
RESEARCH Open Access

Impact of monocyte to high-density
lipoprotein ratio on prevalent
hyperuricemia: findings from a rural
Chinese population
Meng-Qi Chen1†, Wen-Rui Shi1†, Chu-Ning Shi1, Ya-Ping Zhou2 and Ying-Xian Sun1*

Abstract

Background: Monocyte to high-density lipoprotein cholesterol ratio (MHR) is a novel inflammatory marker that has
been used to predict various inflammation-related diseases. This study aims to explore the association between
MHR and prevalent hyperuricemia in a rural Chinese population.

Methods: 8163 eligible participants (mean age: 54.13 years, males: 45.71%) from northeast China were enrolled in
this cross-sectional study between 2012 to 2013. MHR was determined as blood monocyte count ratio to high-
density lipoprotein cholesterol concentration.

Results: The prevalence of hyperuricemia was 12.86%. After adjusting for potential confounding factors, per SD
increase of MHR caused a 25.2% additional risk for hyperuricemia, and the top quartile of MHR had an 82.9% increased
risk for hyperuricemia compared with the bottom quartile. Additionally, smooth curve fitting and subgroup analyses
showed a linear and robust association between MHR and prevalent hyperuricemia respectively. Finally, after introducing
MHR into the established model of risk factors, the AUC displayed a significant improvement (0.718 vs 0.724, p = 0.008).
Furthermore, Category-free net reclassification improvement (0.160, 95% CI: 0.096–0.224, P < 0.001) and integrated
discrimination improvement (0.003, 95% CI: 0.002–0.005, P < 0.001) also demonstrated significant improvements.

Conclusions: The present study suggests that MHR was positively and independently correlated with prevalent
hyperuricemia among rural Chinese adults. Our results also implicate an important value for MHR in optimizing the risk
stratification of hyperuricemia.
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Background
In recent decades, hyperuricemia is becoming a major pub-
lic health issue due to its close association with critical dis-
eases such as gout, hypertension, diabetes mellitus, chronic
kidney disease and other cardiovascular diseases (CVD) [1–
6]. For example, the Mendelian randomization study sup-
ported that hyperuricemia may play a causal role in the de-
velopment of CVD, suggesting its great significance for
early screening and prevention of CVD [5]. Accordingly,
there is a clear need for a simple approach to improve the
risk stratification and prevention of hyperuricemia.
Chronic inflammation is a pathophysiological process

characterized by elevated inflammatory mediators which
closely associate with hyperuricemia [7, 8]. Epidemio-
logical reports have demonstrated a significant correl-
ation between inflammation and elevated uric acid level
[2, 9]. Consistently, previous studies have shown that hy-
peruricemia might induce inflammation by activating
the expression of inflammatory mediators [10, 11].
Therefore, these studies indicated that hyperuricemia
was closely related to inflammation.
Monocytes and high-density lipoprotein cholesterol

(HDL-C) are two important factors in the development of
inflammation [12–14]. Monocytes interact mainly with
platelets and endothelial cells, leading to aggravation in in-
flammation and prothrombotic pathways [15, 16]. In con-
trast, HDL-C protects endothelial cells from oxidative
stress and inflammation by regulating monocytes activation
and monocyte progenitors proliferation, and preventing
monocytes assembly into the arterial wall [12–14]. High
monocyte counts and low HDL-C levels have been shown
to be positively associated with inflammation [17–19].
Therefore, while monocytes play a pro-inflammatory role,
HDL-C functions as a reverse factor in the inflammatory
process.
Monocyte-to-HDL-C ratio (MHR) has been proposed

as a potentially modifiable marker of inflammation [20].
Additionally, previous studies have found that MHR has
the capacity to predict a variety of inflammation-related
diseases [21–24]. As yet, no study has been conducted
on the potential association between MHR and the
prevalent hyperuricemia. Therefore, our study used data
from the Northeast China Rural Cardiovascular Health
Study (NCRCHS) to investigate this relationship and ex-
plore the value of MHR to optimize the risk stratifica-
tion of hyperuricemia.

