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Abstract

Identification of novel molecular subtypes of disease using multi-source ‘omics data is an active 

area of on-going research. Integrative clustering is a powerful approach to identify latent subtype 

structure inherent in the data sets accounting for both between and within data correlations. We 

propose a new integrative network-based clustering method using the non-negative matrix 

factorization, nNMF, for clustering multiple types of interrelated datasets assayed on same tumor-

samples. nNMF utilizes the consensus matrices generated using the non-negative matrix 

factorization (NMF) algorithm on each type of data as networks among the patient samples. The 

multiple networks are then combined, and a comprehensive network structure is created 

optimizing the strengths of the relationships. A spectral clustering algorithm is then used on the 

final network data to determine the cluster groups. nNMF is a non-parametric method and 

therefore prior assumptions on the statistical distribution of data is not required. The application of 

the proposed nNMF method has been provided with simulated and the real-life datasets obtained 

from The Cancer Genome Atlas studies on glioblastoma, lower grade glioma and head and neck 

cancer. nNMF was found to be working competitively with previous methods and sometimes 

better as compared to previous NMF or model-based method especially when the signal to noise 

ratio is small. The novel nNMF method allows researchers to utilize such relationships to identify 

the latent subtype structure inherent in the data so that further association studies can be carried 

out. The R program for the nNMF will be available upon request.
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1. Introduction

A large inter-patient variation in the clinical responses has been a challenge in the treatment 

of many cancers. Response to the treatment regimen and the disease progression vary from 

person to person for even the patients having same cancer diagnosis[1]. One approach to 

overcome this limitation has been the use of molecular profiling or clustering to determine 

molecular based tumor subtypes, where within these subtypes it is thought that the tumors 

will be more homogeneous and thus may have similar clinical response to a given therapy 

regimen[2]. After the discovery of high-throughput technologies such as microarray and 

sequencing, several types of molecular information are often being collected on the same 

tumor sample, resulting in correlation between features within a given data type but also 

across multiple data type assayed on the same subject. For example, the multi-institution 

collaborative project, The Cancer Genome Atlas (TCGA) has collected multiple-layers of 

genomic data including, genome, transcriptome, epigenome and proteome information for a 

large number of subjects for many cancers. Availability of such wealth of data opens up new 

opportunities to collectively explore the variations in genomic profiles at each layer of 

biological process which is critically important to understand disease etiology, drug response 

to treatment and progression. A part of such variation at the molecular level can be explained 

by identifying the disease-subtypes.

The true biological signal may or may not be present in all types of datasets. Also, there 

might be weak but consistent signals present across several datasets. Integrative analysis can 

strengthen and reveal such consistent signals more obvious. The goal of the integrative 

clustering analysis is to identify the subgroups of samples into a distinct classes (clusters), 

considering the biological phenomena at several levels including gene expression, DNA 

methylation, copy number variation (CNV), protein expression, etc. [3].

However, the disparity in the measurement scales of the data sets can pose challenge for 

such integrative analyses. The technology used to assay the data and the units of 

measurement create wide variation in the data. The simplest method to integrate the data is 

by concatenating multiple datasets after appropriate normalization (i.e. scaling of the data) 

into a single dataset, followed by clustering analyses on the combined data. But this 

approach tends to dilute the small signal to noise ratio in the multiple datasets[4]. Another 

approach is to manually integrate the clustering results obtained from one data at a time[5]. 

However, such approach can suffer from subjective bias in the subtype determination.

A few model-based[6–8] and non-parametric integrative clustering methods[4, 9] are 

available. Frequently used method, iCluster[6], assumes that the data follows Gaussian 

probability distribution. A few other examples of model-based approach are based on 

Gaussian mixture model and Bayesian clustering methods[7, 8]. However, integrative 

clustering using parametric models can be challenging in cases where the model 

assumptions may not be satisfied (i.e., different types of molecular data may follow different 

distributions). In order to overcome the limitations of the dependency on the statistical 

distribution assumptions, a few non-parametric methods have been proposed in recent years 

including integrative non-negative matrix factorization method (intNMF)[9], Similarity 

Network Fusion (SNF)[4] and Perturbation clustering (PINS)[10]. Arguably the state-of-art 
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approach in the clustering analyses has been the consensus clustering based approaches[11, 

12]. The integrative clustering intNMF utilizes consensus clustering in integrating the 

multiple types of molecular data. Another powerful method, SNF, creates the sample 

similarity matrices (networks) based on distance measures for each type of data and 

integrates those networks into a common similarity network followed by spectral clustering 

on the final network to partition the data. However, the kernel-based clustering of SNF has 

been criticized for its unstable nature of making the algorithm too sensitive to small changes 

in genomic assays which can create instability in the networks derived from each data[10]. 

