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Abstract

Background: Current chemotherapies for Burkitt lymphoma (BL) have dramatically improved its clinical outcome.
However, chemoresistance can lead to chemotherapy failure and very poor prognosis; thus, novel strategies are
urgently required for patients with drug-resistant BL. To investigate the mechanisms underlying drug resistance in
BL, we established drug-resistant BL cell lines: HS-Sultan/ADM (adriamycin-resistant), HS-Sultan/VCR (vincristine-
resistant), HS-Sultan/DEX (dexamethasone-resistant), and HS-Sultan/L-PAM (melphalan-resistant).

Methods: Drug transporter and survival factor expression were investigated the using western blotting and real
time polymerase chain reaction. Cell survival was analyzed by trypan blue dye exclusion method.

Results: The established cell lines acquired cross-resistance to adriamycin, vincristine, dexamethasone, and melphalan
and exhibited 50% inhibitory concentration values 106-, 40-, 81-, and 45-fold higher than the parental cell lines,
respectively. We found that protein and mRNA expression of MDR1 and Survivin were higher in drug-resistant BL cells
than in the parent cells. Treatment with verapamil, an MDR1 inhibitor, or Survivin siRNA alongside each anti-cancer drug
suppressed the proliferation of all drug-resistant BL cells. Src kinase activity was higher in all resistant cell lines than the
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parental cells; suppressing Src with dasatinib restored drug sensitivity by reducing MDR1 and Survivin expression.

Conclusions: MDR1 and Survivin upregulation are responsible for resistance to conventional drugs and dasatinib can
restore drug sensitivity by reducing MDR1 and Survivin expression in drug-resistant BL cells. Src inhibitors could therefore
be a novel treatment strategy for patients with drug resistant BL.

Background

Burkitt lymphoma (BL) is a fast-growing B-cell malig-
nancy that accounts for 1-5% of acute lymphoblastic
leukemias and non-Hodgkin lymphomas (NHL) [1].
Since BL is relatively sensitive to chemotherapy, the
current high-dose/intensive chemotherapy and rituxi-
mab treatment achieves a three-year overall survival
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rate of over 80% [2-5]. However, chemoresistance
can result in chemotherapy failure [6]. Patients with
relapsed/refractory BL show a median overall survival
of just 2.8 months [7]; thus, novel strategies are
urgently required for patients with drug-resistant BL.
ATP-binding cassette transporters, including multiple
drug resistance 1 (MDR1, ABCBI1), multidrug
resistance-associated protein 1 (MRP1, ABCC1), and
breast cancer resistance protein (BCRP, ABCG2)
translocate drugs across the plasma membrane. The
lung resistance protein 1 (LRP1) transports drugs
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away from their target molecules via cytoplasmic vesi-
cles or pump molecules. The upregulation of these
molecules has leads to cause drug resistance by redu-
cing intracellular anti-cancer drug accumulation [8-
12], thus is regarded as a marker of poor prognosis
[13-18]. Apoptosis evasion, a hallmark of cancer, is
responsible for both carcinogenesis and chemoresis-
tance in various tumors. Bcl-2 and Bcl-XL, a member
of anti-apoptotic Bcl-2 family proteins, suppress apop-
tosis by involving mitochondrial outer membrane per-
meability [19], yet inhibitor of apoptosis (IAP) family
proteins do so by inhibiting caspase activity [20, 21].
Most anti-cancer drugs suppress tumor proliferation
by inducing apoptosis, hence the overexpression of
anti-apoptotic proteins results in drug resistance [22-
25]. To understand drug resistance, further studies
are required on the underlying intracellular signaling
pathways.