Methods
Study population
The present study was based on a large scale cross-
sectional epidemiological survey known as NCRCHS
that conducted from January 2012 to August 2013. The
detailed design and rationale of NCRCHS were fully de-
scribed elsewhere [25]. 14,016 permanent residents

(age ≥ 35 years) from rural areas of Northeast China were
recruited to assess the incidence, prevalence, and natural
history of cardiovascular risk factors. Participants were
selected by the scheme of a multistage and stratified ran-
dom sampling. First, three counties of Dawa, Zhangwu,
and Liaoyang were selected from the eastern, southern,
and northern regions of Liaoning province. Afterward,
three towns were randomly selected from three counties.
In the end, a total of 26 rural villages were randomly se-
lected. Due to 2060 subjects failed to complete the study,
11,956 individuals were included in our study, producing
a response rate of 85.3%. Moreover, 3793 subjects were
further excluded for missing biochemical and clinical
data. Finally, we enrolled 8163 eligible participants into
the present analysis (Fig. 1). Our study was approved by
the Ethics Committee of China Medical University
(Shenyang, China). Written informed consent was vol-
untarily signed by all participants; if disabled, informed
consent was obtained from the proxies of the subjects.

Data collection and measurements
Previously published studies have fully reported the
methods of data collection and measurement [26, 27].
Before the study, cardiologists and nurses must pass a
strict exam to obtain the qualification for conducting
questionnaires which collect baseline information about
sociodemographic data, health-related behaviors, an-
thropometric indexes, and history of CVD. Quality as-
surance of the data collection process was executed by
the central steering committee with a subcommittee. The
race of participants was separated into Han and others.
Education level was split into three categories: primary
school or below, middle school, and high school or above.
Family annual income of the subjects was classified into
three groups: ≤5000, 5000–20,000 and > 20,000 CNY per
year. Physical activity was categorized into three levels of
low, middle and high based on the self-reports of individ-
uals. Use of lipid-lowering drug was determined as lipid
drug uptake over the past 2 weeks. History of CVD in-
cluded angina pectoris, myocardial infarction, atrial fibril-
lation, arrhythmia, and heart failure.
The blood pressure of participants was measured three

times after at least 5 min of rest in a completely relaxed
and sitting position. The result of blood pressure for
analysis was the average of three consecutive readings
taken by two randomly selected staff.
Concerning anthropometric measurements, individuals

were required to wear light clothes without shoes. Cali-
brated digital scales were applied to measure the stand-
ard weight to the nearest 0.1 kg. To quantify standard
height with a calibrated stadiometer, subjects were asked
to remain standing position. And we recorded the read-
ing of height to the nearest 0.1 cm. Anthropometric

Chen et al. Lipids in Health and Disease           (2020) 19:48 Page 2 of 9



measurements were taken twice and the mean values
were used into the analysis.
Fasting blood samples of the antecubital veins were

gathered in the morning after all participants had fasted
for at least 12 h. Venous blood samples were separated
into serum samples through a standard centrifuge, and
they were transported by EDTA tubes. Finally, the sam-
ples were frozen at − 20 C degree for a better analysis of
serum creatinine (Scr), fasting plasma glucose (FPG), tri-
glyceride (TG), total cholesterol (TC), low-density lipo-
protein cholesterol (LDL-C), HDL-C, white blood cells
(WBC), lymphocytes, neutrophils and monocytes.

Definition
Body mass index (BMI) was calculated as mean weight di-
vided by mean height squared (kg/m2). The estimated
glomerular filtration rate (eGFR) was defined according to
the CKD-EPI (Chronic Kidney Disease Epidemiology Col-
laboration) equation [28]. MHR was determined as blood
monocyte count ratio to high-density lipoprotein choles-
terol concentration [29]. The definition of hyperuricemia
was serum uric acid (SUA) ≥ 357 μmol/L (6mg/dL) for fe-
males and ≥ 417 μmol/L (7mg/dL) for males [30].

