Polymer batch variation should not influence the results as long as the same batch is used for the
reference and API/polymer mixtures. Risk mitigation strategies can prevent failure modes such as
probe gap size, probe temperature and polymer batch variations that can impact the method precision.
The feed rate and screw speed process variables impact the method, but they have been constrained
across an optimised range.

This in-line PAT can be used for real time monitoring of API content during HME continuous
manufacturing process. The accuracy profile obtained with two validation sets (from different days)
showed that 95% of the future measurements will fall within ±5% acceptance limits.

The stepwise approach from defining the performance requirements, optimising the method and
validating the predictive model offers analytical scientists a useful case study on how to tackle the
validation of similar methods deploying the use of PLS.

Author Contributions: Conceptualization, J.A., M.B., D.M., A.B. and W.S.; formal analysis, J.A. and M.B.;
methodology, J.A. and M.B.; supervision, W.S.; validation, J.A. and P.B.; writing—original draft, J.A.;
writing—review and editing, M.B., D.M., P.B. and W.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors thank all contributors to this paper: ColVisTec (EU-Horizon 2020-IMPAX
project, Daniel Palmer for his useful comments), Leistritz (Andy Baker) and BASF (Thorsten Cech) for their
technical support.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Sarode, A.L.; Sandhu, H.; Shah, N.; Malick, W.; Zia, H. Hot melt extrusion (HME) for amorphous solid
dispersions: Predictive tools for processing and impact of drug–polymer interactions on supersaturation.
Eur. J. Pharm. Sci. 2013, 48, 371–384. [CrossRef] [PubMed]

2. Patil, H.; Patil, H.; Tiwari, R.; Tiwari, R.; Repka, M.; Repka, M. Hot-Melt Extrusion: From Theory to
Application in Pharmaceutical Formulation. AAPS Pharmscitech 2016, 17, 20–42. [CrossRef] [PubMed]

3. Maniruzzaman, M.; Rana, M.M.; Boateng, J.S.; Mitchell, J.C.; Douroumis, D. Dissolution enhancement of
poorly water-soluble APIs processed by hot-melt extrusion using hydrophilic polymers. Drug Dev. Ind.
Pharm. 2013, 39, 218–227. [CrossRef] [PubMed]

4. Netchacovitch, L.; Dumont, E.; Cailletaud, J.; Thiry, J.; De Bleye, C.; Sacré, P.-Y.; Boiret, M.; Evrard, B.;
Hubert, P.; Ziemons, E. Development of an analytical procedure for crystalline content determination in
amorphous solid dispersions produced by hot-melt extrusion using transmission Raman spectroscopy:
A feasibility study. Int. J. Pharm. 2017, 530, 249–255. [CrossRef]

5. Repka, M.A.; Bandari, S.; Kallakunta, V.R.; Vo, A.Q.; McFall, H.; Pimparade, M.B.; Bhagurkar, A.M.
Melt extrusion with poorly soluble drugs—An integrated review. Int. J. Pharm. 2018, 535, 68–85. [CrossRef]

6. Thiry, J.; Krier, F.; Evrard, B. A review of pharmaceutical extrusion: Critical process parameters and scaling-up.
Int. J. Pharm. 2015, 479, 227–240. [CrossRef]

7. Martin, C. Twin Screw Extruders as Continuous Mixers for Thermal Processing: A Technical and Historical
Perspective. AAPS Pharmscitech 2016, 17, 3–19. [CrossRef]

8. FDA Guidance for industry, PAT—A Framework for Innovative Pharmaceutical Development, Manufacturing,
and Quality Assurance 2004. Available online: https://www.fda.gov/downloads/drugs/guidances/ucm070305.
pdf (accessed on 30 July 2019).

9. Rohe, T.; Becker, W.; Kölle, S.; Eisenreich, N.; Eyerer, P. Near infrared (NIR) spectroscopy for in-line monitoring
of polymer extrusion processes. Talanta 1999, 50, 283–290. [CrossRef]

http://dx.doi.org/10.1016/j.ejps.2012.12.012
http://www.ncbi.nlm.nih.gov/pubmed/23267847
http://dx.doi.org/10.1208/s12249-015-0360-7
http://www.ncbi.nlm.nih.gov/pubmed/26159653
http://dx.doi.org/10.3109/03639045.2012.670642
http://www.ncbi.nlm.nih.gov/pubmed/22452601
http://dx.doi.org/10.1016/j.ijpharm.2017.07.052
http://dx.doi.org/10.1016/j.ijpharm.2017.10.056
http://dx.doi.org/10.1016/j.ijpharm.2014.12.036
http://dx.doi.org/10.1208/s12249-016-0485-3
https://www.fda.gov/downloads/drugs/guidances/ucm070305.pdf
https://www.fda.gov/downloads/drugs/guidances/ucm070305.pdf
http://dx.doi.org/10.1016/S0039-9140(99)00035-1


