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Abstract

A comparative study of the impact of small, medium-sized, and bulky α,β-dehydroamino acids 

(ΔAAs) on the structure and stability of Balaram’s incipient 310-helical peptide (1) is reported. 

Replacement of the N-terminal Aib residue of 1 with a ΔAA afforded peptides 2a–c that 

maintained the 310-helical shape of 1. In contrast, installation of a ΔAA in place of Aib-3 yielded 

peptides 3a–c that preferred a β-sheet-like conformation. The impact of the ΔAA on peptide 

structure was independent of size, with small (ΔAla), medium-sized (Z-ΔAbu), and bulky (ΔVal) 

ΔAAs exerting similar effects. The proteolytic stabilities of 1 and its analogs were determined by 

incubation with Pronase. Z-ΔAbu and ΔVal increased the resistance of peptides to proteolysis 

when incorporated at the 3-position and had negligible impact on stability when placed at the 1-

position, whereas ΔAla-containing peptides degraded rapidly regardless of position. Exposure of 

peptides 2a–c and 3a–c to the reactive thiol cysteamine revealed that ΔAla-containing peptides 

underwent conjugate addition at room temperature, while Z-ΔAbu- and ΔVal-containing peptides 

were inert even at elevated temperatures. These results suggest that both bulky and more 

accessible medium-sized ΔAAs should be valuable tools for bestowing rigidity and proteolytic 

stability on bioactive peptides.
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INTRODUCTION

The great potential of peptides as therapeutic agents1 continues to inspire the discovery of 

new methods for increasing their short half-lives, which are caused by facile proteolytic 

degradation and rapid renal clearance. A host of structural motifs including peptoids,2 β and 

α/β peptides,3 stapled peptides,4 hydrogen bond surrogates,5 γAA-peptides,6 D-peptides,7 

α,α-disubstituted amino acids,8 N-amino peptides,9 and β-turn mimics10 can decrease their 

susceptibility to proteolysis. Additionally, techniques such as PEGylation,11 conjugation to 

albumin or antibody fragments,12 and anchoring to plasma membranes13 are effective at 

slowing renal clearance and/or proteolysis. In spite of these successes, only a modest 

number of peptide drugs is currently reaching the market.14 Thus, more strategies for 

increasing the half-lives of these potential therapeutics are urgently required.

In seminal work conducted 35–40 years ago, Stammer and co-workers established that α,β-

dehydroamino acids (ΔAAs) such as ΔAla, Z-ΔPhe, and Z-ΔLeu could improve the 

proteolytic stability of the enkephalin peptide hormones.15 In regards to ΔPhe and ΔLeu, this 

phenomenon can be attributed to the A1,3 strain caused by the alkene, which limits the 

conformational freedom of these residues and increases the rigidity of peptides that contain 

them. This rigidity favors folded states instead of random coil conformations and leads to 

greater stability since folded peptides undergo proteolysis more slowly than unfolded 

peptides.16 Subsequent to Stammer’s pioneering investigations, Chauhan17,18 and others19 

studied the impact of ΔAAs containing trisubstituted alkenes (e.g., ΔPhe, ΔLeu) on peptide 

structure. In general, these residues promote the formation of β-turns or 310 helices (Figure 

1). In fact, Dong and co-workers recently exploited the turn-inducing properties of ΔPhe as 

an aid to cyclizing pentapeptides.20 This ΔAA and its analogs have been inserted into the 

backbones of bioactive peptides with promising results.21 ΔPhe and other ΔAAs that 

incorporate trisubstituted alkenes are typically encountered as the more stable Z-isomers due 

to challenges in constructing the E-isomers22 and E-to-Z isomerization that often occurs 

during peptide coupling reactions.23

Despite their presence in bioactive peptides including the yaku’amides,24 phomopsins,25 and 

myxovalargin A,26 bulky dehydroamino acids such as ΔVal and ΔIle that contain 

tetrasubstituted alkenes have been less studied than their counterparts with trisubstituted Z-

alkenes (Figure 1).27,28 We hypothesized that the elevated A1,3 strain characteristic of bulky 
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ΔAAs would render them more effective than smaller ΔAAs at rigidifying peptides and 

increasing their proteolytic stability. However, this strain also makes them more difficult to 

incorporate into peptides than their smaller relatives. A few years ago, we developed a 

protocol for synthesizing peptides containing ΔVal and its bis-homolog 

dehydroethylnorvaline (ΔEnv) via solid-phase peptide synthesis.29 We applied this method 

to the construction of β-hairpins and demonstrated that inserting bulky ΔAAs into these 

peptides leads to an increased preference for the folded state as well as substantially higher 

proteolytic stability.30 The synthetic challenges that we faced during this endeavor, which 

included construction of congested azlactone dipeptides and sluggish couplings of these 

species, caused us to wonder how the effect of bulky ΔAAs on peptide structure and stability 

compared to that of medium-sized ΔAAs with trisubstituted alkenes. Specifically, we were 

unsure if the extra effort required to furnish peptides containing bulky ΔAAs was 

worthwhile. Comparisons of these two types of ΔAAs in the literature have been limited to 

studies of individual amino acids27f–h or dipeptides27a that are too small to exhibit secondary 

structure. Accordingly, we resolved to examine the impact of small (i.e., ΔAla), medium-

sized (i.e., dehydro-2-aminobutyric acid or ΔAbu), and bulky ΔAAs (i.e., ΔVal) on the 

structure and stability of incipient 310-helical peptides.31 Herein, we report the results of this 

investigation.

RESULTS AND DISCUSSION

In 1979, Balaram and co-workers synthesized tetrapeptide 1 (Figure 2) and studied its 

structure using X-ray crystallography and NMR spectroscopy. They determined that 1 forms 

two overlapping β-turns in solution and in the solid state, representing an incipient 310 helix 

due to the presence of consecutive (i → i + 3) hydrogen bonds.31 This compound is well-

suited as a system for studying the impacts of different ΔAAs on peptide structure and 

stability, as the turn-inducing properties of these residues should cause subtle yet measurable 

perturbations to its secondary structure. Moreover, the short and simple sequence of 1 should 

render its ΔAA-containing variants synthetically accessible and relatively straightforward to 

study via NMR spectroscopy. Thus, we targeted peptides 2 (Figure 2) in which the Aib-1 

residue is replaced by ΔVal (2a), ΔAla (2b), or Z-ΔAbu (2c) in order to probe the impact of 

these ΔAAs when they are inserted at the (i + 1) position of one of the β-turns contained in 

the incipient 310 helix. Similarly, peptides 3 would permit evaluation of the effect of ΔAAs 

when placed at the (i + 2) position.

The synthesis of analog 2a incorporating a bulky ΔAA in place of the Aib-1 residue in 1 
commenced with the construction of tripeptide 5 via coupling of Aib-Ala-OMe (4) and Cbz-

Pro (Scheme 1). The moderate yield is presumably due to the steric hindrance of the two 

coupling partners. ΔVal derivative 7 was generated in good yield by using Martin sulfurane 

to dehydrate β-OHVal derivative 6, which is readily available via OsO4-catalyzed 

aminohydroxylation.29,32 Saponification of 7 was sluggish owing to the A1,3 strain caused 

by the β-methyl groups, with two days required to obtain complete conversion to acid 8. 

Coupling of this acid with the amine derived from hydrogenolysis of tripeptide 5 furnished 

the targeted tetrapeptide 2a in reasonable yield considering bulkiness of the reactants.

Joaquin et al. Page 3

J Org Chem. Author manuscript; available in PMC 2021 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Preparation of ΔAla-containing analog 2b proceeded smoothly as outlined in Scheme 2. 

Dehydration of the dipeptide Cbz-Ser-Pro-OMe (9) was accomplished by mesylation of the 

primary alcohol followed by exposure to DBU and heat.33 No racemization of the Pro 

residue was detected under these conditions. Saponification of the resulting ΔAla-containing 

dipeptide and coupling with dipeptide 4 delivered 2b in an acceptable yield considering the 

hindered nature of the reactants.

The synthesis of variant 2c possessing the medium-sized trisubstituted ΔAA Z-ΔAbu 

required coupling of dipeptides 4 and 11, which was a challenging reaction (Scheme 3). 

Brief attempts at optimization revealed that HBTU could promote the coupling in low but 

consistent yields. While it is possible that either protecting the secondary alcohol of 11 or 

inverting the order of the dehydration and coupling steps could have resulted in better yields, 

we elected not to explore these alternatives since we were able to generate the required 

amounts of 2c using the short sequence shown in Scheme 3. This peptide was produced in 

modest yield by dehydrating tetrapeptide 12 with the Martin sulfurane.22a

Analog 3a, which contains ΔVal instead of the Aib-3 residue of Balaram’s peptide, was 

synthesized as shown in Scheme 4. The dipeptide Cbz-Aib-Pro was coupled with racemic β-

OH-Val derivative 14 to afford tripeptide 15 in good yield. Saponification of this peptide was 

followed by dehydration and azlactone formation utilizing NaOAc and Ac2O in THF.30 

Ring-opening and coupling of the hindered azlactone intermediate was difficult. A brief 

survey of conditions revealed that serviceable yields of tetrapeptide 3a could be obtained by 

first hydrolyzing the azlactone through treatment with NaOH and then employing PyBOP to 

mediate coupling with Ala-OMe.34

Construction of variant 3b wherein the Aib-3 residue of 1 is replaced by ΔAla is 

summarized in Scheme 5. Hydrogenolysis of the dipeptide Cbz-Ser-Ala-OMe (16) was 

followed by coupling with dipeptide 13, furnishing tetrapeptide 17 in moderate yield. As in 

the coupling of 11, protection of the alcohol moiety in 16 was eschewed in favor of a short 

and direct synthetic route to 3b. Mesylation and elimination of the primary alcohol in 17 
was lower-yielding than the analogous transformation of dipeptide 9 (see Scheme 2), as 3b 
was obtained in 36% yield.