Statistical analysis
Continuous variables were presented as mean values ±
standard deviation (SD) or median (interquartile range)

based on the distribution. Category variables were dis-
played as frequencies (percentages). Students’ t-test or
Mann-Whitney test was applied to compare continuous
variables between groups. Chi-square test was adopted
to compare categorical variables between groups. In
addition, the rank-sum test was employed to make the
utmost of ordinal information for ordinal category vari-
ables. Multivariate logistic regression was utilized to
demonstrate the independent relationship between
MHR and the prevalence of hyperuricemia. Odds ratio
(OR) and 95% confidence interval (95% CI) were pre-
sented in the results. The linear relationship between
normalized MHR and the prevalence of hyperuricemia
was explored by a spline smoothing function with a gen-
eralized additive model. Subgroup analyses were tested
to detect the robustness of the association between
MHR and the prevalent hyperuricemia. Finally, receiver
operating characteristic (ROC) curve, integrated discrim-
ination improvement (IDI) and category-free net reclas-
sification improvement (NRI) was employed to estimate
the potential of MHR to enhance the risk classification
of hyperuricemia. The whole statistical analyses were
performed by SPSS 25.0 software (IBP corp), Empower-
Stats (http://www.empowerstats.com, X&Y Solutions,
Inc., Boston, MA) and statistical software packages R
(http://www.R-project.org, The R Foundation). Statistical
significance was identified by a two-tailed P value < 0.05.

Fig. 1 Flowchart describing the recruitment process and generation of study population

Chen et al. Lipids in Health and Disease           (2020) 19:48 Page 3 of 9

http://www.empowerstats.com
http://www.r-project.org


Results
Table 1 summarizes the baseline characteristics of 8163
subjects (45.71% men and 54.29% women). The crude

prevalence of hyperuricemia was 12.86%. As for demo-
graphic data, population with hyperuricemia were older
and had a higher proportion of male as well as the Han

Table 1 Characteristics of subjects stratified by hyperuricemia

Variables Total (n = 8163) Hyperuricemia (n = 1050) Normouricemia (n = 7113) P value a

Age (years) 54.13 ± 10.49 55.12 ± 10.96 53.99 ± 10.41 0.001

Males (%) 3731 (45.71) 652 (62.10) 3079 (43.29) < 0.001

Race, Han (%) 7936 (97.22) 1033 (98.38) 6903 (97.05) 0.014

Education (%) 0.716

Primary school or below 4322 (52.95) 561 (53.43) 3761 (52.88)

Middle school 3134 (38.39) 393 (37.43) 2741 (38.54)

High school or above 707 (8.66) 96 (9.14) 611 (8.59)

Income, CNY (%) 0.012

≤ 5000 851 (10.43) 134 (12.76) 717 (10.08)

5000–20,000 4294 (52.60) 557 (53.05) 3737 (52.54)

> 20,000 3018 (36.97) 359 (34.19) 2659 (37.38)

Physical activity (%) 0.101

Low 3192 (39.10) 436 (41.52) 2756 (38.75)

Middle 1547 (18.95) 205 (19.52) 1342 (18.87)

High 3424 (41.95) 409 (38.95) 3015 (42.39)