Pharmaceutics 2020, 12, 150 21 of 23

10. Tumuluri, S.V.S.; Prodduturi, S.; Crowley, M.M.; Stodghill, S.P.; McGinity, J.W.; Repka, M.A.; Avery, B.A.
The Use of Near-Infrared Spectroscopy for the Quantitation of a Drug in Hot-Melt Extruded Films. Drug
Dev. Ind. Pharm. 2004, 30, 505–511. [CrossRef]

11. Saerens, L.; Dierickx, L.; Lenain, B.; Vervaet, C.; Remon, J.P.; De Beer, T. Raman spectroscopy for the in-line
polymer–drug quantification and solid-state characterization during a pharmaceutical hot-melt extrusion
process. Eur. J. Pharm. Biopharm. 2010, 77, 158–163. [CrossRef]

12. Saerens, L.; Dierickx, L.; Quinten, T.; Adriaensens, P.; Carleer, R.; Vervaet, C.; Remon, J.P.; De Beer, T. In-line
NIR spectroscopy for the understanding of polymer–drug interaction during pharmaceutical hot-melt
extrusion. Eur. J. Pharm. Biopharm. 2012, 81, 230–237. [CrossRef] [PubMed]

13. Tahir, F.; Islam, M.T.; Mack, J.; Robertson, J.; Lovett, D. Process monitoring and fault detection on a hot-melt
extrusion process using in-line Raman spectroscopy and a hybrid soft sensor. Comput. Chem. Eng. 2019, 125,
400–414. [CrossRef]

14. ASTM E308-18, Standard Practice for Computing the Colors of Objects by Using the CIE System; ASTM International:
West Conshohocken, PA, USA, 2001.

15. Schlindwein, W.S.; Bezerra, M.; Almeida, J.; Berghaus, A.; Owen, M.; Muirhead, G. In-Line UV-Vis
Spectroscopy as a Fast-Working Process Analytical Technology (PAT) during Early Phase Product
Development Using Hot Melt Extrusion (HME). Pharmaceutics 2018, 10, 166. [CrossRef] [PubMed]

16. Wesholowski, J.; Prill, S.; Berghaus, A.; Thommes, M. Inline UV/Vis Spectroscopy as PAT tool for hot melt
extrusion. Drug Deliv. Transl. Res. 2018, 1, 1–9. [CrossRef] [PubMed]

17. Wesholowski, J.; Berghaus, A.; Thommes, M. Investigations Concerning the Residence Time Distribution of
Twin-Screw-Extrusion Processes as Indicator for Inherent Mixing. Pharmaceutics 2018, 10, 207. [CrossRef]
[PubMed]

18. Wang, Y.; Steinhoff, B.; Brinkmann, C.; Alig, I. In-line monitoring of the thermal degradation of poly (L-lactic
acid) during melt extrusion by UV-vis spectroscopy. Polymer 2008, 49, 1257–1265. [CrossRef]

19. ICH Q8 (R2) Pharmaceutical Development. Available online: https://database.ich.org/sites/default/files/Q8_
R2_Guideline.pdf (accessed on 10 September 2019).

20. ICH Q9 Quality Risk Management. Available online: https://database.ich.org/sites/default/files/Q9_Guideline.
pdf (accessed on 10 September 2019).

21. Borman, P.; Chatfield, M.; Nethercote, P.; Thompson, D.; Truman, K. The application of quality by design to
analytical procedures. Pharm. Technol. 2007, 31. Available online: http://www.pharmtech.com/application-
quality-design-analytical-methods (accessed on 10 September 2019).

22. Schweitzer, M.; Pohl, M.; Hanna-Brown, M.; Nethercote, P.; Borman, P.; Hansen, G.; Smith, K.; Larew, J.
Implications and opportunities of applying QbD principles to analytical measurements. Pharm. Technol.
2010, 34, 52–59.

23. Medicines and Healthcare Products Regulatory Agency, Technical Review of MHRA Analytical Quality by
Design Project 2019. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/

uploads/attachment_data/file/807416/AQbD_Technical_Document_-_Final_04_June_2019.pdf (accessed on
10 October 2019).

24. Final Concept Paper ICH Q2 (R2)/Q14: Analytical Procedure Development and Revision of Q2 (R1) Analytical
Validation 2018. Available online: https://database.ich.org/sites/default/files/Q2R2-Q14_EWG_Concept_
Paper.pdf (accessed on 18 September 2019).