Preparation of analog 3c possessing Z-ΔAbu in place of Aib-3 commenced with coupling of 

13 to dipeptide 18 (Scheme 6). We suspect that steric hindrance is the primary reason for the 

low yields of this reaction. Exposure of the resulting tetrapeptide 19 to the Martin sulfurane 

afforded 3c. The poor yields that we encountered while synthesizing some of the analogs of 

1 are indicative of limits in current methods for constructing hindered peptides containing 

ΔAAs. While our concise routes enabled us to overcome these problems and generate 

sufficient quantities of the small target peptides 2 and 3, we plan to address these limitations 

in future studies.

The 1H NMR spectra of 2a–c and 3a–c in CDCl3 solutions provided evidence of a rigid and 

well-defined major conformation for each peptide. The peptides in each series exhibit 

similar spectral characteristics, suggesting that the position of the ΔAA in the chain has a 

larger impact on peptide structure than the nature of the ΔAA (i.e., small, medium-sized, or 
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bulky). Monitoring of the NH moieties of 2a–c in CDCl3 solutions doped with D2O revealed 

rapid H–D exchange of the ΔAA carbamate NH and negligible H–D exchange of the Aib 

and Ala amide NH groups. These observations are consistent with the 310-helical pattern of 

intramolecular hydrogen bonds shown in Figure 3. In contrast, analogous experiments 

conducted with 3a–c showed rapid H–D exchange of the ΔAA amide NH and minimal H–D 

exchange of the Aib carbamate NH and the Ala amide NH groups. These data fit the β-

sheet-like pattern of intramolecular hydrogen bonds depicted in Figure 3. Interestingly, in 

CDCl3 solutions the ΔAA residues do not participate in intramolecular hydrogen bonding 

regardless of their position in the chain.

In an attempt to determine the impact of a polar environment on the hydrogen bonding 

patterns of 2 and 3, we conducted variable-temperature 1H NMR experiments with solutions 

of these peptides in DMSO-d6. In this solvent, only the Ala amide NH groups of 2a–c, 3a, 

and 3c participate in intramolecular hydrogen bonding. Apparently, the intramolecular 

hydrogen bonds involving the Aib amide or carbamate NH groups that are present in the less 

polar CDCl3 solvent are weak enough to be disrupted by interactions with the highly polar 

DMSO-d6 solvent molecules. Surprisingly, only the ΔAla amide NH of peptide 3b forms an 

intramolecular hydrogen bond in DMSO-d6 solution. Perhaps the absence of A1,3 strain in 

the small ΔAla residue allows this peptide to adopt a conformation in a strongly polar 

solvent that is unavailable to the other peptides with larger ΔAA residues and intrinsic A1,3 

strain.

NOE-restrained structural calculations using the program CYANA 2.135 provided insights 

into the solution structures of 1 and its analogs. First, ROESY spectra were acquired for 

each compound with a mixing time of 200 ms. The resulting cross-peaks were then 

converted to upper-distance constraints. A standard simulated annealing calculation was then 

performed for 100 conformers of each peptide with the upper-limit file and experimentally 

determined hydrogen bonding pattern as input. The ten structures with the lowest objective 

target function were then superimposed to create a final ensemble for each peptide, which 

was then analyzed based on structure and RMSD values using the molecular visualization 

software VMD. These ensembles are shown in Figure 4. The parent peptide 1 exhibits the 

highest RMSD value of 1.154 Å, suggesting that it has more conformational freedom than 

its analogs. As anticipated from the intramolecular hydrogen bonding data, the peptides with 

a ΔAA in place of Aib-1 (i.e., 2a–c) form incipient 310-helical structures and the peptides 

with a ΔAA in place of Aib-3 (i.e., 3a–c) resemble β-turns. These structural data 

demonstrate that the position of the ΔAA plays an important role in determining the 

conformation preferred by each analog.

Peptides 3a–c exhibit lower RMSD values than peptides 2a–c, indicating that placement of a 

ΔAA at the Aib-3 position leads to a greater increase in rigidity than does placement at the 

Aib-1 position. Interestingly, the conformations of the ΔVal and Z-ΔAbu residues in peptides 

of the same series are quite similar (i.e., 2a and 2c, 3a and 3c). However, the Z-ΔAbu-

containing analogs 2c and 3c exhibit higher RMSD values than the corresponding ΔVal-

containing analogs 2a and 3a. While both residues apparently prefer similar low-energy 

conformations, it appears that the additional A1,3 strain inherent in a tetrasubstituted alkene 

relative to a trisubstituted alkene destabilizes the high-energy conformations of ΔVal to a 
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greater degree than those of Z-ΔAbu. Thus, our data suggest that medium-sized and bulky 

ΔAAs exert similar effects on the structures of peptides, but that bulky ΔAAs impart more 

rigidity.

The stability of 1 and its analogs to proteolytic degradation was determined by treating the 

peptides with Pronase, a cocktail of proteases from Streptomyces griseus that aggressively 

cleaves peptide bonds in a nonspecific fashion.36 Since 1 is relatively stable to proteolysis 

due to its two Aib residues, a high concentration of Pronase was required for it to degrade on 

a reasonable timescale. As a result, the kinetics of peptide degradation were affected by self-

proteolysis of the enzymes. Although this prevented us from measuring half-lives, we were 

able to compare the amount of each peptide that remained after 30 minutes of incubation 

with Pronase as recorded in Table 1. Peptides 2b and 3b containing ΔAla were significantly 

more labile than Balaram’s peptide, as the relative abundance of the former peptides after 30 

minutes of exposure to Pronase was ca. 10–30% that of the latter. Thus, it is clear that Aib is 

more effective than ΔAla at protecting peptides from proteolysis. Interestingly, the effects of 

Z-ΔAbu and ΔVal were dependent on their location in the peptide chain. Analogs 2a and 2c 
possessing a ΔAA at the N-terminus were equally or slightly less stable than 1, respectively. 

In contrast, variants 3a and 3c in which the ΔAA replaces Aib-3 were more stable than 1, as 

approximately twice as much of each remained after exposure to Pronase for 30 minutes. 

While the ΔVal-containing peptides 2a and 3a were slightly more stable than the Z-ΔAbu-

containing peptides 2b and 3b, the differences in performance were not dramatic. Although 

a more detailed and comprehensive study would be required to generate firm conclusions, 

these data suggest that Z-ΔAbu and ΔVal might confer comparable increases in proteolytic 

stability upon peptides that contain them. Importantly, our results show that in some cases 

the stabilizing impact of these two ΔAAs can exceed that of the α,α-disubstituted residue 

Aib.

Conventional wisdom indicates that ΔAAs are reactive electrophiles that undergo conjugate 

additions by biological nucleophiles such as thiols.37 In fact, enzyme-catalyzed conjugate 

additions of thiols to ΔAla and ΔAbu are involved in the biosynthesis of lantibiotics.38 

However, a close look at the literature reveals that uncatalyzed conjugate additions of thiols 

to ΔAAs larger than ΔAla typically require large excesses of thiol to proceed.39 

Alternatively, placement of the ΔAA at the C-terminus of a peptide instead of embedded 

within the backbone can increase its electrophilicity.40 Based on these prior results, we 

postulated that steric hindrance at the β-carbon atom would significantly attenuate the 

reactivity of medium-sized and bulky ΔAAs to thiols in the absence of enzymes. We probed 

this hypothesis by exposing solutions of 2a–c and 3a–c in DMSO-d6 to ca. 2 equiv of 

cysteamine, a highly nucleophilic thiol.41 As anticipated, ΔAla-containing peptides 2b and 

3b were steadily consumed under these conditions. The decomposition of cysteamine in 

solution complicated our efforts to calculate half-lives for these reactions. Nonetheless, it 

was clear that 3b was consumed more rapidly than 2b, as 65% of the former and 93% of the 

latter remained after 40 minutes of incubation at room temperature.

In contrast, ΔVal-containing peptides 2a and 3a as well as Z-ΔAbu-containing peptides 2c 
and 3c were inert to cysteamine at temperatures up to 100 °C, at which point the thiol 

decomposed completely. Thus, neither of these residues is reactive to thiols when embedded 
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within a peptide (i.e., not located at the C-terminus). While further investigation is 

warranted, these results suggest that both medium-sized and bulky ΔAAs can be 

incorporated into bioactive peptides without fear of in vivo degradation due to conjugate 

addition. Interestingly, subjection of α-methylene-γ-butyrolactone to cysteamine caused 

complete consumption of the electrophile within 5 minutes at room temperature. This result 

shows that ΔAla-containing peptides 2b and 3b are only modestly reactive to cysteamine by 

comparison, implying that peptides including this residue might also be useful for some 

biological applications.

