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Summary

Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting 

substantial pleiotropy of contributing loci. However, the nature and mechanisms of these 

pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls 

from genome-wide studies of anorexia nervosa, attention-deficit/hyperactivity disorder, autism 

spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, 

schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful 

structure within the eight disorders, identifying three groups of inter-related disorders. Meta-

analysis across these eight disorders detected 109 loci associated with at least two psychiatric 

disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with 

antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show 

heightened expression in the brain throughout the lifespan, beginning prenatally in the second 

trimester, and play prominent roles in neurodevelopmental processes. These findings have 

important implications for psychiatric nosology, drug development, and risk prediction.
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INTRODUCTION

Psychiatric disorders affect more than 25% of the population in any given year and are a 

leading cause of worldwide disability (Global Burden of Disease Injury Incidence 

Prevalence Collaborators, 2017; Kessler and Wang, 2008). The substantial influence of 
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genetic variation on risk for a broad range of psychiatric disorders has been established by 

both twin and, more recently, large-scale genomic studies (Smoller et al., 2018). Psychiatric 

disorders are highly polygenic, with a large proportion of heritability contributed by 

common variation. Many risk loci have emerged from genome-wide association studies 

(GWAS) of, among others, schizophrenia (SCZ), bipolar disorder (BIP), major depression 

(MD), and attention-deficit/hyperactivity disorder (ADHD) from the Psychiatric Genomics 

Consortium (PGC) and other efforts (Sullivan et al., 2018). These studies have revealed a 

surprising degree of genetic overlap among psychiatric disorders (Brainstorm Consortium, 

2018; Cross-Disorder Group of the Psychiatric Genomics Consoritum, 2013). Elucidating 

the extent and biological significance of cross-disorder genetic influences has implications 

for psychiatric nosology, drug development, and risk prediction. In addition, characterizing 

the functional genomics of cross-phenotype genetic effects may reveal fundamental 

properties of pleiotropic loci that differentiate them from disorder-specific loci, and help 

identify targets for diagnostics and therapeutics.

In 2013, analyses by the PGC’s Cross-Disorder Group identified loci with pleiotropic effects 

across five disorders: autism spectrum disorder (ASD), ADHD, SCZ, BIP, and MD in a 

sample comprising 33,332 cases and 27,888 controls (Cross-Disorder Group of the 

Psychiatric Genomics Consortium, 2013). In the current study, we examined pleiotropic 

effects in a greatly expanded dataset, encompassing 232,964 cases and 494,162 controls, that 

included three additional psychiatric disorders: Tourette syndrome (TS), obsessive-

compulsive disorder (OCD), and anorexia nervosa (AN). We address four major questions 

regarding the shared genetic basis of these eight disorders: 1) Can we identify a shared 

genetic structure within the broad range of these clinically distinct psychiatric disorders? 2) 

Can we detect additional loci associated with risk for multiple disorders (pleiotropic loci)? 

3) Do some of these risk loci have opposite allelic effects across disorders? and 4) Can we 

identify functional features of the pleiotropic loci that could account for their broad effects 

on psychopathology?

RESULTS

We analyzed genome-wide single nucleotide polymorphism (SNP) data for eight 

neuropsychiatric disorders using a combined sample of 232,964 cases and 494,162 controls 

(Table 1; Table S1). The eight disorders included AN (Duncan et al., 2017) ASD (Grove et 

al., 2019a), ADHD (Demontis et al., 2019), BIP (Stahl et al., 2019), MD (Wray et al., 2018), 

OCD (International Obsessive Compulsive Disorder Foundation Genetics Collaborative 

(IOCDF-GC) and OCD Collaborative Genetics Association Studies (OCGAS), 2018), TS 

(Yu et al., 2019), and SCZ (Schizophrenia Working Group of the Psychiatric Genomics, 

2014). All study participants were of self-identified European ancestry, which was supported 

by principal component analysis of genome-wide data.

Genetic correlations among eight neuropsychiatric disorders indicate three genetic factors

After standardized and uniform quality control, additive logistic regression analyses were 

performed on individual disorders (Online Methods). 6,786,993 SNPs were common across 

all datasets and were retained for further study. Using the summary statistics of these SNPs, 
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we first estimated pairwise genetic correlations among the eight disorders using linkage 

disequilibrium (LD) score regression analyses (Bulik-Sullivan et al., 2015) (Online 

Methods; Fig. 1a; Table S2.1). The results were broadly concordant with previous estimates 

(Brainstorm Consortium, 2018; Cross-Disorder Group of the Psychiatric Genomics 

Consoritum, 2013). The genetic correlation was highest between SCZ and BIP (rg = 0.70 

±0.02), followed by OCD and AN (rg = 0.50 ±0.12). Interestingly, based on genome-wide 

genetic correlations, MD was closely correlated with ASD (rg=0.45 ±0.04) and ADHD 

(rg=0.44 ±0.03), two childhood-onset disorders. Despite variation in magnitude, significant 

genetic correlations were apparent for most pairs of disorders, suggesting a complex, higher-

order genetic structure underlying psychopathology (Fig. 1b).

We modeled the genome-wide joint architecture of the eight neuropsychiatric disorders 

using an exploratory factor analysis (EFA) (Gorsuch, 1988), followed by genomic structural 

equation modeling (SEM) (Grotzinger et al., 2019) (Online Methods; Fig. 1c). EFA 

identified three correlated factors, which together explained 51% of the genetic variation in 

the eight neuropsychiatric disorders (Table S2.2). The first factor consisted primarily of 

disorders characterized by compulsive/perfectionistic behaviors, specifically AN, OCD, and, 

more weakly, TS. The second factor was characterized by mood and psychotic disorders 

(MD, BIP, and SCZ), and the third factor by three early-onset neurodevelopmental disorders 

(ASD, ADHD, TS) as well as MD. Similar to our EFA results, hierarchical clustering 

analyses also identified three sub-groups among the eight disorders (Data S1.1). Based on 

extensive follow-up analyses, this genetic correlational structure does not appear to be 

biased by sample overlap or sample size differences among the eight disorders (Data S1.2–

1.4).

Cross-disorder meta-analysis identifies 109 pleiotropic loci

The factor structure described above is based on average effects across the genome, but does 

not address more fine-grained cross-disorder effects at the level of genomic regions or 

individual loci. To identify genetic loci with shared risk, we performed a meta-analysis of 

the eight neuropsychiatric disorders using a fixed-effects-based method (Bhattacharjee et al., 

2012) that accounts for the differences in sample sizes, existence of subset-specific effects, 

and overlapping subjects across datasets (Online Methods). The standardized genomic 

inflation factor was close to one, suggesting no inflation of test statistics due to confounding 

(λ1000 = 1.005; Fig. 2a). We identified 136 LD-independent regions with genome-wide 

significant association (Pmeta ≤ 5×10−8). Due to the extensive LD at the major 

histocompatibility complex (MHC) region (chromosome 6 region at 25–35 Mb), we 

considered multiple signals present there as one locus. 101 of the 136 (74.3%) significantly 

associated regions overlapped with previously reported genome-wide significant regions 

from at least one individual disorder, while 35 loci (25.7%) represented novel genome-wide 

significant associations. Simulation analyses confirmed that the number of pleiotropic loci 

we identified exceeds chance expectation given the sample size and genetic correlations 

among the eight disorders (p < 9.9×10−3; Data S1.5; for further details, see Online 

Methods).
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Within these 136 loci, multi-SNP-based conditional analysis (Yang et al., 2012) identified 10 

additional SNPs with independent associations, resulting in a total of 146 independent lead 

SNPs (Table S3.1). To provide a quantitative estimate of the best fit configuration of cross-

disorder genotype-phenotype relationships, we estimated the posterior probability of 

association (referred to as the m-value) with each disorder using a Bayesian statistical 

framework (Han and Eskin, 2012) (Online Methods; Table S3.2) As recommended (Han and 

Eskin, 2012), an m-value threshold of 0.9 was used to predict with high confidence that a 

particular SNP was associated with a given disorder. Also, m-values of < 0.1 were taken as 

strong evidence against association. Plots of the SNP p-value vs. m-value for all 146 lead 

SNPs are shown in Data S2. Nearly 75% (109/146) of the genome-wide significant SNPs 

were pleiotropic (i.e., associated with more than one disorder). As expected, configurations 

of disease association reflected the differences in the statistical power and genetic 

correlations between the samples (Fig. S1). Of the 109 pleiotropic loci, 83% and 72% 

involved SCZ and BIP, respectively. MD, which had the largest case-control sample, was 

associated with 48% of the pleiotropic loci (N=52/109). Despite the relatively small sample 

size, ASD was implicated in 36% of the pleiotropic loci. Most of the ASD associations co-

occurred with SCZ and BIP. The other disorders, ADHD, TS, OCD, and AN featured 

associations in 16%, 14%, 11%, and 7% of the pleiotropic loci, respectively. Of the single-

disorder-specific loci, 81% and 16% were associated with SCZ and MD, respectively.

Table 2 summarizes 23 pleiotropic loci associated with at least four of the disorders. Among 

these loci, heterogeneity of effect sizes was minimal (p-value of Q > 0.1). Eleven of the 23 

lead SNPs map to the intron of a protein-coding gene, and seven additional lead SNPs had at 

least one protein-coding gene within 100 kb. We used an array of functional genomics 

resources, including brain eQTL and Hi-C data (Wang et al., 2018; Won et al., 2016) to 

prioritize potential candidate genes to the identified regions (Online Methods; Fig. 2b). The 

Manhattan plot in Fig. 2c highlights some of the prioritized candidate genes.