Also, the choice of the distance metric can have effect on the overall clustering performance.

There are two purposes of this article. First, we propose novel network based integrative 

clustering method nNMF by incorporating the strengths of SNF on the intNMF. The nNMF 
method involves two steps: construction of stable consensus matrices for each data type 

using intNMF (intNMF[9] algorithm can be used for single type of data as well) and 

integration of those consensus matrices into a single consensus matrix using the approach 

proposed by SNF followed by spectral clustering. Second purpose is to compare the new 

nNMF method with the existing methods (intNMF, iCluster, SNF) in terms of their 

performances using simulated data. Lastly, nNMF is illustrated using two glioma studies and 

one head and neck cancer studies from TCGA.

2. Material and Methods

2.1. Network-based integrative NMF

The approach is based on the NMF[12] and the network clustering techniques[4]. We briefly 

review the NMF for a single data and construction of the consensus matrix before describing 

nNMF method.

2.1.1. NMF for a single data—NMF approach was proposed by Paatero & Tapper[13] 

in 1994 and its successful application in the pattern recognition problem was demonstrated 

by Lee & Seung[14] in 1999. The algorithm proposed by Lee & Seung was utilized by 

Brunet et al.[12] together with consensus clustering approach to determine the subtypes of 

cancer. Suppose a matrix with n subjects and p genomic features, Xn × p ∈ ℛn × p, containing 

all the non-negative entries. Then NMF factorizes Xn×p into Wn×k and Hk×p, (i.e. Xn×p ≈ 
Wn×k Hk×p), where k is user-specified number of groups or classes. The resulting matrices 

Wn×k and Hk×p are also non-negative which are called matrix of basis vectors and matrix of 

coefficient vectors respectively.

Generally used objective function, Frobenius norm Q = min
W,H

‖X − WH‖2, is convex in W 

when H is given, or convex in H when W is given. But when W and H together are 

unknown the minimization problem is not convex. Therefore, in general, global minimum of 

the NMF problem does not exist[13, 15]. However, the beauty of NMF is that Q can be 

minimized using numerical optimization methods and the underlying subtype structure of 

the variables can be extracted using W. The “best” local minimum is achieved by running 

the algorithm with a large number of initializations of W and H. One local minimum is 

obtained at the end of each run of the algorithm. Out of many such local minima, the one for 
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which the objective function Q converges to smallest value is chosen. In our implementation, 

estimation of W and H matrices are carried out using non-negative-constrained alternating 

least square (NNALS) algorithm[16].

Consensus matrix is computed using the matrix W. At each iteration of the algorithm, a 

square matrix with dimension n×n, is constructed with binary entries 1 or 0. The values 1 or 

0 are assigned based on whether the samples (one on row and other on column) cluster 

together or not. Since the entries 1 or 0 reflect the connectivity between the samples, the 

matrix is also called connectivity matrix[11]. The connectivity entries keep changing for a 

few initial iterative steps but become stable as the algorithm progresses. When the 

connectivity matrix becomes stable for several consecutive iterations (say 50 iterations) 

without changing the values, the algorithm stops. The consensus matrix, C, is then 

constructed by averaging the connectivity matrices, on an element by element basis, over all 

the iterative steps until convergence[11]. The elements of C thus range between 0 and 1, 

with higher value reflecting the probability of two samples in ith row and jth column being 

clustered together. Details of construction of consensus matrix can be found elsewhere[9, 11, 

12]. In the proposed nNMF clustering approach, we utilize such stable consensus matrix as a 

sample-similarity network.