25. Jackson, P.; Borman, P.; Campa, C.; Chatfield, M.; Godfrey, M.; Hamilton, P.; Hoyer, W.; Norelli, F.; Orr, R.;
Schofield, T. Using the Analytical Target Profile to Drive the Analytical procedure Lifecycle. Anal. Chem.
2019, 91, 2577–2585. [CrossRef]

26. Guideline on Real Time Release Testing (Formerly Guideline on Parametric Release),
EMA/CHMP/QWP/811210/2009-Rev1. 2009. Available online: https://www.ema.europa.eu/en/documents/
scientific-guideline/guideline-real-time-release-testing-formerly-guideline-parametric-release-revision-1_
en.pdf (accessed on 22 November 2019).

27. Pinho, L.A.G.; Sá-Barreto, L.C.L.; Infante, C.M.C.; Cunha-Filho, M.S.S. Simultaneous determination of
benznidazole and itraconazole using spectrophotometry applied to the analysis of mixture: A tool for quality
control in the development of formulations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 159, 48–52.
[CrossRef]

http://dx.doi.org/10.1081/DDC-120037481
http://dx.doi.org/10.1016/j.ejpb.2010.09.015
http://dx.doi.org/10.1016/j.ejpb.2012.01.001
http://www.ncbi.nlm.nih.gov/pubmed/22269939
http://dx.doi.org/10.1016/j.compchemeng.2019.03.019
http://dx.doi.org/10.3390/pharmaceutics10040166
http://www.ncbi.nlm.nih.gov/pubmed/30249025
http://dx.doi.org/10.1007/s13346-017-0465-5
http://www.ncbi.nlm.nih.gov/pubmed/29327264
http://dx.doi.org/10.3390/pharmaceutics10040207
http://www.ncbi.nlm.nih.gov/pubmed/30373197
http://dx.doi.org/10.1016/j.polymer.2008.01.010
https://database.ich.org/sites/default/files/Q8_R2_Guideline.pdf
https://database.ich.org/sites/default/files/Q8_R2_Guideline.pdf
https://database.ich.org/sites/default/files/Q9_Guideline.pdf
https://database.ich.org/sites/default/files/Q9_Guideline.pdf
http://www.pharmtech.com/application-quality-design-analytical-methods
http://www.pharmtech.com/application-quality-design-analytical-methods
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/807416/AQbD_Technical_Document_-_Final_04_June_2019.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/807416/AQbD_Technical_Document_-_Final_04_June_2019.pdf
https://database.ich.org/sites/default/files/Q2R2-Q14_EWG_Concept_Paper.pdf
https://database.ich.org/sites/default/files/Q2R2-Q14_EWG_Concept_Paper.pdf
http://dx.doi.org/10.1021/acs.analchem.8b04596
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-real-time-release-testing-formerly-guideline-parametric-release-revision-1_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-real-time-release-testing-formerly-guideline-parametric-release-revision-1_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-real-time-release-testing-formerly-guideline-parametric-release-revision-1_en.pdf
http://dx.doi.org/10.1016/j.saa.2016.01.040


Pharmaceutics 2020, 12, 150 22 of 23

28. Angelo, T.; Pires, F.Q.; Gelfuso, G.M.; da Silva, J.K.R.; Gratieri, T.; Cunha-Filho, M.S.S. Development and
validation of a selective HPLC-UV method for thymol determination in skin permeation experiments. J.
Chromatogr. B 2016, 1022, 81–86. [CrossRef] [PubMed]

29. De Bleye, C.; Chavez, P.-F.; Mantanus, J.; Marini, R.; Hubert, P.; Rozet, E.; Ziemons, E. Critical review of
near-infrared spectroscopic methods validations in pharmaceutical applications. J. Pharm. Biomed. Anal.
2012, 69, 125–132. [CrossRef] [PubMed]

30. Schaefer, C.; Clicq, D.; Lecomte, C.; Merschaert, A.; Norrant, E.; Fotiadu, F. A Process Analytical Technology
(PAT) approach to control a new API manufacturing process: Development, validation and implementation.
Talanta 2014, 120, 114–125. [CrossRef] [PubMed]

31. Chavez, P.; Sacré, P.; De Bleye, C.; Netchacovitch, L.; Mantanus, J.; Motte, H.; Schubert, M.; Hubert, P.;
Ziemons, E. Active content determination of pharmaceutical tablets using near infrared spectroscopy as
Process Analytical Technology tool. Talanta 2015, 144, 1352–1359. [CrossRef]