Of the 109 risk loci with shared effects, the 18q21.2 region surrounding SNP rs8084351 at 

the netrin 1 receptor gene DCC featured the most pleiotropic association (Pmeta = 4.26 × 

10−12; Fig. 3a). This region showed association with all eight psychiatric disorders, and has 

been previously associated with both MD and neuroticism (Turley et al., 2018; Wray et al., 

2018). The signal in our meta-analysis colocalizes with brain eQTLs for DCC (eQTL 

association FDR q = 2.27 × 10−5), supporting DCC as a plausible candidate gene (Fig. S2). 

The product of DCC plays a key role in guiding axonal growth during neurodevelopment 

and serves as a master regulator of midline crossing and white matter projections (Bendriem 

and Ross, 2017). Gene expression data indicate that DCC expression peaks during early 

prenatal development (Fig. S3).

The second most pleiotropic locus in our analysis was identified in an intron of RBFOX1 
(RNA Binding Fox-1 Homolog 1) on 16p13.3 (lead SNP rs7193263; Pmeta = 5.59 × 10−11). 

The lead SNP showed association with all of the disorders except AN (Fig. 3b). RBFOX1 
(also called A2BP1) encodes a splicing regulator mainly expressed in neurons and known to 

target several genes important to neuronal development, including NMDA receptor 1 and 

voltage-gated calcium channels (Gandal, 2018; Gehman, 2011; Hamada et al., 2015). 

Knock-down and silencing of RBFOX1 during mouse corticogenesis impairs neuronal 
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migration and synapse formation (Hamada et al., 2015; Hamada et al., 2016), implying its 

pivotal role in early cortical maturation. In contrast to DCC, however, developmental gene-

expression of RBFOX1 showed gradually increasing gene expression throughout the 

prenatal period (Fig. S3). Animal models and association studies have implicated RBFOX1 
in aggressive behaviors, a trait observed in several of the disorders in our analysis 

(Fernandez-Castillo et al., 2017).

Of the 109 pleiotropic loci, 76 were identified in the GWAS of individual disorders, while 

the remaining 33 are novel. The most pleiotropic among these novel loci was a region 

downstream of NOX4 (NADPH Oxidase 4) that was associated with SCZ, BIP, MD, ASD, 

and AN (rs117956829; Pmeta = 1.82 × 10−9; Fig. 3c). Brain Hi-C data (Wang et al., 2018; 

Won et al., 2016) detected a direct interaction of the cross-disorder association region with 

NOX4 in both adult and fetal brain (interaction p=3.2×10−16 and 9.3×10−6, respectively). As 

a member of the family of NOX genes that encode subunits of NADPH oxidase, NOX4 is a 

major source of superoxide production in human brain and a promoter of neural stem cell 

growth (Kuroda et al., 2014; Topchiy et al., 2013).

Figure 3d illustrates another novel psychiatric risk locus associated with SCZ, BIP, ASD, 

and OCD (Pmeta = 3.58 × 10−8). The lead SNP rs10265001 resides between MRPS33 
(Mitochondrial Ribosomal Protein S33) and BRAF (B-Raf Proto-Oncogene, Serine/

Threonine Kinase) on 7q34. The brain Hi-C data indicated interaction of the associated 

region with the promoters of two nearby genes: BRAF, which contributes to the MAP kinase 

signal transduction pathway and plays a role in postsynaptic responses of hippocampal 

neurons (Grantyn and Grantyn, 1973), and KDM7A (encoding Lysine Demethylase 7A), 

which plays a central role in the nervous system and midbrain development (Horton et al., 

2010; Qi et al., 2010; Tsukada et al., 2010).

Our prior cross-disorder meta-analysis of five psychiatric disorders (Cross-Disorder Group 

of the Psychiatric Genomics Consortium, 2013) found no evidence of SNPs with 

antagonistic effects on two or more disorders. Here, we examined whether any variants with 

meta-analysis p ≤ 1×10−6 had opposite directional effects between disorders (Online 

Methods). After adjusting for having examined 206 loci across eight disorders (q < 0.001), 

we identified 11 loci with evidence of opposite directional effects on two or more disorders 

(Fig. 4; Table S3.3). The disorder configuration of opposite directional effects varied for the 

11 loci, including three loci with opposite directional effects on SCZ and MD (rs301805, 

rs1933802, rs3806843), two loci between SCZ and ASD (rs9329221, rs2921036), and one 

locus (rs75595651) with opposite directional effects on the two mood disorders, BIP and 

MD. Notably, all of the six loci involving SCZ and BIP exhibited the same directional effect 

on the two disorders (Pbinom < 0.05), in line with their strong genome-wide genetic 

correlation.

Functional characterization of pleiotropic risk loci

We conducted a series of bioinformatic analyses that examined whether loci with shared risk 

effects on multiple neuropsychiatric disorders had characteristic features that distinguished 

them from non-pleiotropic risk loci. First, we annotated the functional characteristics of 146 

lead SNPs using various public data sources (Online Methods; Tables S4). Overall, they 
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showed significant enrichment of genes expressed in the brain (beta=0.123, SE=0.0109, 

enrichment p = 1.22×10−29) and pituitary (beta=0.0916, SE=0.0136, p = 8.74 × 10−12), but 

not in the other Genotype-Tissue Expression (GTEx) tissues. (Table S5.1; Fig. 5a). A 

separate analysis of 109 pleiotropic risk loci also showed specific enrichment of genes 

expressed in multiple brain tissues (p = 1.55 × 10−5; Table S5.2), while disorder-specific loci 

showed nominally enriched brain gene expression in the cortex (p =2.14 × 10−2; Table S5.3).

Gene-set enrichment analyses using Gene Ontology data suggested involvement of 

pleiotropic risk loci in neurodevelopmental processes (Table S6.1). The 109 pleiotropic risk 

loci were enriched for genes involved in neurogenesis (gene-set enrichment p = 9.67 × 

10−6), regulation of nervous system development (p = 3.41 × 10−5), and neuron 

differentiation (p = 3.30 × 10−5), while enrichment of these gene-sets was not seen for the 37 

disorder-specific risk loci (adjusted enrichment p > 0.05; Table S6.2). Pleiotropic risk loci 

also showed enrichment of genes involved in specific neurotransmitter-related pathways -- 

glutamate receptor signaling (p = 2.45 × 10−6) and voltage-gated calcium channel complex 

(p = 5.72 × 10−4) -- while non-pleiotropic risk loci, which were predominantly SCZ-

associated, were over-represented among acetylcholine receptor genes (p = 7.25 × 10−8). 

Analysis of cortical gene expression data also suggested enrichment of pleiotropic risk genes 

in cortical glutamatergic neurons through layers 2–6 (Table S6.3), further supporting the 

shared role of glutamate receptor signaling in the pathogenesis of diverse neuropsychiatric 

disorders.

In contrast to the differences in neuronal development and neuronal signaling pathways, 

pleiotropic and non-pleiotropic risk loci shared several characteristics related to genomic 

function. For instance, gene-set enrichment analyses indicated that both pleiotropic and non-

pleiotropic risk loci were enriched for genes involved in the regulation of synaptic plasticity, 

neurotransmission, and synaptic cellular components. More than 41% of the genes 

associated with our genome-wide significant loci, both pleiotropic and non-pleiotropic, were 

intolerant of loss of function mutations (pLI score ≥ 0.9); this is highly unlikely to occur by 

chance (Fisher’s exact p=4.90×10−8). This finding was consistent when examining 

pleiotropic (p=2.85×10−11) and non-pleiotropic risk loci (p=1.56×10−3) separately.

Next, we compared spatio-temporal gene-expression patterns for the 109 pleiotropic risk loci 

and the 37 disorder-specific loci using post-mortem brain data. On average, disorder-specific 

and pleiotropic risk loci showed a similar level of gene expression in both prenatal and 

postnatal development after multiple testing correction (t-test p > 0.025 ×10−2; Fig. S4). 

During prenatal development, non-pleiotropic loci (mainly SCZ-associated) showed peak 

expression in the first trimester, after which expression rapidly decreased, while pleiotropic 

genes associated with only 2 disorders (“pleiotropy=2”; 60 loci) and those associated with 

more than 2 (“pleiotropy>2”, 49 loci) showed peak expression around the second trimester 

(Fig. 5b). After birth, all three groups showed gradually increasing gene expression until 

adulthood. Expression levels were associated with the degree of pleiotropy, with the 

pleiotropy>2 group showing higher gene expression than either the pleiotropy=2 group (t-

test p < 2.10×10−4) or non-pleiotropic risk loci (t-test p < 2.2×10−16).
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Enrichment analyses using the genes preferentially expressed in specific cortical regions 

suggested that pleiotropic loci were over-represented among genes expressed in the frontal 

cortex, while non-pleiotropic loci were enriched in the occipital cortex (FDR q<0.05; Fig. 

5c). Cell-type-specific analysis indicated that genes implicated in pleiotropic loci were 

mainly expressed in neurons (FDR q<0.05) but not in glial cell types. Further, enrichment of 

pleiotropic loci in neuronal cells was also associated with the degree of pleiotropy, as 

highlighted in Fig. 5d.