CONCLUSIONS

In an effort to compare the impacts of small (i.e., ΔAla), medium-sized (i.e., Z-ΔAbu), and 

bulky ΔAAs (i.e., ΔVal) on peptide structure and stability, we synthesized ΔAA-containing 

analogs 2a–c and 3a–c of Balaram’s incipient 310-helical peptide 1. The different types of 

ΔAAs exerted similar effects on conformation in CDCl3 solution according to NOE-

restrained structural calculations. Variants 2a–c possessing a ΔAA in place of Aib-1 all 

preferred the 310-helical shape of the original peptide, whereas analogs 3a–c with a ΔAA 

replacing Aib-3 all adopted a β-sheet-like orientation instead. Thus, the location of the ΔAA 

in the backbone played a larger role than the size of the residue in determining the structures 

of the peptides. The proteolytic stabilities of 1 and its analogs were evaluated by exposure to 

Pronase. ΔAla-containing analogs 2b and 3b were degraded rapidly, demonstrating that this 

small ΔAA does not protect peptides from proteolysis. Z-ΔAbu and ΔVal increased 

proteolytic stability to similar degrees, with the most pronounced effect (ca. twice as stable 

as 1) occurring when the ΔAA replaced Aib-3. Intriguingly, peptides containing Z-ΔAbu and 

ΔVal were completely unreactive to conjugate addition by the potent nucleophile cysteamine 

at temperatures up to 100 °C, whereas ΔAla-containing peptides reacted at room 

temperature. The comparable impacts of Z-ΔAbu and ΔVal on proteolytic stability suggests 

that the former residue is likely to be preferred to the latter due to its relative ease of 

synthesis, except in cases where the increased rigidity caused by the elevated A1,3-strain in 

ΔVal is desired. The inertness of both of these residues to thiols suggests that they can be 

incorporated into bioactive peptides without fear of degradation by biological nucleophiles. 

While we hope that these conclusions will be valid with peptides larger than 2 and 3, further 

experimentation is required to confirm this premise. When viewed as a whole, our results 

provide indications of the promise of medium-sized and bulky ΔAAs as tools for imparting 

rigidity and proteolytic stability to peptides. Future studies will focus on the impact of ΔAAs 

on other secondary structures as well as the synthesis and study of additional ΔAAs 

including medium-sized ΔAAs that are larger than ΔAbu (e.g., ΔPhe and ΔLeu).42

EXPERIMENTAL SECTION

General Details.

Dimethylformamide and tetrahydrofuran were dried by passage through cylinders of 

activated alumina. Chloroform was dried over 4 Å molecular sieves and Na2SO4 under Ar 

overnight. An oil bath was used to heat reactions that required elevated temperatures to 

proceed. Flash chromatography was conducted using 60–230 mesh silica gel. 1H NMR 
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spectra were acquired on a 500 MHz spectrometer with chloroform (7.27 ppm) as internal 

reference. Signals are reported as follows: s (singlet), d (doublet), t (triplet), q (quartet), 

quint (quintet), dd (doublet of doublets), br s (broad singlet), m (multiplet). 13C NMR 

spectra were acquired on a spectrometer operating at 125 MHz with chloroform (77.23 ppm) 

as internal reference. Infrared spectra were obtained on an FT-IR spectrometer. MS data 

were obtained using ESI techniques.

Methyl (2-amino-2-methylpropanoyl)-l-alaninate (4).

A solution of Z-Aib-OH (1.5034 g, 6.34 mmol) in anhydrous THF–DMF (5:1, 48 mL) at 0 

°C under Ar was treated sequentially with Ala-OMe (944.5 mg, 6.77 mmol, 1.1 equiv), 

HOBt (ca. 20% H2O content, 1.2988 g, 7.69 mmol, 1.2 equiv), EDC·HCl (1.7356 g, 9.05 

mmol, 1.4 equiv), and NaHCO3 (1.2811 g, 15.25 mmol, 2.4 equiv). The resulting mixture 

was slowly warmed to rt and stirred for 24 h. The reaction was quenched by the addition of 

sat aq NaHCO3 (25 mL), diluted with H2O (30 mL), and extracted with EtOAc (5 × 40 mL). 

The combined organic layers were dried (Na2SO4) and concentrated in vacuo. Flash 

chromatography (200 mL of SiO2, 0–30% EtOAc in hexanes gradient elution) afforded Z-

Aib-Ala-OMe (1.936 g, 6.01 mmol, 95%) as a white solid: [α]25
D −3.3 (c 1.2, CHCl3); 1H 

NMR (CDCl3, 500 MHz) δ 7.38–7.31 (m, 5H), 6.80 (br s, 1H), 5.29 (br s, 1H), 5.11 (s, 2H), 

4.59–4.52 (m, 1H), 3.75 (s, 3H), 1.56 (s, 3H), 1.54 (s, 3H), 1.38 (br s, 3H); 13C{1H} NMR 

(CDCl3, 125 MHz) δ 173.8, 173.4, 155.0, 136.2, 128.6 (2C), 128.2, 128.1 (2C), 66.8, 56.9, 

52.4, 48.2, 25.7, 25.2, 18.2; IR (film) υmax 3327, 2998, 1725, 1660, 1522, 1454, 1255, 1074 

cm−1; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C16H22N2O5H 323.1607; Found 

323.1600.

A solution of Z-Aib-Ala-OMe (1.001 g, 3.11 mmol) in CH3OH (10.0 mL) was treated with 

10% Pd/C (501.1 mg, 0.5 wt equiv) at rt under Ar. The resulting mixture was stirred at rt 

under H2 (500 psi) for 72 h, then diluted with H2O (10 mL) and extracted with EtOAc (4 × 6 

mL). The combined organic layers were dried (Na2SO4) and concentrated in vacuo. The 

crude Aib-Ala-OMe (4, 559.6 mg, 2.97 mmol, 96%) was used directly in subsequent 

coupling reactions without further purification.
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Benzyl (S)-2-((1-(((S)-1-methoxy-1-oxopropan-2-yl)amino)-2-methyl-1-oxopropan-2-
yl)carbamoyl)pyrrolidine-1-carboxylate (5).

A solution of Z-Pro-OH (44.8 mg, 0.180 mmol) in anhydrous THF–DMF (5:1, 6 mL) at 0 

°C under Ar was treated sequentially with 4 (35.4 mg, 0.188 mmol, 1.0 equiv), HOBt (ca. 

20% H2O content, 38.3 mg, 0.227 mmol, 1.3 equiv), EDC·HCl (50.5 mg, 0.263 mmol, 1.5 

equiv), and NaHCO3 (38.3 mg, 0.456 mmol, 2.5 equiv). The resulting mixture was slowly 

warmed to rt and stirred for 24 h. The reaction was quenched by the addition of sat aq 

NaHCO3 (3 mL), diluted with H2O (6 mL), and extracted with EtOAc (5 × 10 mL). The 

combined organic layers were dried (Na2SO4) and concentrated in vacuo. Flash 

chromatography (100 mL of SiO2, 0–80% EtOAc in hexanes gradient elution) afforded 5 
(39.3 mg, 0.0937 mmol, 52%) as a white film: [α]25

D −55 (c 0.78, CHCl3); 1H NMR 

(CDCl3, 500 MHz) δ 7.38–7.30 (m, 5H), 7.22 (br s, 1H), 6.67 (br s, 1H), 5.18 (d, J = 12.2 

Hz, 1H), 5.12 (d, J = 12.4 Hz, 1H), 4.52 (quint, J = 7.2 Hz, 1H), 4.20–4.15 (m, 1H), 3.73 (s, 

3H), 3.60–3.54 (m, 1H), 3.52–3.45 (m, 1H), 2.25–2.14 (m, 1H), 2.08–2.00 (m, 1H), 1.95–

1.87 (m, 2H), 1.55 (s, 3H), 1.49 (s, 3H), 1.37 (d, J = 7.2 Hz, 3H); 13C{1H} NMR (CDCl3, 

125 MHz) δ 173.6, 173.5, 171.4, 156.0, 136.3, 128.6 (2C), 128.2, 127.8 (2C), 67.4, 61.2, 

57.3, 52.2, 48.3, 47.1, 28.9, 26.5, 24.7, 24.4, 17.8; IR (film) υmax 3319, 2997, 1751, 1685, 

1519, 1421, 1357, 1174, 1110 cm−1; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for 

C21H29N3O6H 420.2135; Found 420.2127.

Ethyl 2-(((Benzyloxy)carbonyl)amino)-3-methylbut-2-enoate (7).

A solution of 632 (172 mg, 0.582 mmol) in anhydrous CHCl3 (3 mL) at 0 °C was treated 

with Martin sulfurane (783.2 mg, 1.16 mmol, 2.0 equiv) and stirred at 0 °C to rt for 1 h. The 
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mixture was then dried (Na2SO4) and concentrated in vacuo. Flash chromatography (150 

mL of SiO2, 0–1.5% MeOH in CH2Cl2 gradient elution) afforded 7 (139.4 mg, 0.503 mmol, 

86%) as a yellow oil: 1H NMR (CDCl3, 500 MHz) δ 7.41–7.30 (m, 5H), 5.99 (br s, 1H), 

5.16 (s, 2H), 4.26–4.19 (m, 2H), 2.19 (s, 3H), 1.91 (s, 3H), 1.31–1.25 (m, 3H); 13C{1H} 

NMR (CDCl3, 125 MHz) δ 164.9, 159.9, 145.6, 136.3, 128.5 (2C), 128.2, 128.1 (2C), 126.2, 

67.1, 60.8, 22.5, 21.3, 14.2; IR (film) υmax 3324, 2924, 1715, 1499, 1454, 1373, 1308, 1249, 

1090 cm−1; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C15H19NO4H 278.1392; Found 

278.1383.

2-(((Benzyloxy)carbonyl)amino)-3-methylbut-2-enoic acid (8).

A solution of 7 (22.0 mg, 0.0793 mmol) in THF–EtOH–H2O (3:2:1, 3 mL) at rt was treated 

with LiOH·H2O (15.2 mg, 0.362 mmol, 4.6 equiv). The resulting mixture was stirred at 50 

°C for 48 h. The reaction was acidified using 1N HCl until pH ~2, and the mixture was then 

extracted with EtOAc (4 × 10 mL). The combined organic layers were washed with brine (8 

mL), dried (Na2SO4), and concentrated in vacuo. The crude acid 8 (20 mg, 0.079 mmol, 

quant.), was obtained as a yellow oil and used in subsequent reactions without further 

purification.
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Methyl (2-((S)-1-(2-(((Benzyloxy)carbonyl)amino)-3-methylbut-2-enoyl)pyrrolidine-2-
carboxamido)-2-methylpropanoyl)-l-alaninate (2a).