Src kinase is a non-receptor tyrosine kinase which
was involved in gene expression, immune responses,
cell adhesion, cell cycle progression, apoptosis, mi-
gration, and transformation. Since it is responsible
for tumor growth, metastasis, and angiogenesis, Src
has been targeted for cancer treatment [26, 27]. In
addition, Src is overactivated in various B lymphoma
cell lines and patient-derived lymphoma, and inhib-
ition of Src by PP1 and PP2 suppresses cell prolifer-
ation and induces cell death in BL cell line BAJB
[28-30]. It has also been indicated that activation of
Fyn and Syk by latent membrane protein 1 induces
the Src/Akt pathway, which promotes cell prolifera-
tion and survival in Epstein—Barr virus-positive BL
cells [31]. Our previous study showed that activation
of Src induces multidrug resistance to anticancer
drugs in multiple myeloma cells [32]. However, it is
unclear whether activation of Src is involved with
anticancer drug resistance in BL. Dasatinib is a
therapeutic agent for chronic myeloid leukemia and
a dual inhibitor of BCR/ABL and Src family kinases
[33]. Src inhibition by dasatinib has been reported to
resensitize drug-resistant cells to anti-cancer drugs
[32, 34-36]; however, the effect of dasatinib in drug-
resistant BL has not yet been investigated.

This study investigated the mechanisms of anticancer
drug resistance and established therapeutic strategies for
patients with drug-resistant BL.

Methods

Chemicals and reagents

Melphalan, adriamycin, vincristine, RPMI1640 medium,
pepstatin, leupeptin, calpain inhibitor, phosphatase inhibitor
cocktail I/II, and phenylmethylsulfonyl fluoride were pur-
chased from Sigma (St. Louis, MO, USA). Dexamethasone,
verapamil,  4-(2-hydroxyethyl)-1-piperazineethanesulfonic
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acid (HEPES), Tris-HCl (pH 7.4), EDTA, NP-40, sodium
orthovanadate, and bicinchoninic acid protein-assay kit were
purchased from Wako (Tokyo, Japan). Dasatinib was pur-
chased from ChemieTek (Indianapolis, USA). Fetal bovine
serum, penicillin, and streptomycin were purchased from
Gibco (Carlsbad, CA, USA).

Melphalan, dexamethasone, and dasatinib were sol-
uble in dimethyl sulfoxide, attenuated in phosphate-
buffed saline (PBS); pH7.4, and filtrated through
0.45 um syringe (Iwaki Glass, Tokyo, Japan) filter be-
fore use. Adriamycin and vincristine were soluble in
PBS. Verapamil was soluble in ultrapure water, and
filtrated through 0.45pum syringe (Iwaki Glass) filter
before use.

Cell culture

The human Burkitt lymphoma cell line HS-Sultan was
provided from the DS Pharma Biomedical (EC87012701,
Osaka, Japan). These cells were cultured in RPMI1640
medium (Sigma) including 100 pg/mL penicillin (Gibco),
10% fetal bovine serum (Gibco), 100 U/mL streptomycin
(Gibco), and 25 mM HEPES (pH 7.4; Wako).

Induction of anti-cancer drug resistance

HS-Sultan cells with acquired resistance to adriamycin,
vincristine, dexamethasone, or melphalan were produced
as previously described [12, 37, 38].

Cell proliferation and survival assay

The effect of verapamil, adriamycin, vincristine, dexa-
methasone, melphalan, dasatinib, or Survivin siRNA
on cell survival and proliferation was assessed using
the trypan blue dye exclusion assay as previously de-
scribed [12].

Western blotting

Cytoplasmic cell fraction was collected by using cell
lysis buffer (20 mM Tris-HCI (pH 8.0; Wako), 2 mM
EDTA (Wako), 0.5% NP-40 (Wako), 1 uM pepstatin
(Sigma), 1 uM leupeptin (Sigma), 2 mM sodium ortho-
vanadate (Wako), 1pM calpain inhibitor (Sigma),
phosphatase inhibitor cocktail I/II (Sigma), and 1 mM
phenylmethylsulfonyl fluoride (Sigma)). The protein
contained amount of these fraction was evaluated using
a bicinchoninic acid protein-assay kit (Wako). The
extracts (40 pg of protein) were separated on sodium
dodecyl sulfate polyacrylamide gels and transferred to
polyvinyl difluoride membranes (GE Healthcare,
Buckinghamshire, UK). The membranes were reacted
with the following antibodies: anti-Bcl-2, anti-Bcl-xL,
anti-Survivin, anti-MDR1, anti-BCRP, anti-MRP1, anti-
LRP1 (Santa Cruz Biotechnologies, CA, USA), anti-
phospho-Src (Tyr527), anti-Src (Cell Signaling Technology,
Beverly, MA), and anti-B-actin (Sigma) as an internal