Previous studies of model organisms using gene knock-out experiments suggested that 

pleiotropic risk loci may undergo stronger selection than non-pleiotropic loci (Hill and 

Zhang, 2012). However, we found no evidence that pleiotropic risk variants are under 

stronger evolutionary constraints (Table S6.4). Various comparative genomics resources, 

including PhyloP (Pollard et al., 2010), PhastCons (Siepel et al., 2005), and GERP++ 

(Davydov et al., 2010), showed our top loci to have similar properties regardless of the 

extent of pleiotropy. Neither did we find differences between disorder-specific lead SNPs 

and pleiotropic SNPs with respect to their minor allele frequencies, average heterozygosity, 

or predicted allele ages (Kiezun et al., 2013). Pleiotropic and non-pleiotropic SNPs also did 

not differ in terms of the distance to nearest genes, distance to splicing sites, chromosome 

compositions, and predicted functional consequences of non-coding regulatory elements.

Relationship between cross-disorder genetic risk and other brain-related traits and 
diseases

To explore the genetic relationship of cross-disorder genetic risk with other traits, we treated 

this 8-disorder GWAS meta-analysis as a single “cross-disorder phenotype.” We applied 

LDSC to estimate SNP heritability (h2
SNP) and genetic correlations with other phenotypes, 

using block jackknife-based standard errors to estimate statistical significance. The 

estimated h2
SNP of the cross-disorder phenotype was 0.146 (SE 0.0058; observed scale). 

Using data for 25 brain-related traits selected from LDHub (Zheng et al., 2017), we found 

significant genetic correlations of the cross-disorder phenotype with seven traits (at a FDR-

corrected p-value threshold 0.002): never/ever smoking status, years of education, 

neuroticism, subjective well-being, and three sleep-related phenotypes (chronotype, 

insomnia, and excessive daytime sleepiness) (Table S7.1).

GWAS catalog data for the 109 pleiotropic risk loci showed enrichment of implicated genes 

in a range of brain-related traits (Table S7.2). As expected, the associated traits included 

SCZ, BIP, and ASD. In addition, the pleiotropic risk loci were enriched among genes 

previously associated with neuroticism (corrected enrichment p= 5.28×10−6; GRIK3, 
CTNND1, DRD2, RGS6, RBFOX1, ZNF804A, L3MBTL2, CHADL, RANGAP1, RSRC1, 
GRM3), cognitive ability (corrected p= 7.15×10−5; PTPRF, NEGR1, ELOVL3, SORCS3, 
DCC, CACNA1I), and night sleep phenotypes (corrected p= 1.86×10−2; PBX1, NPAS3, 
RGS6, GRIN2A, MYO18A, TIAF1, CNTN4, PPP2R2B, TENM2, CSMD1). We also found 

significant enrichment of pleiotropic risk genes in multiple measures of body mass index 

(BMI), supporting previous studies suggesting a shared etiologic basis between a range of 

neuropsychiatric disorders and obesity (Hartwig et al., 2016; Lopresti and Drummond, 2013; 

Milaneschi et al., 2018).
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DISCUSSION

In the largest cross-disorder GWAS meta-analysis of neuropsychiatric disorders to date, 

comprising more than 725,000 cases and controls across eight disorders, we identified 146 

LD-independent lead SNPs associated with at least one disorder, including 35 novel loci. Of 

these, 109 loci were found to affect two or more disorders, although characterization of this 

pleiotropy is partly dependent on per-disorder sample size. Our results provide five major 

insights into the shared genetic basis of psychiatric disorders.

First, modeling of genetic correlations among the eight disorders using two different 

methods (EFA and hierarchical clustering) identified three groups of disorders based on 

shared genomics: one comprising disorders characterized by compulsive behaviors (AN, 

OCD and TS), a second comprising mood and psychotic disorders (MD, BIP and SCZ), and 

a third comprising two early-onset neurodevelopmental disorders (ASD and ADHD) and one 

disorder each from the first two factors (TS and MD). The loading of MD on two factors 

may reflect biological heterogeneity within MD, consistent with recent evidence showing 

that early-onset depression is associated with genetic risk for ADHD and with 

neurodevelopmental phenotypes (Rice et al., 2018). Overall, these results indicate a 

substantial pairwise genetic correlation between multiple disorders along with a higher-level 

genetic structure that point to broader domains underlying genetic risk to psychopathology. 

These findings are at odds with the classical, categorical classification of mental illness.

Second, variant-level analyses support the existence of substantial pleiotropy, with nearly 

75% of the 146 genome-wide significant SNPs influencing more than one of the eight 

examined disorders. We also identified a set of 23 loci with particularly extensive pleiotropic 

profiles, affecting four or more disorders. The most highly pleiotropic locus in our analyses, 

with evidence of association with all eight disorders, maps within DCC, a gene fundamental 

to the early development of white matter connections in the brain (Bendriem and Ross, 

2017). Prior studies showed that DCC is a master regulator of axon guidance (through its 

interactions with netrin-1 and draxin (Liu et al., 2018). Loss of function mutations in DCC 
cause severe neurodevelopmental syndromes involving loss of midline commissural tracts 

and diffuse disorganization of white matter tracts (Bendriem and Ross, 2017; Jamuar et al., 

2017; Marsh et al., 2017). A highly pleiotropic effect of variation in DCC on diverse 

psychiatric disorders with childhood and adolescent onset would be consistent with its role 

in both early organization of neuronal circuits and the maturation of mesolimbic 

dopaminergic connections to the prefrontal cortex during adolescence (Hoops and Flores, 

2017; Reynolds et al., 2018; Vosberg et al., 2018).

Third, we identified a set of loci that have opposite effects on risk of psychiatric disorders. 

Notably, these included loci with opposing effects on pairs of disorders that are genetically 

correlated and have common clinical features. For example, a SNP within MRSA was 

associated with opposing effects on two neurodevelopmental disorders (ASD and SCZ), and 

a variant within KIAA1109 had opposite directional effects on major mood disorders (BIP 

and MD) (Table S3.3). These results underscore the complexity of genetic relationships 

among related disorders and suggest that overall genetic correlations may obscure a more 

complex set of genetic relationships at the level of specific loci and pathways, as seen in 
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immune-mediated diseases (Baurecht et al., 2015; Lettre and Rioux, 2008; Schmitt et al., 

2016). This heterogeneity of effects between genetically correlated disorders is also 

consistent with a recent analysis that revealed loci contributing to biological differences 

between BIP and SCZ and found polygenic risk score associations with specific symptom 

dimensions (Bipolar Disorder and Schizophrenia Working Group of the Psychiatric 

Genomics Consortium, 2018). A complete picture of cross-phenotype genetic relationships 

will require understanding both same and opposite directional effects. In addition, to the 

extent that pleiotropic loci may reveal targets for drug discovery, opposite directional effects 

on psychiatric disorders could help anticipate problematic off-target effects.

Fourth, we found extensive evidence that neurodevelopmental effects underlie the cross-

disorder genetics of mental illness. In addition to DCC, a link between pleiotropy and 

genetic effects on neurodevelopment was also seen for other top loci in our analysis, 

including RBFOX1, BRAF, and KDM7A, all of which have been shown in prior research to 

influence aspects of nervous system development. Gene enrichment analyses showed that 

pleiotropic loci were distinguished from disorder-specific loci by their involvement in 

neurodevelopmental pathways including neurogenesis, regulation of nervous system 

development, and neuron differentiation. These results are consistent with those of a smaller 

recent analysis in the population-based Danish iPSYCH cohort (comprising 46,008 cases 

and 19,526 controls across six neuropsychiatric disorders) (Schork et al., 2019). In that 

analysis, consistent with the present findings, functional genomic characterization of cross-

disorder loci implicated fetal neurodevelopmental processes, with greater prenatal than 

postnatal expression. In addition, SORCS3 emerged as a genome-wide significant cross-

disorder locus in both studies. However, other specific loci, cell types, and pathways 

implicated in the iPSYCH analysis differed from those identified in our study. In 

supplementary analyses, we did not find evidence of significant overrepresentation of genes 

related to pleiotropic SNPs identified here among previously defined genomic disorder 

regions or genes associated with neurodevelopmental disorders from rare variant studies 

(including ASD, intellectual disability, and developmental delay) (Samocha et al., 2017; 

Satterstrom et al., 2019) (Data S3.1–3.3).

Fifth, our analyses of spatiotemporal gene expression profiles revealed that pleiotropic loci 

are enriched among genes expressed in neuronal cell types, particularly in frontal or 

prefrontal regions. They also demonstrated a distinctive feature of genes related to 

pleiotropic loci: compared with disorder-specific loci, they are on average expressed at 

higher levels both prenatally and postnatally (Figure 5). More specifically, single-disorder 

(mainly SCZ) loci were related to genes that were preferentially expressed in the first fetal 

trimester followed by a decline over the prenatal period and then relatively stable levels 

postnatally. In contrast, average expression of genes related to pleiotropic loci peaked in the 

second trimester and remained overexpressed throughout the lifespan. When dividing the 

pleiotropic loci into bins of those associated with two disorders (mainly SCZ and BIP) vs. 

three or more disorders, we observed a consistent gradient of greater expression associated 

with broader pleiotropy. These results are based on average expression profiles, and not all 

individual gene expression patterns follow this pattern.
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Taken together, our results suggest that pleiotropic loci appear to be distinguished by both 

their differential importance in neurodevelopmental processes and their heightened brain 

expression after the first trimester. Apart from this, however, pleiotropic loci were similar to 

non-pleiotropic loci across a range of other functional features, including intolerance to loss-

of-function mutations, evidence of selection, minor allele frequencies, and genomic position 

relative to functional elements.