32. Saerens, L.; Segher, N.; Vervaet, C.; Remon, J.P.; De Beer, T. Validation of an in-line Raman spectroscopic
method for continuous active pharmaceutical ingredient quantification during pharmaceutical hot-melt
extrusion. Anal. Chim. Acta 2014, 806, 180–187. [CrossRef]

33. Netchacovitch, L.; Thiry, J.; De Bleye, C.; Dumont, E.; Cailletaud, J.; Sacré, P.-Y.; Evrard, B.; Hubert, P.;
Ziemons, E. Global approach for the validation of an in-line Raman spectroscopic method to determine the
API content in real-time during a hot-melt extrusion process. Talanta 2017, 171, 45–52. [CrossRef]

34. Rignall, A.; Borman, P.; Hannah-Brown, M.; Grosche, O.; Hamilton, P.; Gervais, A.; Katzenbach, S.; Wypych, J.;
Hoffman, J.; Ermer, J.; et al. Analytical Procedure Lifecycle Management: Current Status and Opportunities.
Pharm. Technol. 2018, 42, 18–23.

35. Markl, D.; Wahl, P.; Menezes, J.; Koller, D.; Kavsek, B.; Francois, K.; Roblegg, E.; Khinast, J. Supervisory
Control System for Monitoring a Pharmaceutical Hot Melt Extrusion Process. AAPS Pharmscitech 2013, 14,
1034–1044. [CrossRef]

36. Andrews, G.P.; Jones, D.S.; Senta-Loys, Z.; Almajaan, A.; Li, S.; Chevallier, O.; Elliot, C.; Healy, A.M.;
Kelleher, J.F.; Madi, A.M.; et al. The development of an inline Raman spectroscopic analysis method as
a quality control tool for hot melt extruded ramipril fixed-dose combination products. Int. J. Pharm. 2019,
566, 476–487. [CrossRef]

37. Rinnan, Å.; Van Den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for
near-infrared spectra. Trends Anal. Chem. 2009, 28, 1201–1222. [CrossRef]

38. Muller, C.E. Chemometrics in Process Analytical Technology (PAT). In Process Analytical Technology:
Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries, 2nd ed.;
Bakeev, K., Ed.; John Wiley & Sons Ltd.: New York, NY, USA, 2010; pp. 353–434.

39. Miller, C.E. The use of chemometric techniques in process analytical procedure development and operation.
Chemom. Intell. Lab. Syst. 1995, 30, 11–22. [CrossRef]

40. Xiaobo, Z.; Jiewen, Z.; Povey, M.J.W.; Holmes, M.; Hanpin, M. Variables selection methods in near-infrared
spectroscopy. Anal. Chim. Acta 2010, 667, 14–32. [CrossRef] [PubMed]

41. Deng, B.; Yun, Y.; Liang, Y.; Cao, D.; Xu, Q.; Yi, L.; Huang, X. A new strategy to prevent over-fitting in partial
least squares models based on model population analysis. Anal. Chim. Acta 2015, 880, 32–41. [CrossRef]
[PubMed]

42. Wahl, P.R.; Treffer, D.; Mohr, S.; Roblegg, E.; Koscher, G.; Khinast, J.G. Inline monitoring and a PAT strategy
for pharmaceutical hot melt extrusion. Int. J. Pharm. 2013, 455, 159–168. [CrossRef]

43. Hubert, P.; Nguyen-Huu, J.; Boulanger, B.; Chapuzet, E.; Chiap, P.; Cohen, N.; Compagnon, P.; Dewé, W.;
Feinberg, M.; Lallier, M.; et al. Harmonization of strategies for the validation of quantitative analytical
procedures. A SFSTP proposal—Part I. J. Pharm. Biomed. Anal. 2004, 36, 579–586.

44. Hubert, P.; Nguyen-Huu, J.; Boulanger, B.; Chapuzet, E.; Chiap, P.; Cohen, N.; Compagnon, P.; Dewé, W.;
Feinberg, M.; Lallier, M.; et al. Harmonization of strategies for the validation of quantitative analytical
procedures. A SFSTP proposal—Part II. J. Pharm. Biomed. Anal. 2007, 45, 70–81. [CrossRef]