Tabata et al. BMC Complementary Medicine and Therapies (2020) 20:84 Page 3 of 9

control. The membranes were reacted with horserad-

A —o—HS-Sultan —o—HS-Sultan o
ish peroxidase-coupled secondary antibodies (GE 5, o oSMEiiMadnamEn . feirSdEe e plincisine
. E s jamycin  E . — inrist
Healthcare) for 1 h at room temperature and protelns %452 HS-Sultan/ADM + 1 pM adriamycin %ﬁ HS-Sultan/VCR + 10 nM vincristine
N N 11 ° © 40
were assessed using a Luminata Forte (Merck Milli- :o_g;é 25
: X2 X2
pore, Nottingham, UK). 32 i
§1§ = _x __* * 31%' o
Quantitative real-time polymerase chain reaction (PCR) § o oz A
—o—HS-Sultan —o—HS-Sultan

—o -HS-Sultan + 10 yM melphalan
-4- HS-Sultan/L-PAM
— -HS-Sultan/L-PAM + 10 uM melphalan

The expression of MDR1 and Survivin mRNA was
assessed using a Thermal Cycler Dice Real-Time system
(Takara Biomedical) as previously described [12].

=0 -HS-Sultan + 20 pM dexamethasone

-4~ HS-Sultan/DEX

—= -HS-Sultan/DEX + 20 pM dexamethasone
60

45
40

04 cells/mL)

Cell number ( x 10¢ cells/mL)

X2

. 515

RNA interference « 2%

Transfection of Survivin siRNA (siRNAs; HSS179403) o1 2 s o+ s o 78"
were performed using LipofectAMINE™ 2000 reagent B o iigulian: '—o-iis-GuitanADH

(Invitrogen) according to the manufacturer’s protocol as S meer sy S:z:

previously described [12]. 2w v Ew

© 60 2 e

Z w \x z 40

Statistical analysis S » . Y 84

All data are demonstrated as the mean + standard devi- ! %,

H
°
o
=3
8

ation of five independent experiments. All analysis were | —HS-Sultan ~ HS-SutaniDEX

carried out by ANOVA with Dunnett’s test. P values of £ 10 “H-=ei 2w
< 0.05 were regarded significant. Drug interactions were g w 4 Zw
measured based on the combination index (CI), as g : \\ % Z
previously described [24, 39]. 8w ‘*\fg )

0 0
Results e "
Drug sensitivity of established adriamycin-, vincristine-, e

HS-Sultan/ADM  HS-Sultan/VCR  HS-Sultan/DEX  HS-Sultan/L-PAM

dexamethasone-, and melphalan-resistant BL cell lines 120
We found that our established resistant cell lines, HS- g o
Sultan/ADM (adriamycin-resistant), HS-Sultan/VCR (vin- 2w
cristine-resistant), HS-Sultan/DEX (dexamethasone-resist- § o
ant), and HS-Sultan/L-PAM (melphalan-resistant), showed 3
similar proliferation to the parental HS-Sultan cells; admin- ®
istration with adriamycin, vincristine, dexamethasone, and Spliaaylh s e e O
melphalan did not induced cell death in HS-Sultan/ADM, 200 coxamemmone — — & 1 R
HS-Sultan/VCR, HS-Sultan/DEX, and HS-Sultan/L-PAM TouMmelphaan = = — — oo
cells, but induced cell death in HS-Sultan cells (Fig, 1a). Fig. 1 HS-Sultan/ADM, HS-Sultan /VCR, HS-Sultan /DEX, and HS-

Sultan /L-PAM cell production and viability with various drugs. a HS-
Sultan, HS-Sultan/ADM, HS-Sultan/VCR, HS-Sultan/DEX, and HS-
Sultan/L-PAM cells were cultured with the represented

The IC50 values of the HS-Sultan cells for adriamycin, vin-
cristine, dexamethasone, and melphalan were 0.221, 0.0073,
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methasone, and melphalan (Fig. 1c).