Current smoking (%) 2767 (33.90) 398 (37.90) 2369 (33.31) 0.003

Current drinking (%) 1734 (21.24) 332 (31.62) 1402 (19.71) < 0.001

Height (cm) 160.66 ± 8.15 162.97 ± 8.45 160.32 ± 8.05 < 0.001

Weight (kg) 63.49 ± 11.27 69.85 ± 12.16 62.56 ± 10.82 < 0.001

BMI (kg/m2) 24.54 ± 3.61 26.26 ± 3.85 24.29 ± 3.50 < 0.001

SBP (mmHg) 138.68 ± 21.93 144.79 ± 23.44 137.77 ± 21.55 < 0.001

DBP (mmHg) 81.86 ± 11.64 86.09 ± 12.63 81.24 ± 11.35 < 0.001

Scr (μmol/L) 73.80 (66.70–82.20) 82.70 (74.73–91.80) 72.80 (66.10–80.70) < 0.001

eGFR (ml/min per 1.73 m2) 89.33 ± 15.42 81.92 ± 19.13 90.42 ± 14.48 < 0.001

FPG (mmol/L) 5.60 (5.22–6.10) 5.72 (5.32–6.35) 5.58 (5.22–6.06) < 0.001

TC (mmol/L) 5.32 ± 1.11 5.63 ± 1.28 5.27 ± 1.07 < 0.001

TG (mmol/L) 1.29 (0.91–1.96) 1.88 (1.28–2.87) 1.23 (0.88–1.83) < 0.001

HDL-C (mmol/L) 1.34 ± 0.32 1.28 ± 0.33 1.35 ± 0.32 < 0.001

LDL-C (mmol/L) 2.89 ± 0.80 3.07 ± 0.88 2.87 ± 0.79 < 0.001

WBC count (109/L) 6.20 ± 2.06 6.61 ± 1.79 6.14 ± 2.09 < 0.001

Lymphocyte count (109/L) 1.90 (1.60–2.40) 2.10 (1.70–2.50) 1.90 (1.60–2.30) 0.017

Neutrophil count (109/L) 3.40 (2.70–4.30) 3.70 (2.90–4.60) 3.40 (2.60–4.20) < 0.001

Monocyte count (109/L) 0.41 (0.30–0.60) 0.50 (0.40–0.70) 0.40 (0.30–0.60) < 0.001

Lipid-lowering drug (%) 272 (3.33) 78 (7.43) 194 (2.73) < 0.001

History of CVD (%) 1268 (15.53) 222 (21.14) 1046 (14.71) < 0.001

SUA (μmol/L) 300.77 ± 85.68 452.12 ± 70.17 278.43 ± 61.79 < 0.001

MHR 0.38 ± 0.25 0.45 ± 0.27 0.37 ± 0.24 < 0.001

Data are expressed as mean ± standard deviation (SD) or median (interquartile range) and numbers (percentage) as appropriate
Abbreviations: CNY Chinese currency (1CNY = 0.15 USD), BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, Scr serum creatinine, eGFR
estimated glomerular filtration rate, FPG fasting plasma glucose, TC total cholesterol, TG triglyceride, HDL-C high-density lipoprotein cholesterol, LDL-C low-density
lipoprotein cholesterol, WBC white blood cell, CVD cardiovascular disease, SUA serum uric acid, MHR Monocyte to high-density lipoprotein ratio
aComparisons for category variables between groups were tested by χ2 test or rank-sum test (ordinal category variables) and comparisons of continuous variables
between groups were tested by Student’s t-test or Mann-Whitney test
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race than the healthy group. Furthermore, hyperuricemia
participants had lower family annual income and more
likely to be a current drinker or smoker compared with
normouricemia subjects. About the anthropometric char-
acteristics, hyperuricemia group had significantly higher
levels of height, weight, BMI, SBP, and DBP. Laboratory
examinations exhibited higher Scr, FPG, TC, TG, and
LDL-C concentrations together with greater numbers of
white blood cells, lymphocytes, neutrophils and mono-
cytes in the patients’ group. Additionally, hyperuricemia
patients had markedly lower eGFR and HDL-C levels.
Moreover, the percentages of CVD history, and lipids-
lowering drug were statistically augmented in the hyper-
uricemia subjects. Lastly, we could observe a substantially
greater level of MHR in the hyperuricemia group than the
normouricemia group (all P < 0.05).
Logistic regression analyses revealed the association

between MHR and prevalent hyperuricemia, as dis-
played in Table 2. In model 2, per SD increase of
MHR caused a 37.5% additional risk for hyperurice-
mia after adjusting for age, sex, race, education level,
family annual income and physical activity, current
smoking and drinking status. After additional adjust-
ment of BMI, eGFR, TC, HDL-C, SBP, FPG, lipid-
lowering drug, and CVD history, the risk attenuated
to 25.2%. When dividing MHR into quartiles, we
could observe the top quartile had an 82.9% increased
risk for hyperuricemia compared with the bottom
quartile in the fully adjusted model. Furthermore, the
prevalence of hyperuricemia displayed a significant
linear trend across the quartiles (P for trend < 0.001).
To further demonstrate the linear association between

MHR and the prevalence of hyperuricemia, we per-
formed a smooth curve fitting with full adjustment of all
covariates (Fig. 2). The curve showed a linear correlation
between normalized MHR and the risk of hyperuricemia,
and the result confirmed the linear trend in the above-
described quartile analysis of logistic regression.