2.1.2. Network based integrative clustering (nNMF)—Our proposed nNMF 
method involves two steps. In the first step, the stable consensus matrices Ci, i=1,2,…,m for 

each of m types of data are computed using intNMF algorithm[9]. Each of the n × n 
consensus matrices can be considered as a pairwise similarity network of subjects. By 

construction, each entry in the consensus matrix represents what proportion of times each 

pair of samples (one in row and other in column) group together over all the iterations before 

convergence of the algorithm. The larger elements of consensus matrix (towards 1) reflect 

the higher similarity between samples. In the context of graph theory, G = (V, E), the 

samples can be considered as vertices V and the consensus values as pairwise sample 

similarities edges E. In the second step, the network integration method is used on these 

consensus matrices in a similar way it was proposed elsewhere[4, 17]. The network 

integration process is based on the message-passing theory in which, networks are combined 

and updated making the consistent and strong signals stronger and clearer. Such an 

integration process helps in finding the true signal in two ways. First, the strong signals 

present in any data is preserved. Second, there might be a weak but consistent signals 

present at multiple networks. Such signals will be added up during the iterative process. On 

the other hand, weak signals present in any data sets will disappear which will help in 

filtering out the noise. The steps involved in the process is shown in Fig 1. Finally, spectral 

clustering is used on the integrated consensus matrix to identify the clusters and the cluster 

memberships to each subject [4].

This novel integrative approach has a couple of advantages over the intNMF[9] and SNF[4] 

method. With the intNMF, we might need to estimate and provide the weights for each data 

in order to better optimize the strengths across the datasets. Since the weights are generally 

not-known, the interpretation of the results can be difficult in the absence of correct weights 

if such weights are required. Also, intNMF requires that the multiple types of data be 

rescaled so that the data sets are comparable with respect to relative scale. Since nNMF 
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generates separate networks from each data, no rescaling is required. Therefore, there is no 

possibility of loss of information due to rescaling. SNF generates a combined sample-

network using a matrix-fusion method and then utilizes clustering on the fused matrix. SNF 

is based on the exponential kernel function to define the sample similarity matrix calculated 

using Euclidean or other distance-measures. However, the kernel-based clustering of SNF 

has been criticized for its unstable nature of making the algorithm too sensitive to small 

changes in genomic assays[10]. Also, the choice of the distance metric can have effect on 

the overall clustering performance. The proposed nNMF method does not require weights 

assignment to the datasets before using the algorithm and, also, does not rely on the kernel 

functions or any distance measures that can affect the outcomes.

The algorithm for fitting the nNMF clustering can be summarized as follows:

1. Randomly initialize Wi with the values generated from standard uniform 

distribution or by applying non-negative matrix decomposition technique[18] for 

each data i=1,2,…m.

2. Solve for Hi given Xi and current Wi using NNALS.

QHi = argminHi Xi − W iHi
2 i = 1, 2, …, m, such that Hi ≥ 0 (1)

3. Solve for Wi given Xi and current matrix Hi using NNALS.

QW i = argmin
W i i = 1

m
θi Xi − W iHi

2 such that W i ≥ 0, (2)

4. Repeat steps 2 and 3 until the algorithm converges.

5. During each iterative step connectivity matrices are computed as mentioned 

above and the consensus matrix Ci, i=1, 2, …, m is computed by averaging all 

those matrices after the algorithm converges.

6. Use the network integration algorithm[4, 17] on the Ci’s to compute the final 

integrated sample similarity network CF.

7. Use spectral clustering algorithm on CF to determine cluster numbers and 

clustering assignment for subjects.

3. Simulation Study

In order to meaningfully assess the ability of a new method to distinguish the cluster groups, 

the prior knowledge of the ground truth is required. Then we will be able to assess the 

performance of several clustering methods by comparing the results with the ground truth. 

Using the R package InterSIM [19], realistic DNA methylation (367 CpGs), gene expression 

(131 genes) and protein expression (160 proteins) data were generated for 500 subjects. We 

utilized the same simulation strategy as mentioned in Chalise el al.[9]. We first considered 

the null scenario in which there was no cluster groups, i.e. k=1 where effect size was set to 

0. Then, we gradually increased the number of clusters, k from 2 to 6 with a sequence of 
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effect sizes varying from 0 to 4 in the increment of 0.5. For each simulation scenario, 25% 

of the genomic features were considered to be differentially expressed among the assigned k 
cluster groups. Details of the simulation of multiple types of data having realistic within and 

between correlation structures can be found at Chalise et al.[19].