MDR1 and Survivin expression levels increased in drug- and HS-Sultan/L-PAM cells were cultured with 1 uM adriamycin, 10
resistant BL cell lines nM vincristine, 20 uM dexamethasone, or 10 uM melphalan for 72 h.
We investigated the expression levels of a series of efflux Cell number was detected using a trypan blue dye exclusion assay

pumps and apoptosis-related proteins in HS-Sultan, HS-
Sultan/ADM, HS-Sultan/VCR, HS-Sultan/DEX, and HS-
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Sultan/L-PAM cells. Expression of MDR1 and Survivin
protein levels were substantially elevated in all resistant
cells than the parental cells; however, Bcl-2, Bcl-xL,
MRPI1, LRP1, and BCRP expression did not change
(Fig. 2a, b). Expression of MDR1 and Survivin mRNA
levels were also elevated in all resistant cell lines than in
the parental cells (Fig. 2c), suggesting that overexpressed
expression of MDR1 and Survivin play an significant role
in acquired drug resistance.

Verapamil or Survivin siRNA treatment reversed
adriamycin, vincristine, dexamethasone, and melphalan
resistance

To determine whether MDR1 and Survivin were involved
in acquired drug resistance, we assessed the viability of HS-
Sultan/ADM, HS-Sultan/VCR, HS-Sultan/DEX, and HS-
Sultan/L-PAM cells treated with verapamil, an MDR1
inhibitor, or Survivin siRNA. As shown in Fig. 3a, the com-
bined treatment of verapamil with adriamycin, vincristine,
dexamethasone, or melphalan induced cell death in all
resistant cells. Verapamil treatment alone did not affect the
viability of either the drug-sensitive or drug-resistant cells.
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The Survivin siRNA treatment (20 nM) was sufficient to
suppress Survivin expression (Fig. 3b) and the viability of all
resistant cell lines when combined with each anti-cancer
agent (Fig. 3c). These results suggest that targeting MDR1
and Survivin could overcome drug resistance.

Dasatinib overcame drug resistance by downregulating
MDR1 and Survivin

We investigated whether Src affected drug resistance in HS-
Sultan/ADM, HS-Sultan/VCR, HS-Sultan/DEX, and HS-
Sultan/L-PAM cells. Src phosphorylation levels were higher
in all resistant BL cells than in HS-Sultan cells (Fig. 4a, b)
and dasatinib restored drug sensitivity in all resistant cells at
the indicated concentration (Fig. 4c). In addition, the inter-
actions among dasatinib and adriamycin, vincristine, dexa-
methasone, or melphalan were analyzed using the Chou—
Talalay method. Per the combination drug concentrations
shown in Fig. 4d, the CI ranged from 0.824 to 0.049, indi-
cating the synergistic effect of these combinations (Fig. 4d).
Next, we investigated MDR1 and Survivin expression levels
in resistant cells treated with dasatinib. Dasatinib treatment
reduced MDRI1 and Survivin expression levels to the same
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Fig. 2 Expression levels of drug resistance-related proteins in HS-Sultan/ADM, HS-Sultan/VCR, HS-Sultan/DEX, and HS-Sultan/L-PAM cells. a
Expression levels of a series of efflux pumps and anti-apoptosis proteins were assessed by western blotting analysis. Cytoplasmic cell fractions
were extracted and performed to SDS-PAGE/immunoblotting with anti-MDR1, anti-BCRP, anti-MRP1, anti-LRP1, anti-Bcl-2, anti-Bcl-xL, and anti-
Survivin antibodies. Anti-B-actin antibodies were used as an internal control. b Quantification of MDR1, BCRP, MRP1, LRP1, Bcl-2, BcL-xL, or
Survivin levels, normalized to the amount of the (3-actin. Results are notable example of five independent experiments. *p < 0.01 vs. control cells
(ANOVA with Dunnett’s test). ¢ mRNA expression of MDR1 and Survivin analyzed by real-time PCR. The results were normalized to GAPDH mRNA
levels. Results are notable example of five independent experiments. *p < 0.01 vs. control (ANOVA with Dunnett's test)
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vs. control cells (ANOVA with Dunnett's test)