A solution of 5 (34.3 g, 0.0818 mmol) in MeOH (4 mL) at rt under Ar was treated with 10% 

Pd/C (21.5 mg, 0.63 wt equiv). The resulting mixture was stirred at rt under H2 (500 psi) for 

72 h, then filtered through Celite, dried (Na2SO4), and concentrated in vacuo. The crude 

Pro-Aib-Ala-OMe product (18.5 mg, 0.0648 mmol, 79%) was used directly in subsequent 

coupling reactions without further purification.

A solution of acid 8 (20.0 mg, 0.0802 mmol, 1.2 equiv) in anhydrous THF–DMF (6:1, 3.5 

mL) at 0 °C under Ar was treated sequentially with Pro-Aib-Ala-OMe (18.5 mg, 0.0648 

mmol, 1.0 equiv), HOBt (ca. 20% H2O content, 17.0 mg, 0.101 mmol, 1.6 equiv), EDC·HCl 

(21.7 mg, 0.113 mmol, 1.7 equiv), and NaHCO3 (14.6 mg, 0.174 mmol, 2.7 equiv). The 

resulting mixture was stirred at 0 °C to rt for 48 h. The reaction was quenched by the 

addition of sat aq NaHCO3 (3 mL) and diluted with H2O (6 mL), and the mixture was then 

extracted with EtOAc (5 × 10 mL). The combined organic layers were dried (Na2SO4) and 

concentrated in vacuo. Flash chromatography (100 mL of SiO2, 0–80% EtOAc in hexanes 

gradient elution) afforded 2a (15.8 mg, 0.0306 mmol, 47%) as a white solid: [α]25
D −16 (c 

0.9, CHCl3); 1H NMR (CDCl3, 500 MHz) δ 7.41 (br s, 1H), 7.40–7.34 (m, 5H), 7.33 (br s, 

1H), 6.35 (s, 1H), 5.14 (d, J = 12.2 Hz, 1H), 5.06 (d, J = 12.2 Hz, 1H), 4.53–4.48 (m, 2H), 

3.69 (s, 3H), 3.66–3.61 (m, 1H), 3.55–3.49 (m, 1H), 2.35–2.28 (m, 1H), 2.18–2.09 (m, 1H), 

2.04–1.91 (m, 2H), 1.76 (s, 3H), 1.73 (s, 3H), 1.55 (s, 3H), 1.51 (s, 3H), 1.37 (d, J = 7.2 Hz, 

3H); 13C{1H} NMR (CDCl3, 125 MHz) δ 174.4, 173.4, 170.6, 166.7, 153.9, 135.4, 128.7 

(2C), 128.6, 128.1 (2C), 124.6, 122.7, 67.6, 61.0, 57.3, 52.1, 48.4, 48.3, 29.0, 25.6, 25.4, 

24.5, 19.8, 18.3, 17.6; IR (film) υmax 3322, 2924, 1640, 1518, 1445, 1240, 1261 cm−1; 

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C26H36N4O7H 517.2662; Found 517.2677.
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Methyl ((Benzyloxy)carbonyl)-l-serylprolinate (9).

A solution of Z-Ser-OH (500.5 mg, 2.09 mmol) in anhydrous THF–DMF (5:1, 18 mL) under 

Ar at 0 °C was treated sequentially with Pro-OMe·HCl (363.4 mg, 2.19 mmol, 1.05 equiv), 

HOBt (ca. 20% H2O content, 458.8 mg, 2.72 mmol, 1.3 equiv), EDC·HCl (680.9 mg, 3.55 

mmol, 1.7 equiv), and NaHCO3 (403.7 mg, 4.81 mmol, 2.3 equiv). The resulting mixture 

was slowly warmed to rt and stirred for 24 h. The reaction was quenched by the addition of 

sat aq NaHCO3 (15 mL), diluted with H2O (25 mL), and extracted with EtOAc (4 × 25 mL). 

The combined organic layers were dried (Na2SO4) and concentrated in vacuo. Flash 

chromatography (185 mL of SiO2, 0–5% MeOH in CH2Cl2 gradient elution) afforded 9 
(597.3 mg, 1.70 mmol, 81%) as a white solid: [α]25

D −25 (c 0.6, CHCl3); 1H NMR (CDCl3, 

500 MHz) δ 7.36–7.29 (m, 5H), 5.95–5.89 (m, 1H), 5.09 (s, 2H), 5.07 (br s, 1H), 4.70–4.64 

(m, 1H), 4.59–4.55 (m, 1H), 3.92–3.88 (m, 1H), 3.86–3.79 (m, 1H), 3.76–3.70 (m, 1H), 3.73 

(s, 3H), 3.41–3.39 (m, J = 7.2 Hz, 1H), 2.27–2.15 (m, 2H), 2.03–1.94 (m, 2H); 13C{1H} 

NMR (CDCl3, 125 MHz) δ 172.9, 169.9, 156.2, 136.2, 128.5 (2C), 128.1, 128.0 (2C), 67.0, 

63.8, 58.9, 53.8, 52.7, 47.3, 28.9, 24.8; IR (film) υmax 3315, 2953, 2348, 1720, 1639, 1529, 

1449, 1216, 1061 cm−1; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C17H22N2O6H 

351.1556; Found 351.1549.

Methyl (2-(((Benzyloxy)carbonyl)amino)acryloyl)-l-prolinate (10).

A solution of 9 (380.7 mg, 1.09 mmol) in 1,2-dichloroethane (15 mL) at 0 °C was treated 

with Et3N (380 μL, 276 mg, 2.73 mmol, 2.5 equiv), then stirred at 0 °C for 10 min. The 

resulting mixture was treated dropwise with MsCl (170 μL, 252 mg, 2.20 mmol, 2.0 equiv) 

and stirred at 0 °C to rt for 1 h. It was then treated with DBU (810 μL, 825 mg, 5.42 mmol, 

5.0 equiv) and stirred at 90 °C for 2 h. The mixture was concentrated in vacuo, and the 

residue was dissolved in EtOAc (15 mL) and washed with 10% aq citric acid (10 mL), sat aq 

NaHCO3 (2 × 8 mL), and brine (10 mL). The combined organic layers were dried (Na2SO4) 
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and concentrated in vacuo. Flash chromatography (110 mL of SiO2, 0–13% MeOH in 

CH2Cl2 gradient elution) afforded 10 (223.2 mg, 0.672 mmol, 62%) as a white solid: [α]25
D 

−43 (c 0.6, CHCl3); 1H NMR (CDCl3, 500 MHz) δ 7.38–7.30 (m, 5H), 7.23 (br s, 1H), 6.13 

(s, 1H), 5.14 (s, 3H), 4.55–4.48 (m, 1H), 3.83–3.77 (m, 2H), 3.74 (s, 3H), 2.30–2.21 (m, 

1H), 2.10–2.01 (m, 1H), 2.00–1.84 (m, 2H); 13C{1H} NMR (CDCl3, 125 MHz) δ 172.3, 

165.0, 153.3, 136.0, 134.8, 128.5 (2C), 128.3, 128.1 (2C), 102.6, 66.8, 59.8, 52.3, 50.4, 28.9, 

25.4; IR (film) υmax 3303, 2953, 2881, 1738, 1622, 1511, 1438, 1219, 1088 cm−1; HRMS 

(ESI-TOF) m/z: [M + H]+ Calcd for C17H20N2O5H 333.1445; Found 333.1438.

Methyl (2-(1-(2-(((Benzyloxy)carbonyl)amino)acryloyl)pyrrolidine-2-carboxamido)-2-
methylpropanoyl)-l-alaninate (2b).

A solution of 10 (150.6 mg, 0.453 mmol) in t-BuOH–H2O (3:1, 10 mL) at 0 °C was treated 

with LiOH·H2O (95.1 mg, 2.27 mmol, 5.0 equiv) and stirred at rt for 4 h. The reaction was 

quenched by the addition of 1N HCl until pH ~4, and the mixture was extracted with EtOAc 

(4 × 10 mL). The combined organic layers were washed with brine (10 mL), dried 

(Na2SO4), and concentrated in vacuo. Crude acid Z-ΔAla-Pro-OH (105.2 mg, 0.330 mmol, 

73%) was obtained as a colorless oil and was used in subsequent reactions without further 

purification.