Overall, our results identify a range of pleiotropic effects among loci associated with 

psychiatric disorders. Consistent with prior research (Brainstorm Consortium, 2018; Cross-

Disorder Group of the Psychiatric Genomics Consoritum, 2013), we found substantial 

pairwise genetic correlations across child- and adult-onset disorders and extended these 

findings by demonstrating clusters of genetically-related disorders. These results augment a 

substantial body of research demonstrating that genetic influences on psychopathology do 

not map cleanly onto the clinical nosology instantiated in the DSM or ICD (Geschwind and 

Flint, 2015; Smoller et al., 2019) Using a range of bioinformatic and functional genomic 

analyses, we find that loci with pleiotropic effects are distinguished by their involvement in 

early neurodevelopment and increased expression beginning in the second trimester of fetal 

development and persisting throughout adulthood.

Taken together, the analyses presented here suggest that genetic influences on psychiatric 

disorders comprise at least two general classes of loci. The first comprises a set of genes that 

confer relatively broad liability to psychiatric disorders by acting on early neurodevelopment 

and the establishment of brain circuitry. These pleiotropic genes begin to come online by the 

second trimester of fetal development and exhibit differentially high expression thereafter. 

The expression and differentiation of this generalized genetic risk into discrete psychiatric 

syndromes (e.g., ASD, BIP, AN) may then involve direct and/or interactive effects of 

additional sets of common and rare loci and environmental factors, possibly mediated by 

epigenetic effects, that shape phenotypic expression via effects on brain structure/function 

and behavior. Further research will be needed to clarify the nature of such effects.

Our results should be interpreted in light of several limitations. First, while our dataset is the 

largest genome-wide cross-disorder analysis to date, data available for individual disorders 

varied substantially—from a minimum of 9,725 cases and controls for OCD to 461,134 

cases and controls for MD. This imbalance of sample size may have limited our power to 

detect pleiotropic effects on underrepresented disorders. The future availability of larger 

samples will improve power for detection of cross-disorder effects. Second, it is possible 

that comorbidity among disorders contributed to apparent pleiotropy; we found, however, 

that fewer than 2% of cases overlapped between disorder datasets (excluding 23andMe data) 

and we adjusted for sample overlap in meta-analysis. Third, the method we applied to detect 

cross-phenotype association, which combines an all-subsets fixed-effects GWAS meta-

analysis with a Bayesian method for evaluating the best-fit configuration of genotype-

phenotype associations, is one of several approaches (Solovieff et al., 2013). However, we 

have previously shown that this method outperforms a range of alternatives for detecting 

pleiotropy under various settings (Zhu et al., 2018). Fourth, our designation of loci as 

pleiotropic vs. non-pleiotropic loci refers only to their observed effects on the eight target 

brain disorders. Thus, some of the “non-pleiotropic” loci may have additional effects on 
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psychiatric phenotypes that were not included in our meta-analysis and/or on non-

psychiatric phenotypes. Fifth, our functional genomic analyses were constrained by the 

limitations of existing resources (e.g. spatiotemporal gene expression data resources). Our 

work underscores the need for more comprehensive functional data including single cell 

transcriptomic and epigenomic profiles across development and brain tissues. Lastly, we 

included only individuals of European ancestry to avoid potential confounding due to 

ancestral heterogeneity across distinct disorder studies. Similar efforts are needed to 

examine these questions in other populations.

In sum, in a large-scale cross-disorder genome-wide meta-analysis, we identified three 

genetic factors underlying the genetic basis of eight psychiatric disorders. We also identified 

109 genomic loci with pleiotropic effects, of which 33 have not previously been associated 

with any of the individual disorders. In addition, we identified 11 loci with opposing 

directional effects on two or more psychiatric disorders. These results highlight disparities 

between our clinically-defined classification of psychiatric disorders and underlying biology. 

Future research is warranted to determine whether more genetically-defined influences on 

cross-diagnostic traits or subtypes of dissect may inform a biologically-informed 

reconceptualization of psychiatric nosology. Finally, we found that genes associated with 

multiple psychiatric disorders are disproportionately associated with biological pathways 

related to neurodevelopment and exhibit distinctive gene expression patterns, with enhanced 

expression beginning in the second prenatal trimester and persistently elevated expression 

relative to less pleiotropic genes. Therapeutic modulation of pleiotropic gene products could 

have broad-spectrum effects on psychopathology.

STAR* METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Any inquiries about analytical results or other information should be directed to Lead 

Contact, Jordan W. Smoller (jsmoller@mgh.harvard.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Genotyped sample description—Genotype data from eight studies of genetic 

associations with psychiatric disorders conducted by the Psychiatric Genomics Consortium 

were included in this report. A summary of each study is provided below, however, detailed 

sample descriptions are available in the primary publication. The lead PI of every cohort 

included across studies certified that their protocol was approved by their local Ethical 

Committee. Supplementary Table S1 lists for each disorder the number of cases and 

controls, the number of loci identified in the single disorder genome-wide association study, 

and SNP-based heritability.

Schizophrenia | Ripke et al., 2014—108 loci were identified as associated with 

schizophrenia in a case-control meta-analysis including 150,064 individuals. For the current 

study, the 46 case-control cohorts of European ancestry were retained, totaling 33,640 cases 

and 43,546 controls. Cases were defined as individuals diagnosed with schizophrenia or 
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schizoaffective disorder, which was determined by research-based assessment or clinician 

diagnosis depending on the sample.

Bipolar disorder | Stahl et al., 2019—Thirty-two case-control cohorts from Europe, 

North America, and Australia including 20,352 cases and 31,358 controls of European 

ancestry were meta-analyzed to identify 30 loci associated with bipolar disorder. Cases met 

criteria for lifetime diagnosis of bipolar disorder as defined by DSM-IV, ICD-9, or ICD-10, 

which was established using interview-based structured assessment, clinician-administered 

checklists, or review of medical records. All subjects in the meta-analysis were included in 

the current study.

Major depression | Wray et al., 2018—Seven case-control cohorts were combined to 

identify 44 loci associated with major depression. The first cohort included 29 case-control 

samples of European descent where lifetime diagnosis of major depressive disorder was 

ascertained using structured clinical interviews (DSM-V, ICD-9, ICD-10), clinician-

administered checklists, or review of medical records. Six additional cohorts of European 

ancestry, including the Hyde et al study (23andMe, Inc), determined case status using other 

methods including national or hospital treatment registers, self-reported symptoms or 

treatment by a medical professional, or direct interviews. Analyses comparing the original 

cohort with the additional ones indicated strong correlation of common genetic variants and 

little evidence of heterogeneity. 130,664 cases and 330,470 controls from these cohorts were 

included in the current analyses.

Attention deficit hyperactive disorder | Demontis et al., 2019—Twelve cohorts of 

European, North American, and Chinese descent were aggregated in a meta-analysis of 

attention deficit and hyperactive disorder, revealing 12 associated loci. For the first cohort, 

cases were ascertained using the Danish Psychiatric Central Research Registrar and 

diagnoses were confirmed by psychiatrists according to ICD-10. The remaining studies 

included four parent-offspring trio cohorts and seven case-control cohorts. Cases were 

recruited from clinics, hospitals or through medical registries and diagnosed using research-

based assessments administered by clinicians or trained staff. 19,099 cases and 34,194 

controls of European ancestry were included in the current study.

Autism spectrum disorder | Grove et al., 2019—Five family-based cohorts of 

European descent and a population-based case-control sample from Denmark were 

combined to discover five loci associated with autism spectrum disorder. In each family 

study, diagnosis was confirmed for all affected individuals using standard research tools and 

expert clinical consensus diagnosis. In the population-based cohort, cases were identified 

using the Danish Psychiatric Central Research Register and were diagnosed with ASD 

before 2013 by a psychiatrist according to ICD-10. All subjects in this sample were included 

here (18,381 cases; 27,969 controls).

Obsessive compulsive disorder | IOCDF-GC and OCGAS, 2018—Individuals of 

European descent from two cohorts were combined in this meta-analysis including 2,688 

cases and 7,037 controls; no loci reached genome-wide significance. Case diagnoses were 
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established using DSM-IV criteria and controls were unscreened. All cases and controls 

were included in the current analyses.

Anorexia nervosa | Duncan et al., 2017—3,495 cases from two consortia and 10,982 

matched controls from the Psychiatric Genomics Consortium, all of European descent, were 

meta-analyzed to identify one locus associated with anorexia nervosa. Cases met criteria as 

defined by DSM-IV for lifetime diagnosis of anorexia nervosa (restricting or binge-purging 

subtype), bulimia nervosa, or anorexia nervosa – not otherwise specified, anorexia nervosa 

subtype. All individuals included in the primary study were included in the current analyses.

Tourette Syndrome | Yu et al., 2019—Three case-control cohorts and one family-based 

cohort from Europe and North America including 4,819 cases and 9,488 controls of 

European ancestry were meta-analyzed to identify one locus associated with Tourette 

Syndrome. All cases met DSM-IV-TR or DSM-5 criteria for Tourette syndrome, except for 

12 cases who met DSM-5 criteria for chronic motor or vocal tic disorder. All cases were 

recruited by Tourette syndrome specialty clinics or by email/online recruitment combined 

with validated, web-based phenotypic assessments.