Before using the NMF algorithm, the simulated data requires additional transformation to 

make sure that the non-negativity requirement of NMF is satisfied. In our implementation, 

for each data, the absolute value of the smallest negative number was added to all the entries 

of the data. In doing so, the entries in each data will be non-negative and, also the variance 

of the features in the data will not be altered. Using the simulated data, the proposed nNMF 
was evaluated and compared with IntNMF. In addition, nNMF is also compared with one 

popular model-based method, iCluster and another non-parametric network-based method 

SNF. Optimum cluster-number was searched for each method across the specified range of k 

from 2 to 8. Both of the NMF based algorithms were run for 30 initializations of W. The 

optimality criteria for detecting the true number of clusters were measured by using 

Silhouette width for nNMF and default or recommended methods for other algorithms: 

silhouette width for SNF[4], cluster prediction index (CPI) with IntNMF[9] and proportion 

of deviance (POD) with iCluster[6].

4. TCGA studies on Glioblastoma, Lower Grade Glioma and Head and 

Neck Cancer

We implement and illustrate the nNMF method with TCGA subtype studies on two types of 

gliomas: Glioblastoma (GBM) and Lower Grade Glioma (LGG) and Head and Neck 

Squamous Cell Carcinoma (HNSCC). The first data on glioblastoma is available from data 

portal maintained by Genomic Data Commons (GDC) and located at https://

portal.gdc.cancer.gov/ and quality controlled and processed data is also available in R 

package iCluster[20]. The datasets are well described and studied for integrative clustering 

by previous studies[9, 20]. This study was selected as they have been previously used to 

illustrate the iCluster[20] and IntNMF[9]. Using the data sets, we can compare the outcomes 

of the proposed method to that of the published papers in a real-life setting. The datasets 

consist of three types of genomic data assayed on 55 common subjects: DNA methylation 

(1515 CpGs), copy number variation (1599 genes), and gene expression (1740 genes). Based 

on the gene expression data alone, Verhaak et al.[21] has reported four subtypes of glioma 

including Classical, Proneural, Neural and Messenchymal. Also, using the three datasets, 

two previous integrative analytical approaches iCluster and IntNMF have reported three 

distinct clusters.

The second study was another glioma study from the TCGA on lower grade gliomas (grades 

II and III)[22, 23]. Lower grade gliomas have extremely variable clinical characteristics 

which cannot be predicted merely based on histologic examination alone, as some LGGs 

remain indolent while many others rapidly progress to glioblastoma[22]. The data used here 

consists of mRNA (20,330 genes), DNA methylation (25,978 CpG probes) and DNA copy 

number (24,776 genes) measured on 511 subjects. This data is also freely available at data 

portal maintained by Genomic Data Commons (GDC) https://portal.gdc.cancer.gov/. Prior to 
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applying integrative clustering method, the dimension reduction of mRNA, methylation and 

CNV data were carried out by including around top 3 percentile features ranked by standard 

deviation in the decreasing order. This brings down the data into 584 mRNAs, 553 

methylation features and 493 CNVs assayed on 511 samples which helps in reducing the 

noise and optimizing the computational cost. TCGA study has identified three subtypes of 

the LGG characterized by IDH mutation and 1p/19q co-deletion status; IDHmut-codel, 

IDHmut-non-codel and IDHwt[22].

The third study was from the TCGA studies on Head and Neck Squamous Cell Carcinoma 

(HNSCC) [24]. Head and Neck Cancer, a heterogeneous group of tumors including cancers 

of the oral cavity, larynx, pharynx, salivary glands and nose/nasal passages, is characterized 

by a common anatomic origin and most of such tumors develop from within the mucosa and 

are classified as Head and neck squamous cell carcinoma (HNSCC)[24]. The HNSCC 

TCGA data that we used in this example consists of 279 patients with clinical data, Illumina 

HiSeq2000 mRNA gene expression (20,149 genes), DNA Copy number variation (24,174, 

genes), Illumina HiSeq microRNA (1017, features) and Somatic mutation data (16566, 

genes). These data sets are also freely available at data portal maintained by TCGA Genomic 

Data Commons (GDC), https://portal.gdc.cancer.gov/. Prior to applying integrative 

clustering method, the dimension reduction of mRNA and CNV data were carried out by 

including around top 3 percentile features ranked by standard deviation in the decreasing 

order. The resulting data for the integrative clustering consists of 500 mRNAs and 500 

CNVs assayed on 279 samples. In order to balance the number of features, 500 most varying 

microRNA features based on standard deviation were selected. Based on the gene expression 

data alone, TCGA study has identified four subtypes of the HNSCC named by; Atypical, 

Basal, Classical and Mesenchymal [24].