To investigate whether the relationship between MHR
and hyperuricemia was robust in the logistic regression
model, stratified analyses were conducted using several
identified risk factors (including age, sex, BMI, SBP,
FPG, and eGFR) for hyperuricemia (Fig. 3). After adjust-
ing for the above-described covariates except for the co-
variate used for stratification, the results of the subgroup
analyses revealed the robust association between MHR
and hyperuricemia (all P for interaction > 0.05).
Finally, through ROC analysis and reclassification ana-

lyses, the results illuminated the ability of MHR to
optimize the risk stratification of hyperuricemia
(Table 3). The AUC of MHR for hyperuricemia was
0.598 (95% CI: 0.587–0.608, P < 0.001), and the AUC of
the model of several clinical risk factors (including age,
sex, current smoking, current drinking, BMI, eGFR, TC,
HDL-C, SBP, FPG and history of CVD) was 0.718 (95%
CI: 0.709–0.728, P < 0.001). When adding MHR into
clinical risk factors, we could detect a statistical incre-
ment of AUC (0.724, 95% CI: 0.715–0.734, P < 0.001).
Additionally, both the category free NRI (0.160, 95% CI:
0.096–0.224, P < 0.001) and IDI (0.003, 95% CI: 0.002–
0.005, P < 0.001) showed a significant improvement
when adding MHR into above risk factors.

Discussion
Our study for the first time implicated the impact of
MHR on the prevalent hyperuricemia in the general
population. Furthermore, the findings revealed the as-
sociation between MHR and the prevalence of hyper-
uricemia was linear and robust. Additionally, our
analyses suggest that MHR may have the capacity to
optimize the risk stratification of hyperuricemia.
Taken together, our findings suggest the strong asso-
ciation between MHR and the prevalent hyperurice-
mia, and the value of MHR to optimize the risk
stratification of hyperuricemia.

Table 2 Multivariate logistic regression of MHR for hyperuricemia

Variables Odds Ratio (95%CI)

Model 1 P value Model 2 P value Model 3 P value

MHR (per SD change) 1.394 (1.299, 1.496) < 0.001 1.375 (1.280, 1.478) < 0.001 1.252 (1.157, 1.355) < 0.001

Quartiles of MHR

Quartile 1 Reference Reference Reference

Quartile 2 1.272 (1.035, 1.564) 0.022 1.243 (1.009, 1.531) 0.041 1.194 (0.963, 1.480) 0.106

Quartile 3 1.447 (1.183, 1.771) < 0.001 1.392 (1.135, 1.708) 0.002 1.264 (1.019, 1.569) 0.033

Quartile 4 2.418 (2.001, 2.920) < 0.001 2.320 (1.913, 2.813) < 0.001 1.829 (1.477, 2.264) < 0.001

P for trend < 0.001 < 0.001 < 0.001

Model 1: no adjustment; Model 2: adjusted for age, sex, race, education level, family annual income, physical activity, current smoking, current drinking; Model 3:
adjusted for all the factors in model 2 and BMI, eGFR, TC, HDL-C, SBP, FPG, lipid-lowering drug, history of CVD
Abbreviations: MHR Monocyte to high-density lipoprotein ratio, OR odds ratio, CI confidence interval, SD standard deviation. Other abbreviations as in Table 1
Quartile 1: MHR < 0.227; Quartile 2: 0.227 ≤MHR < 0.339; Quartile 3: 0.339 ≤MHR < 0.484; Quartile 4: MHR ≥0.484
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Fig. 2 Smooth curve fitting was employed using generalized additive model to investigate the association between MHR and the risk of
hyperuricemia after adjusting for age, sex, race, education level, family annual income, physical activity, current smoking, current drinking, BMI,
eGFR, TC, HDL-C, SBP, FPG, lipid-lowering drug, history of CVD. In the figure, the solid line represents the estimated risk of hyperuricemia, and the
dotted line indicates pointwise 95% confidence interval