Genotype quality control, imputation, and association analysis—All primary 

studies used the standardized PGC ricopili pipeline for quality control, imputation and 

association testing. Briefly, for each dataset, poor quality SNPs and samples missing >5% 

SNPs were removed. Next, pre-phasing and imputation were implemented using IMPUTE2 

(Howie et al., 2011) and the 1000 Genomes reference panel. High quality SNPs (INFO > 

0.8) with low missingness (<1%) were retained. A subset of these markers (MAF > 0.05; 

pruned for linkage disequilibrium, r2 > 0.02) were used to assess relatedness and population 

stratification. Only one of any pair of related individuals was retained. Each imputed dataset 

was tested for association with the disease outcome of interest using an additive logistic 

regression model in PLINK (Purcell et al., 2007) with age, sex, and 10 principal components 

included as covariates. Finally, a meta-analysis within each disease category was done using 

an inverse-weighted fixed effects model. After extracting SNPs commonly exist in all eight 

disorder studies, we removed 3,591 SNPs whose alleles were incompatible. For palindromic 

SNPs, we compared allele frequencies between eight studies to check strand ambiguity. 50 

SNPs with frequency difference greater than 15% from the 1KG reference was excluded. As 

a result, 6,786,993 autosomal SNPs remained for further analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Genome-wide SNP-heritability estimation—For each of the eight GWAS disorders, 

LD Score regression was performed on the summary statistics of individual disease using 

LDSC to estimate SNP-based heritability in the liability scale and genetic correlation 

between pairs of disorders (Bulik-Sullivan et al., 2015b). LD scores and weights for 

European populations were downloaded from the LDSC website (http://

www.broadinstitute.org/~bulik/eur_ldscores/). SNPs were removed if the minor allele 

frequency is smaller than 5% or an imputation quality score is less than 0.9; MHC region 

was excluded from the analysis. For single-trait LDSC, the slope of the regression estimates 

the SNP-based heritability, and the intercept greater than one captures the inflation in the 
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summary statistics due to population stratification or other confounding factors. We 

confirmed that the heritability Z-scores (i.e., a measure of the polygenic signals) are greater 

than four, and the LDSC intercepts are approximately one and less than. suggesting that the 

increase in mean χ2 statistics is due to polygenicity and not due to stratification.

Factor analysis and genomic SEM—Genomic SEM’s Multivariable LD score 

regression method (Grotzinger et al., 2019) was first used to estimate the genetic covariance 

matrix (S) and sampling covariance matrix (V) for the eight psychiatric traits. Quality 

control for this step included removing SNPs with an MAF < 1%, information scores < .9, 

SNPs from the MHC region, and filtering SNPs to HapMap3. All SNP effects were 

standardized using the sumstats function in Genomic SEM. To examine genome-wide factor 

structure, models using only the genetic covariance and sampling covariance matrix were fit. 

Genomic SEM provides indices of model fit—standardized root mean square residual 

(SRMR), model 2, Akaike Information Criteria (AIC), and Comparative Fit Index (CFI)—

that can be used to determine how well the proposed model captures the observed data. 

Model fit for the common factor model in which the loadings were freely estimated was 

only fair, (2 (20) = 313.94, AIC = 345.9, CFI = .786, SRMR = .149), suggesting that there 

were nuances in the genetic architecture not fully captured by a single cross-trait index of 

genetic risk. An exploratory factor analysis (EFA) of the S matrix with three-factors using 

the promax rotation in the R package factanal was then used to guide construction of a 

follow-up model (Table S2.2). A follow-up confirmatory model with three correlated factors 

was specified in Genomic SEM based on the EFA parameter estimates (positive standardized 

loadings > .2 were retained; Figure 2b). This model provided good fit to the data (2 (15) = 

85.35, AIC = 127.36, CFI = .945, SRMR = .079). Results indicated there was a moderate 

genetic correlation between the compulsive and mood/psychotic disorders factors (rg = .43, 

SE = .08), a smaller genetic correlation between the mood/psychotic and early onset factors 

(rg = .25, SE = .05), and next to no correlation between the compulsive and early onset 

factors (rg = < .01, SE = .07). A model that included additional negative cross-loadings 

provided similar fit to the data and highly similar correlations across the genetic factors. 

Given this consistency in results, the correlated factors model with SNP effects only 

included positive loadings.

Summary-data-based meta-analysis—To identify genomic loci shared across multiple 

neuropsychiatric disorders, we performed primary meta-analysis using the subset-based 

fixed-effects method ASSET (Bhattacharjee et al., 2012). Standard meta-analysis pools the 

effect of a given SNP across K studies, weighting the effects by the size of the study. By 

exhaustive investigation of all subset-based effects, the maximum SNP effect was identified 

as:

Zmax − meta = maxS ∈ S Z S ,

where the absolute value of the subset-specific effect [Z(S)] over class S of all possible 

subsets of K studies is highest. The numbers of shared subjects across eight disorder studies 

were identified using the PGC checksum algorithm, and Zmeta was standardized so that 

covariance between the statistics can be accounted for as previously described 
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(Bhattacharjee et al., 2012; Lin and Sullivan, 2009). Tail probabilities for the distribution of 

the maximum, adjusting for multiple testing of all combination of subsets, were then 

estimated with the discrete local maxima method, which uses the correlation structure of test 

statistics across subsets. Based on the derived p-value, standard deviation of the SNP effect 

was adjusted to reflect the multiple-testing correction. Even when correcting for all subset 

tests (2K-1), simulations suggest there is a substantial gain in power using this test relative to 

traditional meta-analysis (Bhattacharjee et al., 2012. Standardized genomic inflation factor 

(λ1000) for the meta-analysis result was close to one. LDSC intercept was substantially less 

than λGC (0.79 vs 1.55), suggesting that the increase in mean χ2 statistics in the cross-

disorder meta-analysis is mainly due to polygenicity and not due to stratification or other 

confounding biases.

Once SNPs with genome-wide significant association were identified, we identified LD-

independent genomic regions using PLINK clumping (--clump-r2=0.4, --clump-kb=500, --

clump-p1=5e-08, --clump-p2=5e-02). Genomic regions were merged if they physically 

overlap using bedtools. Due to extensive LD, the MHC region was considered as one region 

(chr6:25–35Mb). To detect secondary signals independent of index SNP in each of the 

candidate cross-disorder loci, conditional analysis was performed with GCTA-COJO (Yang 

et al., 2012) using meta-analysis summary statistics from ASSET. 1KG EUR population was 

used as the reference panel for estimating LD. For each genomic region harboring a cross-

disorder signal, we tested the presence of any additional associated SNPs using a stepwise 

procedure (--cojo-slct), conditioning on the primary significant SNP for model initiation. A 

conditional p-value for each variant was reported, adjusted for genomic control and 

collinearity. In each region, additional SNPs were selected as a distinct association signal if 

having a conditional p-value < 1e-06.

Disease-association modeling—We estimated posterior probabilities for each of the 

top loci identified from the meta-analysis to quantify disorder-specific effects (Han and 

Eskin, 2012). This estimation, known as the m-value, relies on two assumptions, 1) effects 

are either present or absent in studies, and 2) if they are present, they are similarly sized 

across studies. Assume Xi is the observed effect size of study i, and Ti is a random variable 

with value 1 if study i has an effect and 0 if not, then the m-value can be estimated using 

Bayes’ theorem:

mi = P (Ti = 1|X) =
P X |Ti = 1 P Ti = 1

P X |Ti = 0 P Ti = 0 + P X |Ti = 1 P Ti = 1

which can then be used to predict whether an effect exists in a given study (>.9) or not (<.1) 

under the binary effects assumption.

Examination of the Impact of Sample Size Imbalance on Genetic Correlations 
and Genomic SEM Results—We conducted several analyses to examine whether 

differences in sample size among the 8 disorders influenced the pattern of cross-disorder 

genomic relationships we observed. First, we note that while sample size will affect the 

precision of a genetic correlation estimate (ie standard error) it should not affect the 
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magnitude of the estimate itself (Bulik-Sullivan et al. 2015). As shown in Data S1.2, there is 

no substantial relationship between the estimated genetic correlations and the effective 

sample sizes of the corresponding disorder pairs (p-value for the slope = 0.055 ). The 

slightly positive linear relationship appears to be driven by MD and its genetic correlation 

with the other four major psychiatric disorders (SCZ, BIP, ASD, ADHD), however, these 

estimates are generally consistent with previously reported ones when sample sizes are much 

smaller (except for ASD) (Brainstorm et al., 2018) (Cross-Disorder Group of the Psychiatric 

Genomics et al., 2013) (Data S1.3). Furthermore, the largest among all pairwise 

comparisons, such as those between SCZ-BIP, AN-OCD, and ADHD-AN, do not scale with 

sample size.

Next, we investigated the impact of variable sample sizes on the Genomic SEM analysis 

results by re-running Genomic SEM analysis using a Maximum Likelihood (ML) estimator 

that does not take into account the differing precisions of the genetic covariance estimates 

(resulting from, for example, uneven sample sizes across traits) when optimizing parameters. 

As shown in Data S1.4, the results were consistent with those from the primary analysis 

reported in the main text that is based on a Weighted Least Squares (WLS) estimator, which 

does take into account the differing precisions of the genetic covariance estimates. 

Specifically, the nontrivial standardized factor loadings of MD on two of the three factors is 

evident in both the WLS and ML solutions and is therefore unlikely to be an artifact of its 

large N. Note that, in both the WLS and the ML solution, the standard errors are smaller for 

the loadings involving the better-powered GWAS phenotypes, as we would expect.