A solution of Z-ΔAla-Pro-OH (105 mg, 0.330 mmol) in anhydrous THF–DMF (5:1, 18 mL) 

at 0 °C under Ar was treated sequentially with Aib-Ala-OMe (4, 65.2 mg, 0.346 mmol, 1.05 

equiv), HOBt (ca. 20% H2O content, 71.7 mg, 0.425 mmol, 1.3 equiv), EDC·HCl (88.5 mg, 

0.462 mmol, 1.4 equiv), and NaHCO3 (66.5 mg, 0.792 mmol, 2.4 equiv). The resulting 

mixture was slowly warmed to rt and stirred for 24 h. The reaction was quenched by the 

addition of sat aq NaHCO3 (5 mL), diluted with H2O (5 mL), and extracted with EtOAc (4 × 

8 mL). The combined organic layers were dried (Na2SO4) and concentrated in vacuo. Flash 

chromatography (60 mL of SiO2, 0–3% MeOH in CH2Cl2 gradient elution) afforded 2b 
(93.7 mg, 0.192 mmol, 58%, 42% from 10) as a white solid: [α]25

D −14 (c 0.5, CHCl3); 1H 

NMR (CDCl3, 500 MHz) δ 7.40–7.31 (m, 5H), 7.27 (br s, 1H), 7.17 (br s, 1H), 6.96 (br s, 
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1H), 5.60 (s, 1H), 5.15 (d, J = 12.3 Hz, 1H), 5.12 (d, J = 12.4 Hz, 1H), 5.01 (s, 1H), 4.51 

(quint, J = 7.2 Hz, 1H), 4.42–4.36 (m, 1H), 3.75–3.67 (m, 2H), 3.66 (s, 3H), 2.22–2.12 (m, 

2H), 2.11–2.03 (m, 1H), 1.93–1.86 (m, 1H), 1.56 (s, 3H), 1.52 (s, 3H), 1.33 (d, J = 7.2 Hz, 

3H); 13C{1H} NMR (CDCl3, 125 MHz) δ 174.0, 173.6, 170.7, 165.7, 153.4, 135.8, 135.6, 

128.6 (2C), 128.5, 128.2 (2C), 102.6, 67.4, 61.7, 57.3, 52.2, 50.2, 48.3, 28.7, 26.3, 25.3, 

24.6, 17.7; IR (film) υmax 3324, 2951, 1715, 1649, 1523, 1450, 1243, 1090 cm−1; HRMS 

(ESI-TOF) m/z: [M + H]+ Calcd for C24H32N4O7H 489.2349; Found 489.2357.

((Benzyloxy)carbonyl)-l-threonyl-l-proline (11).

A solution of Z-Thr-OH (1.004 g, 3.96 mmol) in anhydrous THF–DMF (5:1, 24 mL) under 

Ar at 0 °C was treated sequentially with Pro-OMe·HCl (707 mg, 4.27 mmol, 1.1 equiv), 

HOBt (ca. 20% H2O content, 811.5 mg, 4.80 mmol, 1.2 equiv), EDC·HCl (1.085 g, 5.66 

mmol, 1.4 equiv), and NaHCO3 (798.1 mg, 9.50 mmol, 2.4 equiv). The resulting mixture 

was allowed to warm to rt and was stirred for 24 h. The reaction was quenched by the 

addition of sat aq NaHCO3 (25 mL), diluted with H2O (30 mL), and extracted with EtOAc 

(5 × 40 mL). The combined organic layers were dried (Na2SO4) and concentrated in vacuo. 

Flash chromatography (200 mL of SiO2, 0–30% EtOAc in hexanes gradient elution) 

afforded Z-Thr-Pro-OMe (1.3584 g, 3.73 mmol, 94%) as a white solid: [α]25
D −88 (c 0.49, 

CHCl3); 1H NMR (CDCl3, 500 MHz) δ 7.40–7.31 (m, 5H), 5.70 (d, J = 9.0 Hz, 1H), 5.14 

(d, J = 12.2 Hz, 1H), 5.10 (d, J = 12.4 Hz, 1H), 4.57–4.53 (m, 1H), 4.48 (dd, J = 9.2, 2.0 Hz, 

1H), 4.24–4.17 (m, 1H), 3.86–3.80 (m, 1H), 3.78–3.73 (m, 1H), 3.75 (s, 3H), 3.38 (br s, 1H), 

2.30–2.21 (m, 1H), 2.10–1.97 (m, 3H), 1.24 (d, J = 6.4 Hz, 3H); 13C{1H} NMR (CDCl3, 

125 MHz) δ 172.5, 170.6, 156.6, 136.2, 128.5 (2C), 128.2, 128.0 (2C), 67.3, 67.1, 58.8, 

56.0, 52.5, 47.3, 28.9, 24.9, 18.5; IR (film) υmax 3399, 2977, 1744, 1720, 1634, 1524, 1439, 

1218, 1176, 1027 cm−1; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C18H24N2O6H 

365.17126; Found 365.17005.

A solution of Z-Thr-Pro-OMe (800.0 mg, 2.20 mmol) in t-BuOH–H2O (3:1, 12 mL) at 0 °C 

was treated with LiOH·H2O (480.5 mg, 11.45 mmol, 5.2 equiv) and stirred for 4 h. The 

reaction was quenched by the addition of 1 N HCl until pH ~2, and the mixture was 

extracted with EtOAc (4 × 15 mL). The combined organic layers were washed with brine 

(10 mL), dried (Na2SO4), and concentrated in vacuo. Crude acid 11 (616.7 mg, 1.76 mmol, 

80%) was obtained as a colorless oil and was used in subsequent reactions without further 

purification.
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Methyl (2-((S)-1-(((Benzyloxy)carbonyl)-l-threonyl)pyrrolidine-2-carboxamido)-2-
methylpropanoyl)-l-alaninate (12).

A solution of acid 11 (240.4 mg, 0.686 mmol) in anhydrous DMF (10 mL) at 0 °C under Ar 

was treated sequentially with HBTU (262.3 mg, 0.692 mmol, 1.0 equiv), i-Pr2NEt (360 μL, 

267 mg, 2.07 mmol, 3.0 equiv), and amine 4 (159.9 mg, 0.850 mmol, 1.2 equiv). The 

resulting mixture was warmed to rt and stirred for 2 h, then diluted with EtOAc (15 mL) and 

washed with sat aq NH4Cl (3 × 15 mL), sat aq NaHCO3 (2 × 15 mL), and brine (15 mL). 

The organic layer was dried (Na2SO4) and concentrated in vacuo. Flash chromatography 

(100 mL of SiO2, 2–4.5% MeOH in CH2Cl2 gradient elution) afforded 12 (89.5 mg, 0.172 

mmol, 25%) as a white solid: [α]25
D −34 (c 0.34, CHCl3); 1H NMR (CDCl3, 500 MHz) δ 

7.37–7.32 (m, 6H), 7.00 (br s, 1H), 6.94 (d, J = 7.0 Hz, 1H), 5.75 (d, J = 8.7 Hz, 1H), 5.14 

(d, J = 12.2 Hz, 1H), 5.10 (d, J = 12.2 Hz, 1H), 4.56–4.52 (m, 2H), 4.50–4.48 (m, 1H), 4.26–

4.21 (m, 1H), 3.74 (s, 3H), 3.73–3.70 (m, 2H), 2.27–2.18 (m, 1H), 2.13–2.07 (m, 1H), 2.06–

1.96 (m, 2H), 1.59 (s, 3H), 1.46 (s, 3H), 1.37 (d, J = 7.2 Hz, 3H), 1.26 (d, J = 4.0 Hz, 3H); 
13C{1H} NMR (CDCl3, 125 MHz) δ 173.9, 173.8, 171.1, 170.7, 156.6, 136.2, 128.5 (2C), 

128.2, 128.0 (2C), 67.2, 67.1, 60.5, 57.1, 56.5, 52.5, 48.3, 47.7, 27.3, 26.8, 25.2, 23.9, 19.0, 

18.1; IR (film) υmax 3312, 2923, 1735, 1633, 1529, 1454, 1256 cm−1; HRMS (ESI-TOF) m/

z: [M + H]+ Calcd for C25H36N4O8H 521.2611; Found 521.2602.

Joaquin et al. Page 15

J Org Chem. Author manuscript; available in PMC 2021 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Methyl (2-((S)-1-((Z)-2-(((Benzyloxy)carbonyl)amino)but-2-enoyl)pyrrolidine-2-
carboxamido)-2-methylpropanoyl)-l-alaninate (2c).

A solution of tetrapeptide 12 (55.0 mg, 0.106 mmol) in anhydrous CHCl3 (3 mL) at 0 °C 

was treated with Martin sulfurane (152 mg, 0.226 mmol, 2.1 equiv). The resulting mixture 

was stirred at 0 °C to rt for 1 h, dried (Na2SO4), and concentrated in vacuo. Flash 

chromatography (150 mL of SiO2, 2–4.5% MeOH in CH2Cl2 gradient elution) afforded 2c 
(23.1 mg, 0.0460 mmol, 44%) as a white film: [α]25

D −32 (c 0.85, CHCl3); 1H NMR 

(CDCl3, 500 MHz) δ 7.40–7.31 (m, 7H), 6.49 (br s, 1H), 5.52 (q, J = 6.8 Hz, 1H), 5.16 (d, J 
= 12.1 Hz, 1H), 5.10 (d, J = 12.1 Hz, 1H), 4.54–4.45 (m, 2H), 3.70 (s, 3H), 3.63–3.50 (m, 

2H), 2.24–2.12 (m, 2H), 1.98–1.85 (m, 2H), 1.73 (d, J = 7.0 Hz, 3H), 1.55 (s, 3H), 1.53 (s, 

3H), 1.37 (d, J = 7.2 Hz, 3H);13C{1H} NMR (CDCl3, 125 MHz) δ 174.4, 173.5, 170.6, 

166.6, 153.7, 135.4, 130.7, 128.7 (2C), 128.6, 128.3 (2C), 117.1, 67.8, 61.4, 57.3, 52.1, 49.6, 

48.3, 29.0, 25.6, 25.4, 24.9, 17.6, 11.7; IR (film) υmax 3320, 2924, 2359, 1669, 1521, 1456, 

1255 cm−1; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C25H34N4O7H 503.2506; Found 

503.2513.

(2-(((Benzyloxy)carbonyl)amino)-2-methylpropanoyl)-l-proline (13).
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A solution of Z-Aib-OH (750.6 mg, 3.16 mmol) in anhydrous THF–DMF (5:1, 24 mL) at 0 

°C under Ar was treated sequentially with Pro-OMe·HCl (557.6 mg, 3.37 mmol, 1.1 equiv), 

HOBt (ca. 20% H2O content, 645.1 mg, 3.82 mmol, 1.2 equiv), EDC·HCl (861.2 mg, 4.49 

mmol, 1.4 equiv), and NaHCO3 (641.7 mg, 7.64 mmol, 2.4 equiv). The resulting mixture 

was allowed to warm to rt and was stirred for 24 h. The reaction was quenched by the 

addition of sat aq NaHCO3 (15 mL), diluted with H2O (30 mL), and extracted with EtOAc 

(5 × 30 mL). The combined organic layers were dried (Na2SO4) and concentrated in vacuo. 