Fig. 3 Subgroup analysis for the impact of MHR on the prevalence of hyperuricemia. The dots and lines represent the estimates of the odds
ratios of hyperuricemia for per SD increment of MHR and the corresponding 95% confidence intervals, respectively. The model adjusted for sex,
age, race, education level, family annual income, physical activity, current smoking, current drinking, BMI, eGFR, TC, HDL-C, SBP, FPG, lipid-lowering
drug, history of CVD, except for the variable that is stratified
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Monocyte counts and HDL-C levels are two pivotal
hallmarks in the development and progression of inflam-
mation [12–14]. Chronic inflammation is a systematic
process accompanied by an elevation of inflammatory
mediators such as acute-phase proteins, cytokines, and
adhesion molecules [7]. Monocytes are crucial immune
system cells that play a unique role in the inflammatory
response [13, 31]. Activated monocyte interacts with ac-
tivated or damaged endothelial cells, leading to overex-
pression of proinflammatory cytokines and adhesion
molecules, including vascular cell adhesion molecule 1,
monocyte chemotactic protein 1 ligand and intercellular
adhesion molecule 1. Thereafter, monocytes move to the
subendothelial space and then differentiate into macro-
phages that engulf oxidized low-density lipoprotein chol-
esterol [32]. These cells then transform into foam cells
that release pro-inflammatory cytokines, attracting more
monocytes into the site of inflammation [13, 33]. How-
ever, HDL-C plays a key role in the anti-inflammatory
effect. HDL-C counteracts the proinflammatory response
of monocytes by interrupting the differentiation of
monocyte to macrophage and preventing the recruit-
ment of monocyte into vascular wall, as well as prohibit-
ing LDL-C oxidation in the arterial wall [14, 34].
Additionally, HDL-C inhibits the proliferation of mono-
cyte progenitor cells [35]. Therefore, monocytes exhibit
proinflammatory effects, but HDL-C acts as a reverse
factor in the process of inflammation.
MHR as the combination of both monocytes and

HDL-C has been proposed as a novel inflammatory
index [20]. Recent clinical and epidemiological studies
have established that MHR has the ability to predict
multiple inflammation-related diseases, such as meta-
bolic syndrome, diabetes mellitus, atrial fibrillation and
coronary artery disease [21–24]. Recent researches have
revealed the significant association between inflamma-
tion and elevated uric acid level [2, 9]. For example, C-
reactive protein (CRP), a marker of low-grade inflamma-
tion, was positively correlated with SUA levels [36, 37].
Furthermore, uric acid can induce CRP mRNA expres-
sion in vascular endothelium and smooth muscle cells
[38]. Hence, these studies indicated a close relationship
between SUA and inflammation. In view of the forego-
ing, we hypothesize that MHR, a novel inflammatory

index, also has a significant association with hyperurice-
mia and the ability to improve risk stratification of
hyperuricemia.
The current findings were consistent with our hypoth-

esis. Regardless of whether MHR was used as a continu-
ous variable or a category variable, the results of the
logistic regression analysis showed a significant positive
correlation between MHR and hyperuricemia. Moreover,
we further testified the linear association of MHR with
hyperuricemia via performing smooth curve fitting ana-
lysis. Therefore, higher MHR suggests a proportionally
higher prevalence of hyperuricemia, excluding the pres-
ence of threshold or saturation effects. Additionally, in
the subgroup analyses of age, sex, BMI, SBP, FPG and
eGFR, the stable relationship between MHR and hyper-
uricemia suggests that the risk stratification capacity of
MHR is applicable to these designated populations.
Recently, a substantial proportion of studies reported