To further evaluate whether sample size imbalance across the eight disorders biased the 

number of pleiotropic signals we observed, we conducted simulation studies of UK Biobank 

data. In particular, we examine whether the number of pleiotropic loci we identified exceeds 

chance expectation given the sample size and genetic correlations among the eight disorders. 

We used the full release of 488,377 UK Biobank (UKBB; (Sudlow et al., 2015)) individual 

data, imputed with the Haplotype Reference Consortium (HRC), UK 10K, and 1000 

Genomes reference panels (under the application number 31063). Data was QC’ed as 

described in the Neale Lab UK BIOBANK GWAS webpage (http://www.nealelab.is/uk-

biobank/), including 361,194 unrelated individuals of Caucasian ancestry and 13.7 million 

genetic variants (MAF > 0.0001, INFO > 0.8). For the purpose of the simulation, we 

removed individuals who were in the UKBB interim release to avoid sample overlap with 

the MD GWAS where these subjects were included (Wray et al., 2018) and restricted the 

analysis to variants present in both the current study (PGC-CDG2) and the UKBB datasets, 

resulting in 6,691,733 SNPs.

Because SCZ and MD accounted for the majority of the total sample size in our study as 

well as the two most statistically powerful studies (estimated by calculating their effective 

sample size and multiplying that by heritability), we generated simulated datasets similar in 

size and heritability, as well as cross-correlation to the other datasets, for each of the six 

smaller studies (BIP, ADHD, ASD, TS, ANO, and OCD); In brief, simulated genetic data 

was created from the post-QC UKBB imputed data for each of the six disorders by randomly 

selecting subjects without any overlap given their original sample sizes. In each simulation 

replicate, we then simulated quantitative phenotypes (Y = ) given true effect sizes, the 
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standardized genotype matrix X, and a non-genetic error term. The true effect sizes of each 

SNP were drawn from a multivariate normal distribution, where M is the total number of 

SNPs in the genome, μ is a zero vector of length 6, and ∑ is the covariance matrix that 

accounts for the genetic correlations (rg) among the six disorders (with disease-specific 

SNP-heritabilities on the diagonal and hihjrg,ij on the off-diagonals). Individual phenotypes 

were then generated by calculating the sum of betas weighted by the standardized allele 

dosages (mean 0 and variance 1) with the --score variance-standardize option in PLINK2 

v2.00a2LM (Chang et al., 2015) and a noise term drawn from N(0,) for each disorder. Case-

control phenotypes were generated by sorting Y in descending order and assigning the top 

fcase to be cases, where fcase corresponds to the fraction of cases of each disorder in the 

original GWAS. Association statistics were estimated using logistic regression, assuming an 

additive effect of alleles. We then matched the reference and the alternate alleles in UKBB to 

those in the current study and reversed the sign of the effect sizes when necessary. We then 

performed meta-analysis using ASSET (Bhattacharjee et al., 2012) and estimated m-values 

as was done in the original analysis. Finally, we compared the distribution of the number of 

pleiotropic loci across the 100 simulation replicates against the observed value in the actual 

study. For this analysis, we focused on chromosome 1 where the largest number of cross-

disorder associations were identified in the actual analysis. Data S1.5 displays the 

distribution of the number of cross-disorder loci identified in meta-analysis of chromosome 

1 across 100 simulation replicates. We compared this to the number of pleiotropic loci found 

in our meta-analysis compared to those seen in the simulations, given the sample size and 

genetic correlations among the eight disorders to determine whether the observed number of 

pleiotropic loci exceeds chance expectation.

Functional annotation and gene-mapping of genome-wide significant variants
—For the 146 genome-wide significant variants, gene mapping and functional annotation 

was conducted using various resources, including SNPNexus (Dayem et al., 2018) and 

FUMA (Watanabe et al., 2017). Nearest genes and functional consequence of each SNP on 

gene functions were annotated based on ANNOVAR (Wang et al., 2010). Combined 

Annotation Dependent Depletion (CADD) score (Kircher, 2014) indexes the deleteriousness 

of variants computed based on 67 annotation resources. SNPs with the CADD score higher 

than 12 were considered to confer deleterious effects. The RegulomeDB (Boyle, 2012) 

provides a categorical score that describes how likely a SNP is likely to play a regulatory 

role based on the integration of high-throughput datasets. The RDB score of 1a suggests the 

strongest evidence, while the score 7 represents the least support for a regulatory potential. 

The minChrState and the commonChrState represent the minimum and the most 

common15-core chromatin state across 127 tissue/cell type predicted by ChrHMM. The 

chromatin state of less than 8 suggests an open chromatin state. eQTL mapping provides 

significant cis-SNP-gene pairs (up to 1Mb apart) in brain tissue types from GTEx and 

BRAINEAC.

For chromatin interaction mapping, we first refined the localization of potential causal 

variants for top 146 lead SNPs using FINEMAP (Benner et al., 2016). For each region, we 

considered only SNPs located in the LD region with the lead SNP (r2 > 0.6). We then 

applied the method to calculate the posterior probability of being causal for each of the 
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remaining SNPs. A 95% credible set of SNPs for each region was constructed by ordering 

the posterior probability from largest to smallest and selecting in the corresponding SNPs up 

to a cumulative probability of 95%. Credible SNPs were then grouped into those that are 

located within the promoter or exons and those that are non-coding/intronic. Promoter/

exonal SNPs were directly assigned to their target genes using positional mapping, while 

non-coding/intronic SNPs were assigned to their target genes based on long range 

interactions (Hi-C) or expression quantitative trait loci (eQTLs). Two Hi-C datasets 

originated from the human brain (fetal brain Hi-C (Won et al., 2016) and adult brain Hi-C 

(Wang et al., 2018)) were used to map credible SNPs to remotely interacting genes as 

previously described (Wang et al., 2018). A colocalization analysis with the recent eQTL 

dataset from adult prefrontal cortices (PFC) was also used to map 146 GWS loci into their 

target genes (Wang et al., 2018). In the end, we obtained two sets of candidate genes, one 

from fetal brain (positional mapping, fetal brain Hi-C), the other from adult brain (positional 

mapping, adult brain Hi-C, adult brain eQTLs).

GTEx gene expression enrichment analysis—MAGMA gene-property analysis (de 

Leeuw et al., 2015) was performed using gene expression data from 83 tissues based on 

GTEx RNA-seq data (v7). Expression values (RPKM) were log2 transformed with pseudo-

count one after winsorization at 50, and average expression values were taken per tissue. 

Analysis was performed separately for 30 general tissue types and 53 specific tissue types, 

and Bonferroni-based multiple testing correction was done for the examined tissue types.

Pathway analysis using Gene Ontology—We used FUMA (Watanabe et al., 2017) to 

map SNPs to genes and then test for enrichment of specific Gene Ontology functions and 

pathways among genome-wide significant pleiotropic and disorder-specific SNPs separately. 

Hypergeometric tests identify any statistical over-representation of genes from the input list 

(mapped from SNPs) in predefined MSigDB Gene Ontology gene sets which describe 

biological processes, molecular functions, and cellular components. Multiple test correction 

was applied by category.

Enrichment analysis using brain developmental, regional, and cell-type-
specific data—Developmental expression trajectories for candidate genes were plotted 

using a published transcriptome atlas constructed from post-mortem brain data (Kang et al. 

2011). As this dataset contains expression values from multiple brain regions, we selected 

transcriptomic profiles of cerebral cortex with developmental epochs that span prenatal (6–

37 post-conception weeks, PCW) and postnatal (4 months-42 years) periods. Expression 

values were log-transformed and centered to the mean expression level for each sample 

using a scale(center=T, scale=F)+1 function in R. This normalization method has been 

frequently used in other papers to plot developmental expression trajectories (e.g. (Grove et 

al., 2019b; Li et al., 2018; Mah and Won, 2019; Satterstrom et al., 2019). Instead of 

measuring the expression values of individual disease associated gene, we measured the 

average expression values of the entire gene set. To do this, disease risk genes were selected 

for each sample and their average centered expression values were calculated and plotted 

(individual dots in the plot denote different samples or individuals, not different genes). It is 
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of note that the average expression values each gene set correspond to representative 

expression patterns of the disease risk genes, so individual genes may behave differently.

We used candidate genes identified in fetal brain and adult brain to plot prenatal and 

postnatal gene expression profiles, respectively.

To obtain genes that show cortical regional enrichment (e.g. frontal cortical enrichment), we 

computed t-statistics for each gene for a specific cortical region (e.g. frontal cortex) versus 

all other cortical regions (e.g. parietal cortex, temporal cortex, and occipital cortex, Kang et 

al. 2011). The top 5% of genes that show heightened expression patterns for each cortical 

region were selected as region-specific genes. These genes were then overlapped with 

candidate genes by Fisher’s exact test to measure cortex regional enrichment.

Single cell expression profiles from the adult brain (Darmanis et al., 2015) were used to 

identify cell-type specificity of candidate genes. Single cell expression values were log-

transformed and centered using the mean expression values. Average centered expression 

values for candidate genes were calculated in each cell. Cells were then grouped into cell 

clusters (neurons, astrocytes, microglia, oligodendrocytes, OPC, and endothelial cells), and a 

relative expression level for a given cell cluster was calculated by a scale function in R.

