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Because of their inherent reactivity, cyclic enol ethers serve as precursors to a number of 

interesting heterocyclic compounds and have garnered the attention of the chemical 

synthesis community. Among the variety of methods that have been reported for their 

synthesis, there has been considerable interest in the cyclization chemistry of olefinic esters 

via the two-step metathesis sequence outlined in Scheme 1.1,2

Clearly, a more efficient method of transforming 1 into 3 would bypass acyclic enol ether 

intermediates (e.g., 2). Along these lines, successes have been reported. In the mid 1980s, 

Grubbs, Stille, and Santarsiero successfully synthesized capnellene by utilizing strained 

olefinic esters (norbornenes) in ring-opening metathesis, carbonyl olefination reactions.3 

Subsequently, Grubbs and Fu reported the use of a tungsten alkylidene to generate a cyclic 

enol ether directly from an acyclic olefinic ester.4 In 1996, Nicolaou and co-workers 

reported olefinic ester cyclization reactions using the Tebbe and Petasis reagents to generate 

fused ether compounds.5 While Nicolaou’s results were certainly impressive, the 

applicability of these reagents in olefinic ester cyclizations appears to be limited. A number 

of groups including ours have reported the reactions to be capricious and to lead, with some 

substrates, to a multitude of undesired side products.6

As a means of generating polycyclic ether natural products, we have also been interested in 

olefinic ester cyclizations and have employed the Takai–Utimoto reduced titanium reagent 

largely because of its in situ preparation, its increased reactivity relative to the Petasis 

reagent, and its diminished Lewis acidity relative to the Tebbe reagent.7,8 Although we 

previously described the use of this reagent to affect olefinic ester cyclizations, the reactions 

were limited to sterically hindered esters and relatively unhindered olefins.9,10 In contrast to 

these results, during our recent work targeting the generation of the B ring of gambieric acid 

A, we were surprised to find that the product distribution (acyclic vs cyclic enol ether) from 

the reaction of the reduced titanium alkylidene reagent was dependent upon the alkylidene 

reagent used (Scheme 2).11 That is, the titanium methylidene reagent that comes from the 

use of dibromomethane as the alkylidene source gave only acyclic enol ether while the 

corresponding ethylidene reagent from dibromoethane gave only cyclic enol ether. That 

substitution on the titanium alkylidene reagent could be used to direct reactivity was, to the 
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best of our knowledge, unprecedented and in our opinion deserving of further study. 

Outlined here are our preliminary experiments aimed at uncovering the scope of this result.

We initially chose to examine whether the reduced titanium ethylidene reagent could affect 

the cyclization of olefinic ester 10. We had previously examined the reaction of 10 with the 

corresponding titanium methylidene reagent and had found it to give a mixture of products 

(Table 1, entry 1).8 In a similar fashion to the results with 8, when we subjected 10 to the 

titanium ethylidene reagent, we isolated cyclic enol ether 12 as the only identifiable product 

in 75% yield (entry 2). We next explored the reaction on a more challenging substrate, 

olefinic ester 13, lacking a preformed cyclic template. When 13 was subjected to the 

titanium ethylidene reaction conditions, we isolated cyclic enol ether 15 as the only product 

in 70% yield (Table 1, entry 4). In contrast to this result, the corresponding methylidene 

reagent gave a 1:1 mixture of cyclic and acyclic enol ethers in 70% yield (entry 3). To get a 

better sense of the reaction scope, we also examined acyclic templates 16 and 18.2c Both 

substrates underwent successful cyclization to give dihydropyran 17 and oxepene 19, 

respectively (Table 1, entries 5 and 6).

Assuming titanium alkylidenes to be involved in the olefinic ester chemistry outlined above, 

we became intrigued by the possibility that the titanium reagent might also induce diene 

ring-closing metathesis (RCM) cyclizations. With the exception of Nicolaou’s enol ether–

olefin RCM chemistry,5 to the best of our knowledge, there are no reports of unstrained 

dienes undergoing RCM reactions using titanium alkylidenes.12 In light of this, we were 

pleasantly surprised to isolate spirocyclic allyl ether 2113 in quantitative yield when diene 20 
was subjected to the titanium ethylidene reagent (Table 2, entry 1). Impressively, this 

transformation even proceeded at room temperature. We were also pleased to be able to 

generate dihydropyran 23,14 oxepene 25,15 and oxocene 2716 from the reactions of the 

titanium ethylidene reagent with the acyclic allyl ethers 22, 24, and 26, respectively (Table 2, 

entries 2–4).

In summary, this communication has described the unique and unprecedented reactivity of 

an in-situ-generated reduced titanium ethylidene reagent. Although optimization of both 

olefinic ester and diene RCM cyclization reactions is clearly required, for example, we have 

not explored the effect of stoichiometry or additives nor have we focused on the scale-up of 

the reaction (the largest scale carried out thus far in our hands has been 0.5 g), we believe 

that these studies represent a significant breakthrough. The reduced titanium reagent 

described here is relatively inexpensive, it is generated in situ, and it is tolerant of a wide 

variety of functionality.1c We intend to continue to study the scope of its reactivity.
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Scheme 1. 
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Scheme 2. 
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Table 1.

Olefinic Ester Cyclizations

entry starting material/acyclic enol ether RCHBr2 cyclic enol ether yield (cyclic:acyclic)

1 CH2Br2 80% (5:3)

2 10 CH3CHBr2 12 75% (>95:5)

3
a CH2Br2 70% (1:1)

4 13 CH3CHBr2 15 70% (>95:5)

5 CH3CHBr2 78% (>95:5)

6 CH3CHBr2 82% (>95:5)

a
R = CH2CH2CH2CH(OMe)2, R′ = CH2CH2CH2OTBDPS
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Table 2.

Reduced Titanium-Mediated Diene RCM

entry starting material
a temp product

a yield

1 65 °C or rt 100%

2 rt 81%

3 65 °C 72%

4 65 °C 60%
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a
R = CH2CH2Ph
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