Flash chromatography (150 mL of SiO2, 0–30% EtOAc in hexanes gradient elution) 

afforded Z-Aib-Pro-OMe (750.7 mg, 2.15 mmol, 68%) as a white solid: [α]25
D −52 (c 2.64, 

CHCl3); 1H NMR (CDCl3, 500 MHz) δ 7.36–7.29 (m, 5H), 5.65 (br s, 1H), 5.11 (d, J = 11.8 

Hz, 1H), 5.03 (d, J = 11.6 Hz, 1H), 4.58–4.52 (m, 1H), 3.70 (s, 3H), 3.50–3.42 (m, 1H), 

3.38–3.29 (m, 1H), 2.08–1.94 (m, 2H), 1.91–1.80 (m, 2H), 1.59 (s, 3H), 1.54 (s, 3H); 
13C{1H} NMR (CDCl3, 125 MHz) δ 173.0, 172.1, 154.2, 136.6, 128.4 (2C), 128.2, 128.1 

(2C), 66.4, 60.8, 56.7, 52.1, 47.9, 27.7, 25.8, 24.7, 24.3; IR (film) υmax 3303, 2986, 1720, 

1623, 1525, 1411, 1364, 1258, 1168, 1074 cm−1; HRMS (ESI-TOF) m/z: [M + H]+ Calcd 

for C18H24N2O5H 349.1763; Found 349.1757.

A solution of Z-Aib-Pro-OMe (56.2 mg, 0.161 mmol) in t-BuOH (1.0 mL) and H2O (0.4 

mL) was treated with LiOH·H2O (34.1 mg, 0.813 mmol, 5.0 equiv), then stirred at rt for 4 h. 

The resulting mixture was acidified to pH 4~5 by the addition of 1 N HCl, diluted with H2O 

(2 mL), and extracted with EtOAc (3 × 5 mL). The combined organic layers were dried 

(Na2SO4) and concentrated in vacuo. The crude carboxylic acid 13 was used directly in 

subsequent coupling reactions without further purification.

Ethyl (S)-2-((S)-1-(2-(((Benzyloxy)carbonyl)amino)-2-methylpropanoyl)pyrrolidine-2-
carboxamido)-3-hydroxy-3-methylbutanoate (15).

A solution of 13 (506.8 mg, 1.52 mmol) in anhydrous THF–DMF (5:1, 12 mL) at 0 °C under 

Ar was treated with 1432 (248.4 mg, 1.54 mmol, 1.0 equiv), HOBt (ca. 20% H2O content, 

322.3 mg, 1.91 mmol, 1.3 equiv), EDC·HCl (413.5 mg, 2.16 mmol, 1.4 equiv), and NaHCO3 
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(314.0 mg, 3.74 mmol, 2.5 equiv). The resulting mixture was warmed to rt and stirred for 24 

h. The reaction was quenched by the addition of sat aq NaHCO3 (15 mL), diluted with H2O 

(30 mL), and extracted with EtOAc (5 × 40 mL). The combined organic layers were dried 

(Na2SO4) and concentrated in vacuo. Flash chromatography (150 mL of SiO2, 0–60% 

EtOAc in hexanes gradient elution) afforded 15 (558.4 mg, 1.17 mmol, 77%) as a colorless 

oil that was a 1:1 mixture of diastereomers: 1H NMR (CDCl3, 500 MHz) δ 7.68–7.60 (m, 

1H), 7.42–7.32 (m, 5H), 5.22–5.02 (m, 3H), 4.70–4.55 (m, 1H), 4.40–4.15 (m, 3H), 4.06 and 

3.85 (2 br s, 1H), 3.72–3.60 (m, 1H), 3.467–3.35 (m, 1H), 2.21–2.12 (m, 1H), 2.02–1.80 (m, 

3H), 1.61 (s, 6H), 1.48 and 1.45 (2s, 3H), 1.44 and 1.36 (2s, 3H), 1.33–1.29 (m, 3H); 
13C{1H} NMR (CDCl3, 125 MHz) δ 172.4, 171.6 and 171.5, 170.7, 155.7 and 154.9, 135.8 

and 135.4, 128.9 and 128.7 (2C), 128.6, 128.5 (2C), 72.2 and 71.9, 68.2, 67.3, 63.0 and 62.2, 

61.0 and 60.6, 57.2, 48.2 and 48.0, 28.8, 27.6, 27.1 and 26.6, 26.3 and 26.2, 25.7, 24.7, 14.2; 

IR (film) υmax 3294, 2980, 1725, 1651, 1536, 1456, 1400, 1274, 1196, 1089 cm−1; HRMS 

(ESI-TOF) m/z: [M + H]+ Calcd for C24H35N3O7H 478.2553; Found 478.2546.

Methyl (2-((S)-1-(2-(((Benzyloxy)carbonyl)amino)-2-methylpropanoyl)pyrrolidine-2-
carboxamido)-3-methylbut-2-enoyl)-l-alaninate (3a).

A solution of tripeptide 15 (75.8 mg, 0.159 mmol) in t-BuOH–H2O (3:1, 8 mL), was treated 

with LiOH·H2O (36.0 mg, 0.858 mmol, 5.4 equiv). The mixture was stirred at rt for 4 h, and 

the reaction was quenched by the addition of 1N HCl until pH ~2. The mixture was then 

extracted with EtOAc (4 × 15 mL), and the combined organic layers were washed with brine 

(10 mL), dried (Na2SO4), and concentrated in vacuo. The crude acid was then dissolved in 

anhydrous THF (8 mL) and treated with NaOAc (19.3 mg, 0.235 mmol, 1.5 equiv) and 

Ac2O (75 μL, 81.2 mg, 0.795 mmol, 5.0 equiv). The resulting mixture was stirred at rt under 

Ar for 12 h, then diluted with MeOH (10 mL), stirred for an additional 30 min, and diluted 

with H2O (10 mL). The mixture was extracted with EtOAc (4 × 15 mL), and the combined 

organic layers were washed with brine (10 mL), dried (Na2SO4), and concentrated in vacuo.
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The crude azlactone (40.2 mg, 0.0972 mmol) was then dissolved in MeOH (2 mL) and 

treated dropwise with 1 N NaOH (970 μL, 0.97 mmol, 10 equiv). The resulting mixture was 

stirred at rt for 24 h, then washed with sat aq NaHCO3 (2 × 5 mL) and acidified by the 

addition of 1 N HCl to pH ~2. The mixture was extracted with EtOAc (3 × 5 mL), and the 

combined organic layers were dried (Na2SO4) and concentrated in vacuo. The crude C-

terminal dehydroamino acid was dissolved in anhydrous THF–DMF (5:1, 3 mL) and treated 

sequentially with Ala-OMe (42.6 mg, 0.305 mmol, 3.1 equiv), PyBOP (152.4 mg, 0.293 

mmol, 3.0 equiv), and i-Pr2NEt (100 μL, 74.2 mg, 0.574 mmol, 3.6 equiv). The resulting 

mixture was stirred at rt under Ar for 24 h, then extracted with EtOAc (5 × 5 mL). The 

combined organic layers were dried (Na2SO4) and concentrated in vacuo. Flash 

chromatography (25 mL of SiO2, 2–4.5% MeOH in CH2Cl2 gradient elution) afforded 3a 
(17.0 mg, 0.0329 mmol, 34% from azlactone and 21% from 15) as a white film: [α]25

D 

+12.7 (c 0.41, CHCl3); 1H NMR (CDCl3, 500 MHz) δ 8.14 (s, 1H), 7.39–7.30 (m, 6H), 5.30 

(s, 1H), 5.16 (d, J = 12.1 Hz, 1H), 4.96 (d, J = 12.1 Hz, 1H), 4.59–4.51 (m, 2H), 3.71 (s, 

3H), 3.70–3.65 (m, 1H), 3.26–3.19 (m, 1H), 2.30–2.23 (m, 1H), 2.23 (s, 3H), 1.90–1.78 (m, 

3H), 1.78 (s, 3H), 1.55 (s, 3H) 1.46 (d, J = 7.2 Hz, 3H), 1.44 (s, 3H); 13C{1H} NMR 

(CDCl3, 125 MHz) δ 173.5, 172.4, 171.0, 165.4, 155.3, 144.6, 136.0, 128.6 (2C), 128.5, 

128.4 (2C), 122.3, 67.3, 63.2, 57.0, 52.1, 48.5, 48.3, 28.7, 26.5, 26.0, 24.6, 22.1, 21.1, 17.6; 

IR (film) υmax 3306, 2987, 1666, 1625, 1535, 1454, 1273, 1077 cm−1; HRMS (ESI-TOF) m/

z: [M + H]+ Calcd for C26H36N4O7H 517.2662; Found 517.2670.

Methyl ((Benzyloxy)carbonyl)-l-seryl-l-alaninate (16).

A solution of Z-Ser-OH (500.2 mg, 2.09 mmol) in anhydrous THF–DMF (5:1, 18 mL) under 

Ar at 0 °C was treated sequentially with Ala-OMe·HCl (291.7 mg, 2.09 mmol, 1.0 equiv), 

HOBt (ca. 20% H2O content, 423.6 mg, 2.51 mmol, 1.2 equiv), EDC·HCl (520.8 mg, 2.72 

mmol, 1.3 equiv), and NaHCO3 (403.8 mg, 4.81 mmol, 2.3 equiv). The resulting mixture 

was slowly warmed to rt and stirred for 24 h. The reaction was quenched by the addition of 

sat aq NaHCO3 (20 mL), diluted with H2O (25 mL), and extracted with EtOAc (4 × 25 mL). 