Fig. 3 Effects of MDR1 and Survivin inhibitors on HS-Sultan/ADM, HS-Sultan/VCR, HS-Sultan/DEX, and HS-Sultan/L-PAM cell drug sensitivity. a HS-
Sultan, HS-Sultan/ADM, HS-Sultan/VCR, HS-Sultan/DEX, and HS-Sultan/L-PAM cells were incubated with the represented concentrations of
adriamycin, vincristine, dexamethasone, melphalan, and verapamil for 72 h. Detection of dead cells number was performed by trypan blue
staining. Results are notable example of five independent experiments. *p < 0.01 vs. control (ANOVA with Dunnett’s test). b mRNA expression of
Survivin analyzed by real-time PCR. The results were normalized to GAPDH mRNA levels and are notable example of five independent
experiments. *p < 0.01 vs. control (ANOVA with Dunnett's test). ¢ HS-Sultan, HS-Sultan/ADM, HS-Sultan/VCR, HS-Sultan/DEX, and HS-Sultan/L-PAM
cells were incubated with the represented concentrations of adriamycin, vincristine, dexamethasone, melphalan, and Survivin siRNA for 72 h.
Detection of dead cells number was performed by trypan blue staining. Results are notable example of five independent experiments. *p < 0.01

extent in all resistant cells compared to the parental HS-
Sultan cells (Fig. 4e, f), indicating that Src inhibition could
restore drug sensitivity by reducing overexpression of
MDRI1 and Survivin in acquired drug-resistant BL cells.

Discussion

To investigate the mechanisms of anti-cancer drug re-
sistance, we established drug-resistant BL cell lines, in-
cluding HS-Sultan/ADM, HS-Sultan/VCR, HS-Sultan/
DEX, and HS-Sultan/L-PAM cells. The resistant cells
showed similar growth to parental HS-Sultan cells and
displayed higher IC50 values than the parental cells for
adriamycin, vincristine, dexamethasone, and melphalan,
respectively. In addition, all resistant cells acquired
cross-resistance to other anti-cancer drugs.

In this study, MDR1 and Survivin protein and mRNA
expression levels were elevated in all resistant cells than in
the parental cells. Moreover, verapamil and Survivin
siRNA reversed adriamycin, vincristine, dexamethasone,
and melphalan resistance. It has been reported that
MDR1 overexpression in Namalwa cells, a human BL cell
line, promotes the efflux of adriamycin and vincristine and
induces drug resistance [40]. It has also been indicated
that inhibition of MDR1/P-glycoprotein function by ver-
apamil re-sensitizes the cytotoxic effect of vincristine in
vincristine-resistant Namalwa and Raji cells [41]. In
addition, MDR1/P-glycoprotein overexpression induces
resistance to treatment with the CHOP (cyclophospha-
mide, adriamycin, vincristine, prednisolone) regimen in
patients with NHL including BL [42]. The expression of
Survivin, a member of the IAP protein family that inhibits
caspase activity, is higher in patients with BL than in pa-
tients with reactive lymphoid hyperplasia [43]. In addition,
high expression of Survivin in patients with BL was associ-
ated with resistance to chemotherapy compared to low ex-
pression of Survivin in patients with BL [44]. It has been
reported that YM155, a Survivin inhibitor, suppresses
tumor growth and prolongs the survival time in SCID
mice bearing the Ramos BL cell line compared to rituxi-
mab [45]. These findings suggest that MDR1 and Survivin
are correlated with drug resistance, and inhibition of these
factors re-sensitize the anticancer drugs.