5. Results

5.1. Simulation Study

The simulated data sets were used to assess the ability of the proposed nNMF method to 

distinguish the true clusters (k). nNMF was also compared in terms of performance to the 

IntNMF method, Fig 2. In addition, the performances of the nNMF method was compared 

with popular iCluster method and SNF methods, Supplementary Figs. Fig 2 represents the 

plot of the performances of two methods nNMF and IntNMF with respect to ability to 

distinguish the true clusters and agreement of the resulting cluster-memberships with the 

true cluster memberships. The search range of k was set to 2 to 8 with the moderate effect 

size 3.5 (see Fig S1–S13 for complete results with all effects sizes considered in simulation). 

Each subplot represents the parameter values computed at each of the 30 initializations of 

the algorithm over the search range of k. Further, at each k, the average values are calculated 

and displayed as a line on the plot.

First two rows in Fig 2 are the subplots of silhouette width and CPI, measure for nNMF and 

IntNMF methods, against search range of k. Both methods clearly peak at true number of 

clusters for each scenario of the true number of clusters. Adjusted rand index comparing true 

and computed cluster memberships are shown in third row of the figure. The adjusted rand 

index measures the agreements of the cluster memberships out of each of the two methods 
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with true clustering assignment. The figures show that the adjusted rand index peaks at the 

true number of clusters and both methods agree at those peaks.

Cluster purity and entropy are other two measures of assessment of clustering 

performances[25]. Purity measures the proportion of the correct classification of the samples 

while entropy reflects any misclassification rate. Last two rows of Fig 2 represent the purity 

and entropy which indicate maximum purity and minimum entropy at the true number of 

clusters. Overall, simulation study shows that both methods are equally efficient for 

moderate to bigger effect sizes. nNMF performed better as compared to intNMF and 

iCluster in identifying the true number of clusters especially when the effect size was small, 

Supplementary Figures. In all other scenarios, nNMF worked competitively well with 

intNMF, iCluster and SNF, Supplementary Figures.

5.2. TCGA Glioblastoma, Lower Grade Glioma and Head and Neck Cancer studies

Glioblastoma data: The nNMF identifies three optimum clusters with Glioblastoma, Fig 

3. Cross-tabulation of previously identified subtypes using gene expression data[21] with the 

integrative subtypes identified by nNMF are shown in Table 1 and the heatmap is shown in 

Fig 3(a). The integrative clusters identified by nNMF strongly agreed with the previously 

reported clusters. The red and black colors of the heatmap displays subtypes defined using 

IntNMF, iCluster and SNF methods in such a way that red sample is in the cluster while 

black sample is not. The nNMF-C1 is made up of the Proneural type. nNMF-C2 is enriched 

by classical and nNMF-C3 is enriched by Messenchymal subtype. Similarly, nNMF-C1 

strongly matches with iClust-C2, SNF-C1 and intNMF-C1, nNMF-C2 matches with iClust-

C1, SNF-C2 and intNMF-C3, and nNMF-C3 matches with iClust-C3, SNF-C3 and intNMF-

C2 (Supplementary S. Table 1). Additionally, overall survival of the patients was found to be 

significantly different among the three identified subtypes (p-value = 6.17×l0−3, log rank 

test). A few somatic mutations that were emphasized by Verhaak et al.[21] and TCGA 

studies[26] were examined with respect to their representation in each of the clusters 

identified by nNMF and are shown in Table 1. nNMF C1 that was made by Proneural is 

characterized by TP53-mutations, classical subtype enriched C2 is characterized by EFGR-

mutations and PTEN-mutations, and the cluster C3 enriched by Mesenchymal is 

characterized by NF1-mutations.

Lower Grade Glioma data: The integrative clustering with nNMF resulted in three 

clusters, Fig 4. The subtypes identified by nNMF were highly associated with subtypes 

identified by TCGA study[22]. The TCGA study classified the subtypes using a cluster-of-

clusters analysis approach involving IDH mutation and 1p/19q co-deletion status by 

integrating cluster group assignments from the multiple individual platforms. nNMF-C1 is 

almost entirely made up of mutant IDH with non-codeletion, nNMF-C2 is enriched with 

IDH wild type, and nNMF-C3 is highly enriched with mutant IDH with codeletion (Table 2). 