45. Hubert, P.; Nguyen-Huu, J.; Boulanger, B.; Chapuzet, E.; Chiap, P.; Cohen, N.; Compagnon, P.; Dewé, W.;
Feinberg, M.; Lallier, M.; et al. Harmonization of strategies for the validation of quantitative analytical
procedures. A SFSTP proposal—Part III. J. Pharm. Biomed. Anal. 2007, 45, 82–96. [CrossRef]

http://dx.doi.org/10.1016/j.jchromb.2016.04.011
http://www.ncbi.nlm.nih.gov/pubmed/27085016
http://dx.doi.org/10.1016/j.jpba.2012.02.003
http://www.ncbi.nlm.nih.gov/pubmed/22464561
http://dx.doi.org/10.1016/j.talanta.2013.11.072
http://www.ncbi.nlm.nih.gov/pubmed/24468350
http://dx.doi.org/10.1016/j.talanta.2015.08.018
http://dx.doi.org/10.1016/j.aca.2013.11.020
http://dx.doi.org/10.1016/j.talanta.2017.04.060
http://dx.doi.org/10.1208/s12249-013-9992-7
http://dx.doi.org/10.1016/j.ijpharm.2019.05.029
http://dx.doi.org/10.1016/j.trac.2009.07.007
http://dx.doi.org/10.1016/0169-7439(95)00026-7
http://dx.doi.org/10.1016/j.aca.2010.03.048
http://www.ncbi.nlm.nih.gov/pubmed/20441862
http://dx.doi.org/10.1016/j.aca.2015.04.045
http://www.ncbi.nlm.nih.gov/pubmed/26092335
http://dx.doi.org/10.1016/j.ijpharm.2013.07.044
http://dx.doi.org/10.1016/j.jpba.2007.06.013
http://dx.doi.org/10.1016/j.jpba.2007.06.032


Pharmaceutics 2020, 12, 150 23 of 23

46. International Council for Harmonisation Validation of Analytical Procedures: Text and Methodology Q2(R1)
2005. Available online: https://database.ich.org/sites/default/files/Q2_R1__Guideline.pdf (accessed on 18 July
2019).

47. Shewiyo, D.H.; Kaale, E.; Risha, P.G.; Dejaegher, B.; De Beer, J.; Smeyers-Verbeke, J.; Vander Heyden, Y.
Accuracy profiles assessing the validity for routine use of high-performance thin-layer chromatographic
assays for drug formulations. J. Chromatogr. A 2013, 1293, 159–169. [CrossRef]

48. Borman, P.; Chatfield, M.; Damjanov, I.; Jackson, P. Method ruggedness studies incorporating a risk-based
approach: A tutorial. Anal. Chim. Acta 2011, 703, 101–113. [CrossRef]

49. Borman, P.J.; Chatfield, M.J.; Asahara, H.; Tamura, F.; Watkins, A. Risk-Based Intermediate Precision Studies
for Analytical Procedure Validation. Pharm. Technol. Regul. Sourceb. 2019, 2019, 12–22.

50. Deidda, R.; Orlandini, S.; Hubert, C.; Hubert, P. Risk-based approach for method development in
pharmaceutical quality control context: A critical review. J. Pharm. Biomed. Anal. 2018, 161, 110–121.
[CrossRef] [PubMed]

51. Feinberg, M. Validation of analytical procedures based on accuracy profiles. J. Chromatogr. A 2007, 1158,
174–183. [CrossRef] [PubMed]

52. Rozet, E.; Wascotte, V.; Lecouturier, N.; Préat, V.; Dewé, W.; Boulanger, B.; Hubert, P. Improvement of the
decision efficiency of the accuracy profile by means of a desirability function for analytical procedures
validation. Application to a diacetyl-monoxime colorimetric assay used for the determination of urea in
transdermal iontophoretic extracts. Anal. Chim. Acta 2007, 591, 239–247. [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://database.ich.org/sites/default/files/Q2_R1__Guideline.pdf
http://dx.doi.org/10.1016/j.chroma.2013.03.074
http://dx.doi.org/10.1016/j.aca.2011.07.008
http://dx.doi.org/10.1016/j.jpba.2018.07.050
http://www.ncbi.nlm.nih.gov/pubmed/30145448
http://dx.doi.org/10.1016/j.chroma.2007.02.021
http://www.ncbi.nlm.nih.gov/pubmed/17343863
http://www.ncbi.nlm.nih.gov/pubmed/17481415
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Materials 
	Extrusion Setup 
	In-line UV-Vis Spectroscopy 
	HPLC Reference Analytical Procedure 
	UV-Vis Spectra Data Analysis Tools 
	Experimental Design 

	Results and Discussion 
	Analytical Quality by Design 
	Analytical Target Profile 
	Failure Mode and Effects Analysis of the Analytical Procedure 

	Calibration Model Development 
	Sample Selection 
	Normalisation 
	Spectral Variable Selection 
	Number of Latent Variables 
	Predictive Model 

	Analytical Procedure Validation 
	Validation Criteria 
	Accuracy Profile 
	Robustness 


	Conclusions 
	References