The combined organic layers were dried (Na2SO4) and concentrated in vacuo. Flash 

chromatography (170 mL of SiO2, 0–5% MeOH in DCM gradient elution) afforded 16 
(489.3 mg, 1.51 mmol, 72%) as a white solid: [α]25

D −11 (c 0.6, CHCl3); 1H NMR (CDCl3, 

500 MHz) δ 7.39–7.31 (m, 5H), 7.13–7.01 (m, 1H), 5.92–5.83 (m, 1H), 5.13 (s, 2H), 5.10 

(br s, 1H), 4.57 (quint, J = 7.3 Hz, 1H), 4.33–4.28 (m, 1H), 4.08–4.00 (m, 1H), 3.76 (s, 3H), 

3.68 (dd, J = 11.2, 6.2 Hz, 1H), 1.41 (d, J = 7.1 Hz, 3H); 13C{1H} NMR (CDCl3, 125 MHz) 

δ 173.4, 170.6, 156.5, 136.0, 128.6 (2C), 128.3, 128.1 (2C), 67.3, 63.0, 55.4, 52.7, 48.3, 
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17.7; IR (film) υmax 3314, 1736, 1665, 1562, 1547, 1460, 1217, 1058 cm−1; HRMS (ESI-

TOF) m/z: [M + H]+ Calcd for C15H20N2O6H 325.1400; Found 325.1408.

Methyl (2-(((Benzyloxy)carbonyl)amino)-2-methylpropanoyl)-l-prolyl-l-seryl-l-alaninate (17).

A solution of 16 (106.7 mg, 0.329 mmol) in MeOH (6.0 mL) was treated with 10% Pd/C 

(70.2 mg, 0.66 wt equiv) at rt under Ar. The resulting mixture was stirred at rt under H2 (500 

psi) for 48 h, then diluted with H2O (10 mL) and extracted with EtOAc (4 × 6 mL). The 

combined organic layers were dried (Na2SO4) and concentrated in vacuo. The crude Ser-

Ala-OMe (54.4 mg, 0.286 mmol, 87%) was used directly in subsequent couplings without 

further purification.

A solution of crude carboxylic acid 13 (94.6 mg, 0.283 mmol) in anhydrous DMF (3.0 mL) 

at 0 °C under Ar was treated with HBTU (107.4 mg, 0.282 mmol, 1.0 equiv) and i-Pr2NEt 

(51.0 μL, 37.8 mg, 0.293 mmol, 1.0 equiv). The resulting mixture was treated dropwise with 

a solution of Ser-Ala-OMe (54.4 mg, 0.286 mmol, 1.0 equiv) in anhydrous DMF (1 mL) and 

stirred at 0 °C under Ar for 2 h. It was then diluted with H2O (8 mL) and extracted with 

EtOAc (3 × 10 mL). The combined organic layers were washed with sat aq NH4Cl (3 × 5 

mL), sat aq NaHCO3 (2 × 4 mL), and brine (6 mL), dried (Na2SO4), and concentrated in 
vacuo. Flash chromatography (110 mL of SiO2, 0–10% MeOH in CH2Cl2 gradient elution) 

afforded 17 (61.6 mg, 0.122 mmol, 37% from 16) as a white solid: [α]25
D + 22 (c 0.6, 

CHCl3); 1H NMR (CDCl3, 500 MHz, ca. 1.2:1 mixture of rotamers) δ 7.63 and 7.57 (2d, J = 

8.8 Hz and J = 7.4 Hz, 1H), 7.38–7.32 (m, 5H), 7.21 (br s, 1H), 5.75 (br s, 1H), 5.34 (br s, 

1H), 5.23–5.19 and 5.17 (m and d, J = 11.8 Hz, 1H), 5.00 and 4.99 (2d, J = 12.2 and 12.1 

Hz, 1H), 4.60–4.50 (m, 2H), 4.06–4.00 (m, 1H), 3.83 (dd, J = 11.4, 4.7 Hz, 1H), 3.71 (s, 

3H), 3.67–3.60 (m, 1H), 3.18–3.09 (m, 2H), 2.33–2.27 (m, 1H), 2.17–2.10 and 1.92–1.85 

(2m, 1H), 1.80–1.70 (m, 2H), 1.59 and 1.54 (2s, 3H), 1.46 (d, J = 7.4 Hz, 3H) 1.45 and 1.42 

(2s, 3H); 13C{1H} NMR (CDCl3, 125 MHz) δ 174.9, 172.9 and 172.8, 171.4, 170.9, 155.9 

and 155.3, 135.9 and 135.6, 128.7 (2C), 128.6, 128.3 (2C), 67.7 and 67.3, 63.3 and 63.0, 

62.4, 57.2, 54.7, 52.3, 48.7, 48.3 and 48.1, 28.6 and 28.5, 26.7 and 26.5, 26.0 and 25.7, 24.7 

and 24.3, 17.4; IR (film) υmax 3306, 2987, 1666, 1625, 1535, 1454, 1273, 1077 cm−1; 

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C24H34N4O8H 507.2455; Found 507.2461.
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Methyl (2-((S)-1-(2-(((Benzyloxy)carbonyl)amino)-2-methylpropanoyl)pyrrolidine-2-
carboxamido)acryloyl)-l-alaninate (3b).

A solution of 17 (40.4 mg, 0.0798 mmol) in 1,2-dichloroethane (6 mL) at 0 °C was treated 

with Et3N (28 μL, 20.3 mg, 0.20 mmol, 2.5 equiv), then stirred at 0 °C for 10 min. The 

resulting mixture was treated dropwise with MsCl (12 μL, 17.8 mg, 0.155 mmol, 1.9 equiv), 

warmed to rt, and stirred for 1 h. It was then treated with DBU (60 μL, 61.1 mg, 0.401 

mmol, 5.0 equiv) and stirred at 90 °C for 16 h. The mixture was concentrated in vacuo, and 

the residue was dissolved in EtOAc (10 mL) and washed with 10% aq citric acid (6 mL), sat 

aq NaHCO3 (2 × 5 mL), and brine (10 mL). The combined organic layers were dried 

(Na2SO4) and concentrated in vacuo. Flash chromatography (50 mL of SiO2, 0–10% MeOH 

in CH2Cl2 gradient elution) afforded 3b (14.2 mg, 0.0291 mmol, 36%) as a white solid: 

[α]25
D +6.1 (c 0.6, CHCl3); 1H NMR (CDCl3, 500 MHz) δ 8.45 (s, 1H), 7.42–7.30 (m, 5H), 

7.10 (br s, 1H), 5.90 (s, 1H), 5.88 (s, 1H), 5.29 (s, 1H), 5.13 (d, J = 11.6 Hz, 1H), 5.00 (d, J 
= 12.0 Hz, 1H), 4.63 (quint, J = 7.1 Hz, 1H), 4.59–4.53 (m, 1H), 3.76 (s, 3H), 3.62–3.55 (m, 

1H), 3.30–3.22 (m, 1H), 2.17–2.09 (m, 1H), 1.96–1.90 (m, 1H), 1.88–1.75 (m, 2H), 1.57 (s, 

3H), 1.50 (s, 3H), 1.46 (d, J = 7.2 Hz, 3H); 13C{1H} NMR (CDCl3, 125 MHz) δ 176.7, 

173.0, 172.6, 171.0, 156.0, 136.1, 128.7 (2C), 128.6 (2C), 128.5, 128.1, 111.9, 67.2, 66.9, 

63.2, 57.0, 52.5, 48.6, 29.4, 26.7, 26.0, 24.6, 18.0; IR (film) υmax 3301, 2950, 1668, 1532, 

1455, 1263, 1170, 1075 cm−1; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C24H32N4O7H 

489.2349; Found 489.2357.
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Methyl l-Threonyl-l-alaninate (18).

A solution of Z-Thr-OH (1.0021 g, 3.96 mmol) in anhydrous THF–DMF (5:1, 24 mL) under 

Ar at 0 °C was treated sequentially with Ala-OMe·HCl (594.0 mg, 4.26 mmol, 1.1 equiv), 

HOBt (ca. 20% H2O content, 800.5 mg, 4.74 mmol, 1.2 equiv), EDC·HCl (1.0621 g, 5.54 

mmol, 1.4 equiv), and NaHCO3 (801.4 mg, 9.54 mmol, 2.4 equiv). The resulting mixture 

was allowed to warm to rt and was stirred for 24 h. The reaction was quenched by the 

addition of sat aq NaHCO3 (25 mL), diluted with H2O (30 mL), and extracted with EtOAc 

(5 × 40 mL). The combined organic layers were dried (Na2SO4) and concentrated in vacuo. 

Flash chromatography (200 mL of SiO2, 0–30% EtOAc in hexanes gradient elution) 

afforded Z-Thr-Ala-OMe (1.2778 g, 3.78 mmol, 95%) as a white solid: [α]25
D −23 (c 0.50, 

CHCl3); 1H NMR (CDCl3, 500 MHz) δ 7.39–7.32 (m, 5H), 6.96 (d, J = 6.7 Hz, 1H), 5.77 

(d, J = 7.6 Hz, 1H), 5.17 (d, J = 12.2 Hz, 1H), 5.12 (d, J = 12.2 Hz, 1H), 4.56 (quint, J = 7.3 

Hz, 1H), 4.38–4.32 (m, 1H), 4.19 (dd, J = 7.8, 2.0 Hz, 1H), 3.76 (s, 3H), 3.17 (br s, 1H), 

1.40 (d, J = 7.2 Hz, 3H), 1.20 (d, J = 6.5 Hz, 3H); 13C{1H} NMR (CDCl3, 125 MHz) δ 
173.1, 170.5, 156.8, 136.0, 128.6 (2C), 128.3, 128.0 (2C), 67.3, 66.9, 58.2, 52.6, 48.1, 18.0, 

17.9; IR (film) υmax 3324, 3066, 3035, 2956, 1742, 1661, 1538, 1455, 1384, 1293, 1219, 

1150, 1051 cm−1; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C16H22N2O6H 339.15561; 

Found 339.15492.