The cross tabulation of nNMF subtypes with IDH mutation status, 1p/19q co-deletion status 

and histologic types and grades are presented in Table 2. The nNMF-C1 matches with the 

IntNMF-C3, SNF-C1 and iCluster-C2. nNMF-C2 matches with IntNMF-C1, SNF-C2 and 

iCluster-C1, and nNMF-C3 matches with IntNMF-C2, SNF-C3 and iCluster-C3 

(Supplementary, S. Table 2). The survival probability differences across the three nNMF 
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identified subtypes were assessed using Kaplan Meier method followed by log rank test (p-

value=7.85×10−12), Fig 4(d). Consistent with TCGA study results, the survival outcome was 

most favorable for the patients having IDH mutation and 1p/19q codeletion (nNMF-C3).

Head and Neck Squamous Cell Carcinoma (HNSCC) data: The nNMF identifies 

four optimum clusters with HNSCC, Fig 5. Cross-tabulation of previously identified 

subtypes using gene expression data[24] with the integrative subtypes identified by nNMF 
are shown in Table 3 and the heatmap is shown in Fig 5(a). The nNMF-C1 is enriched by the 

Basal and Mesenchymal type. nNMF-C2 is enriched by Basal, netNMF-C3 is enriched by 

Atypical and nNMF-C4 is enriched by Mesenchymal subtype. Similarly, netNMF-C1 
strongly matches with IntNMF-C2, nNMF-C2 matches with IntNMF-C3, SNF-C3 and 

iClust-C2, nNMF-C3 strongly matches with IntNMF-C3, SNF-C1 and iClust-C2, and 

nNMF-C4 strongly agrees with IntNMF-C4, SNF-C2 and entirely made up of iClust-C1 

(Supplementary S. Table 3). Additionally, overall survival of the patients was found to be 

significantly different among the four identified subtypes (p-value = 3.43×10−2, log rank 

test), Fig 5d. A few somatic mutations that were emphasized by TCGA studies[24] were 

examined with respect to their representation in each of the identified subtypes by nNMF 
method and are shown in Table 3. Those genes were either significantly mutated between the 

tumor and normal samples or trended towards significance as reported by the TCGA 

studies[24]. The genes are also listed under the Catalogue Of Somatic Mutation In Cancer 

(COSMIC) database. nNMF-C1 that was enriched by the Basal and Mesenchymal is 

characterized by mutations in CDKN2A and TP53 genes, Basal enriched nNMF-C2 is 

characterized by CDKN2A, FAT1, CASP8, NOTCH1 and HRAS mutations. nNMF-C3 
which is enriched with Atypical subtype is characterized by mutations in PIK3CA, KMT2D 

and NSD1 genes, and nNMF-C4 which is enriched by Mesenchymal subtype is 

characterized by TP53 and NOTCH1 mutations.

6. Discussion

We propose integrative clustering method nNMF to classify the data by utilizing the 

strengths of the non-negative matrix factorization and sample similarity networks. nNMF 
can handle any type of genomic data that are presented in continuous scale. The method 

constructs stable consensus networks for each type of the data separately. Since each 

consensus network is generated for each data type, the method is not affected by the varying 

distributions and scales of multiple data types. A common challenge of many latent subtype 

identification method has been the lack of prior information. In other words, the methods are 

generally based on unsupervised techniques which might result in overfitting or underfitting 

of the data. On order to partially address this issue the robust and stable consensus matrices 

are calculated using the resampling based cross-validation method that is built in intNMF[9] 

function. The method integrates the generated networks to create a robust single consensus 

network which is then utilized to partition the data using spectral clustering. Extensive 

simulation studies were completed to assess the ability of proposed nNMF method. 

Additionally, nNMF was applied on two glioma studies from TCGA and one head and neck 

cancer from TCGA. The results from these analyses have elucidated that nNMF is able to 

efficiently extract the latent clustering structure hidden in the data. The examples based on 
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the simulated data and the real-life data have demonstrated that nNMF method is clearly an 

addition to the existing list of only a few integrative clustering methods. The results of 

nNMF strongly agree with the results from previous studies and methods. In addition, with 

the simulated data, nNMF demonstrated better ability of detecting the true clusters for small 

effect size.