Comparison with other brain-related traits and diseases—To explore the genome-

wide relationship of our cross-disorder phenotype with other traits and diseases, we 

estimated pairwise genetic correlations using LD Hub (Zheng et al., 2017). We selected 25 

brain-related traits from LD Hub, including phenotypes related to smoking behavior, 

education, personality, neurological disorders, sleeping, cognitive function, and brain 

volume (Table S7.1). Summary statistics for different phenotypes were harmonized via the 

default options provided by LD Hub, and SNPs in the MHC regions were removed before 

the analysis. For each of the selected traits, a bivariate LDSC analysis was performed to 

estimate its genetic correlation with our meta-analyzed cross-disorder phenotype. We then 

applied FDR correction to control for multiple testing and identify significant associations.

For GWAS catalog data, FUMA (Watanabe et al., 2017) GENE2FUNC module was used to 

test for enrichment of specific GWAS catalog-associated gene sets for genome-wide 

significant pleiotropic risk loci. Hypergeometric tests identified any statistical over-

representation of genes from the input list in predefined GWAS catalog data. Human 

protein-coding genes were used as background genes. All identified traits with multiple-

testing adjusted P < 0.05 were included as results.

Relationship of Lead SNPs from Meta-analysis to Rare CNVs and Mutations 
Previously Associated with Neurodevelopmental Genomic Disorders—We 

conducted additional analyses to determine whether our 146 genome-wide significant loci 

are enriched in CNVs spanning defined genomic disorder (GD) regions or damaging 

mutations previously shown to be associated with neurodevelopmental disorders (including 

autism spectrum disorder, intellectual disability, and developmental delay), also known as 

genomic disorders (GDs). The reference data comprise a curated set of 51 GD loci 

(encompassing 823 protein-coding genes) with multiple reports of ASD/ID/DD-associated 
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CNVs (Satterstrom et al., 2019). The GD curation process is described in the original 

publication. Each of our 146 lead SNPs were assigned to its candidate genes using various 

functional genomics datasets including Hi-C data, overlap with gene and regulatory 

elements. We examined all SNPs as well as dividing SNPs into groups based on their degree 

of pleiotropic association and conducted permutation testing to assess significant 

enrichment. Permutation testing was performed by first assigning each lead (sentinel) SNP 

to the nearest gene, then randomly sampling 1,000 new genes from the genome with 

replacement while matching on chromosome and gene length. P-values were derived by 

comparing the empirically observed number of overlaps to the distribution of expected 

overlaps based on 1,000 matched permutations (Data S3.1).

We also examined overlap of our 146 genomewide significant loci with genes containing 

damaging de novo (truncating, highly damaging missense and damaging missense) 

mutations among children with ASD (data from (Satterstrom et al., 2019)). In this autism 

dataset, 102 genes had higher frequencies of damaging de novo mutations (DNMs) in cases 

than controls (FDR q ≤ 0.1) (Satterstrom et al., 2019). Each permutation test consisted of 

randomly sampling 1,000 new sets of genes with replacement from the genome, where each 

new set of genes contained the same total number of genes as the observed set of candidate 

genes for each set of loci. Sampling was also performed while controlling for per-gene 

mutation rates and brain expression levels using a quantile-based binning approach, as has 

been described in detail in a recent study (Satterstrom, et al., 2019). P-values were derived 

by comparing the empirically observed number of genes present in the list of 102 dominant-

acting ASD risk genes to the distribution of expected count of dominant-acting ASD risk 

genes based on 1,000 matched permutations (Data S3.2).

Finally, we examined whether genes linked to our SNPs were enriched for DNMs associated 

with ASD using the same reference data set. Each permutation test consisted of randomly 

sampling 1,000 new sets of genes with replacement from the genome, where each new set of 

genes contained the same total number of genes as the observed set of candidate genes for 

each set of loci. Sampling was also performed while controlling for per-gene mutation rates 

and brain expression levels using a quantile-based binning approach, as has been described 

in detail in a recent study (Satterstrom, et al., 2019). P-values were derived by comparing the 

empirically observed number of genes present in the list of 102 dominant-acting ASD risk 

genes to the distribution of expected count of dominant-acting ASD risk genes based on 

1,000 matched permutations (Data S3.3).

DATA AND SOFTWARE AVAILABILITY

The Psychiatric Genetics Consortium (PGC)’s policy is to make genome-wide summary 

results publicly available. Summary statistics for a combined meta-analysis of eight 

psychiatric disorders without 23andMe data are available on the PGC web site (https://

www.med.unc.edu/pgc/results-and-downloads). Results for 10,000 SNPs for eight disorders 

including 23andMe are also available on the PGC web site. The summary-level GWAS 

association statistics for PGC individual disorders are available at the website (https://

www.med.unc.edu/pgc/results-and-downloads).
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GWAS summary statistics for the 23andMe cohort (Hyde, 2016) must be obtained 

separately. These can be obtained by individual researchers under an agreement with 

23andMe that protects the privacy of the 23andMe participants. Contact Aaron Petrakovitz 

(apetrakovitz@23andme.com) to apply for access to the data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genetic relationships between eight psychiatric disorders.
A) SNP-based genetic correlations (rg) were estimated between eight neuropsychiatric 

disorders using LDSC. The size of the circles scales with the significance of the p-values. 

The darker the color, the larger the magnitude of rg. Star sign (*) indicates statistical 

significance after Bonferroni correction. (B) SNP-based genetic correlations between eight 

disorders were depicted using an in-directed graph to reveal complex genetic relationships. 

Only significant genetic correlations after Bonferroni correction in (A) were displayed. Each 

node represents a disorder, with edges indicating the strength of the pairwise correlations. 
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The width of the edges increases, while the length decreases, with the absolute values of rg. 

(C) Based on the results of an exploratory factor analysis of the genetic correlation matrix 

produced from multivariable LD-score regression, a confirmatory factor model with three 

correlated genetic factors was specified using Genomic SEM and estimated with the 

weighted least squares algorithm. In this solution, each common genetic factor (i.e., F1g, 

F2g, F3g) represents variation in genetic liability that is shared across the disorders that load 

on it. These common factors are specified so as to account for the genetic covariation among 

the psychiatric disorders. For example, F1g represents shared genetic liability among 

disorders characterized by compulsive behaviors (AN, OCD and TS). One-headed arrows 

connecting the common genetic factors to the individual disorders represent standardized 

loadings, which can be interpreted as coefficients from a regression of the true genetic 

liability for the disorder on the common factor. Two-headed arrows connecting the three 

factors to one another represent their correlations. Two-headed arrows connecting the 

genetic components of the individual psychiatric disorders to themselves represent residual 

genetic variances and correspond to the proportion of heritable variation in liability to each 

individual psychiatric disorder that is unexplained by the three factors. Standardized 

parameters are depicted with their standard errors in parentheses. Paths labeled 1 with no 

standard errors reported are fixed parameters, which are used for scaling.
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Figure 2. Results of cross-disorder meta-analysis and candidate gene mapping.
(A) Quantile-quantile (QQ) plot displaying the observed meta-analysis statistics vs. the 

expected statistics under the null model of no associations in the -log10(p-value) scale. 

Although a marked departure is notable between the two statistics, the estimated lambda1000 

and the estimated LD Score regression intercept indicate that the observed inflation is 

mainly due to polygenic signals rather than major confounding factors including population 

stratification. (B) Gene prioritization strategies for significantly associated loci. Candidate 

genes were mapped on each locus if the index SNP and credible SNPs reside within a 

protein-coding gene, are eQTL markers of the gene in the brain tissue, or interact with 

promoter regions of the gene based on brain Hi-C data. (C) Manhattan plot displaying the 

cross-disorder meta-analysis results highlighting candidate genes mapped to top pleiotropic 

regions. When multiple genes were mapped to the same locus, genes encompassing the 

index SNP or genes with the largest number of evidences were displayed for clarity. 

Candidate genes that have not previously implicated in individual disorder GWAS are 

marked with an asterisk.
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Figure 3. Profile of disorder associations for illustrative pleiotropic loci: (A) rs8084351 on 
18q21.2; (B) rs7193263 on 16p13.3; (C) rs117956829 on 11q14.3; and (D) rs10265001 on 7q34.
For each locus, disorder-specific effects of the index SNP are shown using ForestPMPlot. 