that serum uric acid was independently associated with
chronic kidney diseases [39–42], and it has been demon-
strated that MHR was independently associated with re-
duced renal function [43]. However, our study found
that there was not a statistically significant correlation
between the MHR and the prevalent hyperuricemia in
individuals with an eGFR of less than 60ml/min per
1.73 m2. The main reason may be the decrease of statis-
tic power because of the small sample size of partici-
pants with hyperuricemia and reduced renal function
simultaneously. Similar to our finding, one Mendelian
randomization study, using uric acid transporter genetic
risk score to explore the causality between serum uric
acid and kidney function, suggested that a possible
causal relationship between serum uric acid levels and
improved renal function in healthy men rather than and
reduced renal function [44]. In any case, further study is
needed to confirm the current results.
ROC and reclassification analyses were applied to

evaluate the risk stratification ability of MHR for hyper-
uricemia. In the ROC analysis, MHR as a single indicator
had a statistically significant identification of hyperurice-
mia, but the AUC value was too low to be practically ap-
plied, and then we incorporated MHR into a clinical risk
factors model and the results showed a significant im-
provement in risk identification of hyperuricemia (0.718

Table 3 Receiver operating characteristic and reclassification analyses for MHR to discriminate the risk stratification of hyperuricemia

Model AUC (95% CI) P value P for comparison NRI (category free) P value IDI P value

MHR 0.598 (0.587, 0.608) < 0.001 – – – – –

Clinical risk factors* 0.718 (0.709, 0.728) < 0.001 Reference Reference Reference Reference Reference

Clinical risk factors + MHR 0.724 (0.715, 0.734) < 0.001 0.008 0.160 (0.096, 0.224) < 0.001 0.003 (0.002, 0.005) < 0.001

* Clinical risk factors: age, sex, current smoking, current drinking, BMI, eGFR, TC, HDL-C, SBP, FPG, history of CVD
Abbreviations: MHR Monocyte to high-density lipoprotein ratio, AUC area under the curve, CI confidence interval, NRI net reclassification improvement, IDI
integrated discrimination improvement, BMI body mass index, eGFR estimated glomerular filtration rate, TC total cholesterol, HDL-C high density lipoprotein
cholesterol, SBP systolic blood pressure, FPG fasting plasma glucose, CVD cardiovascular disease
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vs 0.724, p = 0.008). To further confirm the capacity of
MHR to optimize the risk stratification of hyperuricemia,
we conducted reclassification analysis including both IDI
and NRI which can assess the incremental potential of
adding a new risk marker into an established risk model
[45, 46]. As expected, both results of category-free NRI
and IDI presented a significant improvement in stratifying
hyperuricemia risk when MHR was introduced into the
established model of risk factors. In summary, our results
suggest that MHR has the ability to optimize the risk
stratification of hyperuricemia.
This study exists several limitations, which should be

taken into account when considering the results. The
first disadvantage is that cross-sectional design can only
suggest the correlation between MHR and hyperurice-
mia, but the causality of this association needs to be
confirmed by further prospective studies. Second, the
study participants were enrolled from 26 rural areas in
northeastern China, therefore, whether our results are
applicable to the general Chinese population still de-
serves more studies to evaluate. Third, possible unmeas-
ured confounding variables may exist and could have
affected the results. The present study has adjusted age,
sex, race, education level, family annual income, physical
activity, current smoking, current drinking, BMI, eGFR,
TC, HDL-C, SBP, FPG, lipid-lowering drug, and history
of CVD, all of which are potential confounding, because
they affect both exposure and outcome. However, there
may be some variables that were not included in our
analyses but can affect hyperuricemia, such as gout and
hypouricemic drugs. Finally, considering the economic
feasibility of epidemiological study, traditional inflamma-
tion markers such as CRP, ferritin and interleukin 6,
which could be used to compare the predictive power
with MHR for hyperuricemia, were not collected in
present study. Therefore, whether MHR is a better pre-
dictor for hyperuricemia than traditional inflammation
markers still needs further studies and evaluation.

Conclusions
In conclusion, MHR as a novel and simple marker of in-
flammation was independently associated with the
prevalent hyperuricemia in a rural Chinese population.
Our results also suggest the important value of MHR to
optimize the risk stratification and prevention of hyper-
uricemia. However, our results should be verified in
large prospective studies to explain the definite mechan-
ism of MHR in hyperuricemia.
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