Src kinase is responsible for tumor survival, hence this
molecule has been reported as an attractive target for
cancer treatment [26, 27, 46]. Dasatinib, an Src inhibitor,
has been reported to resensitize drug-resistant cells to
anti-cancer drugs [32, 34-36, 47]. In this study, Src ac-
tivity was elevated in all resistant cells than in the paren-
tal cells, while dasatinib, an Src inhibitor, reversed
adriamycin, vincristine, dexamethasone, and melphalan
resistance. In addition, dasatinib reduced Src phosphor-
ylation and MDR1 and Survivin protein expression in re-
sistant cells to less than or equal to that of the parental
cells. It has been indicated that dasatinib suppresses dif-
fuse large B-cell lymphoma cell proliferation in vitro and
tumor growth in vivo through inhibition of Src phos-
phorylation [29]. In addition, Src activation by gap junc-
tion beta-4-induced chemoresistance to gemcitabine and
etoposide, in addition to dasatinib enhances the cyto-
toxic effect of gemcitabine in lung cancer [48]. It has
been reported that dasatinib enhances the inhibitory ef-
fect of tumor cell growth by trametinib, a mitogen-
activated protein kinase kinase inhibitor, in vitro and
in vivo in various KRAS-mutant cancer cells, including
lung, breast, colon, and pancreatic cancer cells [49].
Dasatinib has also been shown to increase cisplatin sen-
sitivity in esophageal squamous cell carcinoma and
adriamycin sensitivity in breast cancer by downregulat-
ing MDR1 [50, 51]. Moreover, dasatinib has been shown
to reduce MDRI1 and Survivin levels; increase Bim levels;
and restore adriamycin, vincristine, dexamethasone, and
melphalan sensitivity in drug-resistant multiple myeloma
cells [32]. Our results clearly show the first evidence of
an anticancer drug-resistant mechanism through the ac-
tivation of Src in BL cells. In addition, dasatinib over-
comes anticancer drug resistance via inhibition of Src
phosphorylation and MDR1 and Survivin expression in
BL cells and similarly drug-resistant multiple myeloma
cells. Collectively, these findings suggest that dasatinib is
re-sensitized to anticancer drugs in drug-resistant BL.

Conclusions
In conclusion, we found that MDR1 and Survivin upregu-
lation is responsible for resistance to conventional drugs.
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Fig. 4 The src inhibitor dasatinib reversed drug resistance in HS-Sultan/ADM, HS-Sultan/VCR, HS-Sultan/DEX, and HS-Sultan/L-PAM cells. a
Phosphorylated Src expression levels were assessed by western blotting analysis. Cytoplasmic cell fractions were extracted and performed to SDS-
PAGE/immunoblotting with anti-Src antibodies. Anti-B-actin antibodies were used as an internal standard. b Quantification of phosphorylated Src
levels. Results were corrected according to total Src levels and are notable example of five independent experiments. *p < 0.01 vs. control cells (ANOVA
with Dunnett’s test). ¢ HS-Sultan, HS-Sultan/ADM, HS-Sultan/VCR, HS-Sultan/DEX, and HS-Sultan/L-PAM cells were incubated with the represented
concentrations of adriamycin, vincristine, dexamethasone, melphalan, and dasatinib for 72 h. Detection of dead cells number was performed by trypan
blue staining. Results are notable example of five independent experiments. *p < 0.01 vs. control cells (ANOVA with Dunnett's test). d Combination
index (Cl) values for combination treatment of dasatinib and adriamycin, vincristine, dexamethasone, or melphalan were calculated. Cl values less than
1.0 indicate synergy, while Cl values greater than 1 indicate antagonism. e MDR1 and Survivin expression levels were assessed by western blotting
analysis. HS-Sultan, HS-Sultan/ADM, HS-Sultan/VCR, HS-Sultan/DEX, and HS-Sultan/L-PAM cells were incubated with 300 nM dasatinib for 72 h.
Cytoplasmic cell fractions were extracted and performed to SDS-PAGE/immunoblotting with anti-MDR1 and anti-Survivin antibodies. Anti-3-actin
antibodies were used as an internal standard. f Quantification of MDR1 and Survivin levels, normalized to the amount of the B-actin. Results are
notable example of five independent experiments. *p < 0.01 vs. control cells (ANOVA with Dunnett's test)

Moreover, dasatinib restores drug sensitivity by reducing
MDR1 and Survivin levels in drug-resistant BL cells. Our
findings indicate that Src inhibitors could be a novel strat-
egy for treating patients with drug resistant BL.
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