In this manuscript, we selected three previously proposed integrative clustering methods to 

compare with the proposed method: IntNMF[9], SNF[4] and iCluster[6]. The main purpose 

of the manuscript is to demonstrate the applicability of the proposed method rather than 

carrying out the substantial analyses of the data. We chose IntNMF and SNF methods 

because the proposed method leverages the advantages of the two methods. We selected 

model based iCluster method because of its widespread popularity and application. Our 

simulation studies show that all the four methods work well for the given reasonable effect 

size. When the effect size is small the proposed method performs better. Since the data were 

simulated using the multivariate gaussian distribution, the statistical distribution assumption 

of the iCluster was met and it performed similar to that of non-parametric methods. But high 

dimensional real-life data generally does not follow the specific statistical distribution. In the 

two real data examples on gliomas, all four methods result in three optimum clusters while 

with the HNSCC example, there were differing number of clustering results, S.Tables 1–3. 

The results of the nNMF closely agreed with the IntNMF as measured by the adjusted Rand 

Index. There were least agreements of the nNMF clustering results to that of the iCluster. 

One reason of low performance of the iCluster is that the data does not satisfy the normality 

assumption which is the requirement of the method. Since the multiple types of real data can 

have disparate types of distributions, these results show that parametric methods are 

generally more robust in their applications. With the two glioma studies the survival 

probabilities among the identified subtypes by all methods are statistically significantly 

different, Fig S42 and Fig S43. But there was no significant difference in the survival 

probability among the two subtypes identified by iCluster with the HNSCC example, Fig 

S44. Overall, if the model assumptions are satisfied all the four methods perform well. But, 

if the model assumptions are not met, non-parametric methods perform better than the 

model-based methods. With the IntNMF, prior estimation and assignment of the weight for 

each data will be helpful in optimizing the outcomes and rescaling of the data is required. 

SNF is based on the exponential kernel function to define the sample similarity matrix 

calculated using Euclidean or other distance measures[4]. However, the kernel-based 

clustering of SNF has been criticized for its unstable nature of making the algorithm too 

sensitive to small changes in genomic assays[10]. The proposed method does not have such 

requirements and therefore has wider scope of application.

In summary, development of the high-throughput technologies and the reduction in cost to 

assay the molecular information have resulted in multiple types of high dimensional data 

and this trend is expected to continue for the foreseeable future. Such increasing 

complexities not only pose statistical challenges but have also created opportunities to 

develop more efficient integrative ‘omics data analysis methods to understand the biological 

differences between cancers and within a given cancer. Molecular clustering helps to 

identify the disease subtypes that the histological or morphological examinations alone 

cannot reveal. The comprehensive investigation of the inter- and intra- relationships in 
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biological process and the regulatory mechanisms provide a deeper understanding of the 

disease mechanism which will, in turn, help in the efforts geared towards personalized and 

precision medicine and treatment. To this end, we propose the network based integrative 

clustering method using non-negative matrix factorization that allows for integrative analysis 

of multiple genomic data having varying distributions and scales. The computer program for 

the method is written in R and is available upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Integrative approaches for the study of biological systems have gained 

widespread popularity.

• There is lack of efficient non-parametric integrative clustering methods to 

assess “systems-biology”.

• nNMF provides flexible non-parametric method of integrative clustering

• nNMF can handle data without requiring to rescale them which adds more 

flexibility in the application

• nNMF allows researchers to identify disease subtypes using several types of 

data collected on same set of patient samples.
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Fig. 1: 
Illustration of nNMF steps: (a) Examples of the representation of multiple datasets collected 

at several layers of biological process from the same patient samples. (b) Consensus matrix 

resulting from each data separately. (c) Patient similarity network as represented by 

consensus matrix. Patients are represented by the nodes and the pairwise similarity are 

represented by the edges. (d) Single consensus matrix representing the integrated patient 

similarity network and cluster pattern.
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Fig. 2: 
Plot showing the comparison of nNMF vs IntNMF: The plots represent the comparison of 

the two methods evaluated using the simulated data with moderate effect size of 3.5. The 

subplots on the first row show the silhouette width (nNMF) calculated over the search range 

of k from 2 to 8. Each column represents the true number of clusters k = 2, 3, 4, 5, and 6. 