A solution of Z-Thr-Ala-OMe (1.200 g, 3.55 mmol) in MeOH (10.0 mL) was treated with 

10% Pd/C (602.5 mg, 0.5 wt equiv) at rt under Ar. The suspension was then pressurized 

under hydrogen gas (500 psig) and stirred for 72 h. The reaction was filtered through Celite, 

dried (Na2SO4), and concentrated in vacuo. Amine 18 (534.1 mg, 2.62 mmol, 74%) was 

obtained as a white solid and was used in subsequent reactions without further purification.
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Methyl (2-(((Benzyloxy)carbonyl)amino)-2-methylpropanoyl)-l-prolyl-l-threonyl-l-alaninate 
(19).

A solution of acid 13 (500.0 mg, 1.50 mmol, 1.0 equiv) in anhydrous THF–DMF (5:1, 12 

mL) at 0 °C under Ar was treated with amine 18 (301.1 mg, 1.48 mmol), HOBt (ca. 20% 

H2O content, 310.6 mg, 1.84 mmol, 1.2 equiv), EDC·HCl (396.0 mg, 2.07 mmol, 1.4 equiv), 

and NaHCO3 (304.1 mg, 3.62 mmol, 2.5 equiv). The resulting mixture was warmed to rt, 

then stirred for 48 h. The reaction was quenched by the addition of sat aq NaHCO3 (15 mL), 

diluted with H2O (30 mL), and extracted with EtOAc (5 × 40 mL). The combined organic 

layers were dried (Na2SO4) and concentrated in vacuo. Flash chromatography (150 mL of 

SiO2, 2–4.5% MeOH in CH2Cl2 gradient elution) afforded 19 (167.6 mg, 0.322 mmol, 22%) 

as a white solid: [α]25
D −8.1 (c 0.23, CHCl3); 1H NMR (CDCl3, 500 MHz) δ 7.44 (d, J = 

9.2 Hz, 1H), 7.40–7.34 (m, 7H), 5.17 (s, 1H), 5.15 (d, J = 12.4 Hz, 1H), 5.05 (d, J = 12.1 Hz, 

1H), 4.61–4.53 (m, 4H), 3.78–3.73 (m, 1H), 3.73 (s, 3H), 3.32–3.27 (m, 1H), 2.36–2.31 (m, 

1H), 1.89–1.83 (m, 3H), 1.55 (s, 3H), 1.47–1.44 (m, 3H), 1.46 (s, 3H), 1.21 (d, J = 6.4 Hz, 

3H); 13C{1H} NMR (CDCl3, 125 MHz) δ 173.0, 172.5, 171.8, 170.6, 155.5, 135.4, 128.7 

(2C), 128.7, 128.4 (2C), 67.8, 67.1, 63.5, 58.3, 57.2, 52.2, 48.6, 48.4, 28.9, 26.7, 26.0, 24.6, 

19.5, 17.5; IR (film) υmax 3317, 2925, 1744, 1656, 1542, 1454, 1410, 1275, 1211, 1156, 

1089 cm−1; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C25H36N4O8H+ 521.2611; Found 

521.2602.
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Methyl ((Z)-2-((S)-1-(2-(((Benzyloxy)carbonyl)amino)-2-methylpropanoyl)pyrrolidine-2-
carboxamido)but-2-enoyl)-l-alaninate (3c).

A solution of tetrapeptide 19 (100 mg, 0.192 mmol) in anhydrous CHCl3 (3 mL) at 0 °C was 

treated with Martin sulfurane (251.1 mg, 0.373 mmol, 1.9 equiv) and stirred at 0 °C to rt for 

1 h. The mixture was dried (Na2SO4) and concentrated in vacuo. Flash chromatography (150 

mL of SiO2, 2–4.5% MeOH in CH2Cl2 gradient elution) afforded 3c (35.0 mg, 0.0696 

mmol, 36%) as a white film: [α]25
D +18 (c 2.4, CHCl3); 1H NMR (CDCl3, 500 MHz) δ 8.13 

(s, 1H), 7.36–7.29 (m, 6H), 6.96 (q, J = 7.0 Hz, 1H), 5.41 (s, 1H), 5.16 (d, J = 12.1 Hz, 1H), 

4.90 (d, J = 12.1 Hz, 1H), 4.61 (quint, J = 7.2 Hz, 1H), 4.55–4.50 (m, 1H), 3.70 (s, 3H), 

3.69–3.65 (m, 1H), 3.18–3.10 (m, 1H), 2.32–2.27 (m, 1H), 1.85–1.74 (m, 3H), 1.72 (d, J = 

7.1 Hz, 3H), 1.54 (s, 3H), 1.46 (d, J = 7.2 Hz, 3H), 1.43 (s, 3H); 13C{1H} NMR (CDCl3, 

125 MHz) δ 173.2, 172.7, 170.7, 164.1, 155.5, 136.0, 133.8, 128.62 (2C), 128.57 (2C), 

128.5 (2C), 67.3, 63.4, 57.0, 52.2 (2C), 48.6, 29.0, 26.7, 26.0, 24.4, 17.6, 13.4; IR (film) 

υmax 3274, 2925, 1625, 1536, 1270, 1076 cm−1; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for 

C25H34N4O7H 503.2506; Found 503.2512.

Summary of NOE distance-restrained calculations.

Manual NMR structural calculations were performed to generate conformational ensembles 

of all the peptides that were studied. The ensembles were generated using the simulated 

annealing algorithm CYANA35 in conjunction with ROESY chemical shift and peak data for 

the peptides 1, 2a–c, and 3a–c. Dihedral restraints were not used due to the presence of 

multiple nonstandard amino acids, which lack sufficient secondary chemical shift analysis 

data. The final structural ensemble for each peptide consists of the 10 lowest-energy 

conformations as determined by the CYANA objective-function from 100 preliminary 

structures.

Procedure for proteolysis assays of 1, 2a–c, and 3a–c.

Pronase E from Streptomyces griseus (EC 232–909-5) was purchased from Sigma-Aldrich. 

This mixture of enzymes was dissolved in 1X PBS buffer (10 mM sodium phosphate, 137 
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mM NaCl, 2.7 mM KCl buffer, pH 7.4) at a concentration of 0.881 mg/mL. Then, solutions 

of each peptide (1, 2a, 2b, 2c, 3a, 3b, and 3c) in 1X PBS buffer (0.50 mM, 0.5 mL) at 38 °C 

were treated with an aliquot (200 μL) of the Pronase E solution. Aliquots (50 μL) were 

removed after 0, 15, 30, 45, 60, 90, and 120 min. The aliquots were quenched with glacial 

acetic acid (20 μL), diluted to 75 μL with 1X PBS buffer, and analyzed by HPLC 

(Phenomenex Jupiter C18, 5 μm particle size, 300 Å pore size, 4.6 ´ 250 mm, 75 μL 

injection volume, 40%– 90% CH3CN in H2O gradient over 30 min, then 95% CH3CN in 

H2O for 10 min, flow rate: 1 mL/min).

General procedure for thiol reactivity assays.

A solution of ΔAA-containing peptide 2 or 3 (typically 0.010–0.015 mmol) in DMSO-d6 

(600 μL) containing a small amount (<1 mg) of 1,3,5-trimethoxybenzene as an internal 

standard was treated with 2 equiv of a freshly prepared 0.5 M solution of cysteamine in 

DMSO-d6 (typically 40–60 μL). 1H NMR spectra were acquired at various times, and 

disappearance of the starting peptide was quantified by comparing the integration values of 

diagnostic signals to the signals of the internal standard. In cases where the peptide was 

unreactive at room temperature, the solution was heated at successively higher temperatures 

(60 °C, 80 °C, and 100 °C) and 1H NMR spectra were acquired intermittently. As 

cysteamine degraded slowly, experiments were halted once it was completely absent from 

the solution according to 1H NMR.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Two types of dehydroamino acids.
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Figure 2. 
Balaram’s incipient 310 helical peptide (1) and proposed ΔAA-containing variants (2 and 3).
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Figure 3. 
310-Helical and β-sheet-like conformations.
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Figure 4. 
Solution-phase structures of 1, 2a–c, and 3a–c as calculated using NOE distance restraints.
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Scheme 1. Synthesis of ΔVal Analog 2a
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Scheme 2. Synthesis of ΔAla Analog 2b
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Scheme 3. Synthesis of Z-ΔAbu Analog 2c
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Scheme 4. Synthesis of ΔVal Analog 3a
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Scheme 5. Synthesis of ΔAla Analog 3b
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Scheme 6. Synthesis of Z-ΔAbu Analog 3c
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Table 1.

Proteolysis of 1 and Analogs by Pronase
a

peptide amount remaining after 30 min (%)

1 31

2a 31

2b 9

2c 21

3a 61

3b 3

3c 58

a
Solutions of peptides (0.5 mM, 500 μL) in 1X PBS buffer (10 mM sodium phosphate, 137 mM NaCl, 2.7 mM KCl buffer, pH 7.4) were each 

treated with a solution of Pronase (0.88 mg/mL, 200 μL). Degradation of peptides was monitored using HPLC.
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