The first panel is the forest plot, displaying disorder-specific association p-value, log odds 

ratios (ORs), and standard errors of the SNP. The meta-analysis p-value and the 

corresponding summary statistic are displayed on the top and the bottom of the forest plot, 

respectively. The second panel is the PM-plot in which X-axis represents the m-value, the 

posterior probability that the effect eixsts in each disorder, and the Y-axis represents the 

disorder-specific association p-value as -log10(p-value). Disorders are depicted as a dot 
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whose size represents the sample size of individual GWAS. Disorders with estimated m-

values of at least 0.9 are colored in red, while those with m-values less than 0.9 are marked 

in green.
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Figure 4. Eleven loci with opposite directional effects.
The radius of each wedge corresponds to the absolute values of the Z-scores (log(Odds 

ratios)/S.E) obtained from association tests of the SNP for eight disorders. The color 

indicates whether the examined SNP carries risk (red) or protective effects (green) for each 

disorder. The dotted line around the center indicates statistically significant SNP effects that 

account for multiple testing of 206 SNPs the q-value of 0.001.
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Figure 5. Results of functional genomics data analysis for pleiotropic vs. disorder-specific loci.
(A) GTEX tissue-specific enrichment results for 146 risk loci associated with at least one of 

eight neuropsychiatric disorders. GTEX tissues were classified as 9 distinct categories, of 

which the brain tissues were colored in blue. The dotted red line indicates a statistically 

significant p-value after conducting Bonferroni correction for multiple testing. Psychiatric 

disorder-associated loci show significant enrichment in genes expressed in pituitary and all 

brain tissues except nerve_tibal. (B) Brain developmental expression trajectory displayed for 

the three groups of genes based on (Kang et al., 2011) The 146 genome-wide significant loci 

from the cross-disorder meta analysis were clustered into three groups based on predicted 

disorder-specific associations: (1) no-pleiotopy; (2) pleiotropy=2; and (3) pleiotropy>2. The 

“no-pleiotropy” group included 37 loci that showed a single-disorder-specific association, 

while the “pleiotropy=2” and “pleiotropy>2” groups included 60 and 49 loci that were 

associated with two and more than two disorders, respectively. (C) In the adult cortex, genes 

mapped to pleiotropic loci were enriched for frontal cortex specific genes, while genes 

mapped to non-pleiotropic loci are enriched for occipical cortex specific genes. (D) Genes 

mapped to 146 risk loci show higher expression values in neurons and oligodendrocytes, 

with much higher neuronal specificity for pleiotropic loci.
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Table 1.

Summary of eight neuropsychiatric disorder datasets

Disorder # of Cases # of 
Controls

# of Total 
Samples

# of 
GWAS 

Loci

Population 
Prevalence (k)

Liability-based 
SNP heritability 

(SE)
References

ADHD 19,099 34,194 53,293 9 0.05 0.222 (0.014) Demontis et al. 2019

ANO 3,495 10,983 14,478 0 0.01 0.195 (0.029) Duncan et al. 2017

ASD 18,381 27,969 46,350 5 0.01 0.113 (0.010) Grove et al. 2019

BIP 20,352 31,358 51,710 17 0.01 0.182 (0.011) Stahl et al. 2019

MD 130,664 330,470 461,134 44 0.15 0.085 (0.004) Wray et al. 2018

OCD 2,688 7,037 9,725 0 0.025 0.280 (0.041) IOCDF-GC and 
OCGAS 2018

SCZ 33,640 43,456 77,096 108 0.01 0.222 (0.012) Ripke et al. 2014

TS 4,645 8,695 13,340 0 0.008 0.200 (0.026) Yu et al. 2019

Total 232,964 494,162 727,126
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Table 2.

Summary of 23 loci with the broadest cross-disorder association

SNP CHR BP Candidate ADHD ANO ASD BIP MD OCD SCZ TS m

rs8084351 18 50726559 DCC(g,q) 0.961 0.905 0.97 0.965 1 0.951 1 0.984 8

rs7193263 16 6315880 RBFOX1(g) 0.924 0.802 0.984 0.995 1 0.902 0.901 0.932 7

rs12658451 5 103904037 - 0.963 0.165 0.999 0.972 1 0.574 1 0.963 6

rs34215985 4 42047778 SLC30A9(g,q) 
DCAF4L1(tss) 0.908 0.926 0.992 0.843 1 0.88 0.929 0.913 6

rs61867293 10 106563924 SORCS3(g,ha,hf) 0.987 0.954 0.992 0.985 1 0.854 1 0.886 6

rs9360557 6 73132745
KCNQ5(ha,hf)

0.905 0.938 0.976 0.984 0.993 0.897 1 0.892 6
KCNQ5-IT1(hf)

rs10149470 14 104017953
APOPT1(fg)

0.844 0.833 0.998 0.979 1 0.868 0.997 0.97 5
C14orf2(ha)

rs11570190 11 57560452
CTNND1(g,tss)

0.927 0.79 0.97 0.58 1 0.916 1 0.832 5
OR5AK2(q)

rs117956829 11 89339666
GRM5(hf)

0.723 0.929 0.972 0.906 1 0.66 0.997 0.789 5
NOX4(ha,hf)

rs1484144 4 80217597 NAA11(fg) 0.97 0.884 0.973 0.98 1 0.84 0.998 0.85 5

rs6969410 7 110069015 - 0.836 0.827 0.987 0.93 0.999 0.917 1 0.729 5

rs7531118 1 72837239 NEGR1(hf) 0.74 0.949 0.963 0.785 1 0.858 0.973 0.921 5

rs9787523 10 106460460 SORCS3(g) 0.944 0.855 0.972 0.877 1 0.853 0.999 0.963 5

rs10265001 7 140665521 MRPS33(tss); 
KDM7A(ha) 0.716 0.772 0.986 0.999 0.783 0.921 0.988 0.692 4

rs11688767 2 57988194
BCL11A(h)

0.845 0.899 0.929 0.983 1 0.849 1 0.698 4
LINC01122(ha,hf)

rs12129573 1 73768366 - 0.929 0.835 0.894 0.948 1 0.85 1 0.539 4

rs1518367 2 198807015 PLCL1(g); 
SF3B1(ha,q) 0.897 0.783 0.913 0.991 1 0.674 1 0.865 4

rs2332700 14 72417326 RGS6(g) 0.755 0.884 0.951 0.948 0.999 0.885 1 0.817 4

rs5758265 22 41617897
L3MBTL2(g)

0.735 0.885 0.89 0.885 1 0.913 1 0.978 4
CHADL(g)

rs6125656 20 48090779 KCNB1(g) 
SPATA2(hf) 0.768 0.885 0.986 0.995 0.985 0.731 0.999 0.707 4

rs7405404 16 13749859 - 0.763 0.765 0.99 0.939 1 0.726 1 0.562 4

rs78337797 12 23987925 SOX5(g) 0.849 0.797 0.97 0.954 1 0.831 0.996 0.885 4

rs79879286 7 24826589 DFNA5(fg,tss) 
MPP6(fg) 0.865 0.854 0.966 0.999 1 0.734 0.999 0.798 4

SNP ID, location, prioritized candidate gene, disorder-specific m-values for 23 most pleiotropic loci. The number of disorders with high confidence 
association (m-values ≥0.9) is shown in the last column. Evidence for candidate gene mapping include: g (gene containing index SNP); fg (credible 
SNP gene); q (brain cis-eQTLs); h (hi-C interacting gene based on FUMA); hf (hi-C-based interaction between associated SNP and target gene in 
the fetal brain from Won et al. 2016); ha (hi-C-based interaction in the adult brain from Wang et al. 2018); and tss (transcription start sites). Loci 
were highlighted if the LD-independent regions do not overlap with genome-wide significant associations previously identified in the GWAS of 
individual disorders. At most two candidate genes are listed here. Full list of associated gene information is available in Table S4.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Summary statistics for cross-disorder 
GWAS results for 8 psychiatric 
disorders

This paper https://www.med.unc.edu/pgc/results-and-downloads/
downloads

Summary statistics for individual 
psychiatric disorders

Psychiatric Genomics Consortium https://www.med.unc.edu/pgc/results-and-downloads/
downloads

Genotype reference panel 1000 Genomes Project http://hgdownload.soe.ucsc.edu/downloads.html#human

European LD scores and weights Broad Institute http://www.broadinstitute.org/~bulik/eur_ldscores/

Gene annotations and cis-eQTL data GTEx https://gtexportal.org/home/datasets

Cis-eQTL data BRAINEAC http://www.braineac.org/

Post-mortem brain gene expression 
data

Brainspan http://www.brainspan.org

Hi-C chromosome conformation 
capture data

GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE77565

Genome-wide significant loci for all 
traits

NHGRI-EBI GWAS Catalog https://www.ebi.ac.uk/gwas/

Summary statistics for other brain-
related traits

LD Hub http://ldsc.broadinstitute.org/ldhub/

Software and Algorithms

PGC Ricopili pipeline Broad Institute https://sites.google.com/a/broadinstitute.org/ricopili/download

PGC checksum algorithm Broad Institute https://personal.broadinstitute.org/sripke/share_links/
checksums_download/

IMPUTE2 Howie et al., 2012 https://mathgen.stats.ox.ac.uk/impute/
impute_v2.html#download

PLINK Purcell et al., 2007 https://www.cog-genomics.org/plink/1.9/

LD score regression Bulik-Sullivan et al., 2015 https://github.com/bulik/ldsc

GenomicSEM (R package) Grotzinger et al., 2018 https://github.com/MichelNivard/GenomicSEM

Factanal (R package) R Project for Statistical Computing https://www.rdocumentation.org/packages/stats/versions/3.5.1/
topics/factanal

ASSET (R package) Bhattacharjee et al., 2012 http://www.bioconductor.org/packages/devel/bioc/html/
ASSET.html

GCTA-COJO Yang et al., 2012 https://cnsgenomics.com/software/gcta/#Download

METASOFT Han and Eskin, 2012 http://genetics.cs.ucla.edu/meta/index.html#download

FINEMAP Benner et al., 2016 http://www.christianbenner.com

SNPnexus Dayem et al., 2018 http://snp-nexus.org/guide.html

FUMA Watanabe et al., 2017 http://fuma.ctglab.nl/

ANNOVAR Wang et al., 2010 http://annovar.openbioinformatics.org/en/latest/user-guide/
download/

CADD scores Kircher et al., 2014 https://cadd.gs.washington.edu/score

RegulomeDB Boyle et al., 2012 http://www.regulomedb.org/downloads

MAGMA de Leeuw et al., 2015 https://ctg.cncr.nl/software/magma
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