The points represent the parameter values computed at each of 30 initializations of the 

algorithm. The averages of the parameter values at each k are calculated and displayed as 

lines in each subplot. CPI (intNMF) is shown in similar way in second row. Adjusted rand 
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indices comparing (i) nNMF and Truth (red), (ii) IntNMF and Truth (blue), and (iii) nNMF 
and intNMF (green) are shown in third row. Fourth and fifth rows represent the cluster purity 

and entropy respectively.
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Fig. 3: 
Glioblastoma example: (a) Integrative clustering of glioblastoma samples using three data 

types: DNA methylation, mRNA and copy number variation (CNV). The red and black 

panel shows subtypes identified by IntNMF, iCluster and SNF. Clusters are indicated by C1, 

C2 and C3. The red and black colors of the heatmap displays subtypes defined using 

IntNMF, iCluster and SNF methods in such a way that red sample is in the cluster while 

black sample is not. (b) Subgroups visualization using tSNE[27] method with colors 

indicating the clusters identified by nNMF. (c) Bar plot of nNMF clusters with expression 
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subtypes indicated as segments. (d) Overall survival probability differences using Kaplan 

Meier method followed by log-rank test.
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Fig. 4: 
Lower Grade Glioma example: (a) Integrative clustering of subjects using three datasets: 

DNA methylation, mRNA expression, and copy number variation (CNV). The red and black 

panel shows subtypes identified by IntNMF, iCluster and SNF. Clusters are indicated by C1, 

C2 and C3. The red and black colors of the heatmap displays subtypes defined using 

IntNMF, iCluster and SNF methods in such a way that red sample is in the cluster while 

black sample is not. (b) Subgroups visualization using tSNE[27] method with colors 

indicating the clusters identified by nNMF. (c) Bar plot of nNMF clusters with expression 
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subtypes indicated on the bars. (d) Overall survival probability differences using Kaplan 

Meier method followed by log-rank test.
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Fig. 5: 
Head and Neck Squamous Cell Carcinoma (HNSCC): (a) Integrative clustering of HNSCC 

samples using three data types: mRNA, microRNA and copy number variation (CNV). The 

red and black panel shows subtypes identified by IntNMF, iCluster and SNF. Clusters are 

indicated by C1, C2 and C3. The red and black colors of the heatmap displays subtypes 

defined using IntNMF, iCluster and SNF methods in such a way that red sample is in the 

cluster while black sample is not. (b) Subgroups visualization using tSNE method with 

colors indicating the clusters identified by nNMF. (c) Bar plot of nNMF clusters with TCGA 
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expression subtypes indicated as segments. (d) Overall survival probability differences using 

Kaplan Meier method followed by log-rank test.
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Table 1:
Comparison of nNMF clusters with subtypes previously reported using gene expression 
data on Glioblastoma study.

The first panel of the table represents the cross tabular comparison of nNMF subtypes with the gene 

expression subtypes. Somatic mutations in a few previously highlighted genes[21, 26] are shown in second 

panel of Table by nNMF clusters.

nNMF subtypes

C1 C2 C3 Total

Expression Subtypes Classical 0 12 2 14

Mesenchymal 0 6 10 16

Neural 0 2 6 8

Proneural 14 1 2 17

Total 14 21 20 55

Somatic Mutation TP53 (%) 64.3 28.6 31.6

NF1 (%) 14.3 9.5 26.3

PTEN (%) 14.3 28.6 26.3

EGFR (%) 14.3 28.6 5.3

PIK3R1 (%) 28.6 14.3 0.0

PIK3CA (%) 7.1 4.8 5.3

RB1 (%) 7.1 0.0 15.8

ERBB2 (%) 14.3 9.5 15.8
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Table 2:
Comparison of nNMF clusters with TCGA subtypes on lower grade gliomas study.

TCGA study classified the subtypes based on a cluster of clusters analysis involving IDH mutation and 1p/19q 
co-deletion status integrating cluster group assignments from the four individual platforms (DNA methylation, 

mRNA, DNA copy number, and microRNA): IDH Mutation and 1p/19q Codeletion (TCGA Subtype-1), IDH 
Mutation and No 1p/19q Codeletion (TCGA Subtype-2) and IDH Wild Type (TCGA Subtype-3). Total of 511 

subjects were used for NNMF but 3 subjects had missing IDH mutation status (First panel of table). Second 

panel of the table presents the IDH mutation and 1p/19q co-deletion status by nNMF cluster groups. Third 

panel represents histologic type and grade by cluster nNMF cluster groups.

nNMF subtypes

C1 C2 C3 Total

TCGA Subtypes IDHmut-codel 0 13 156 169

IDHmut-non-codel 170 57 19 246

IDHwt 1 92 0 93

Total 171 162 175 508

IDH Status Mutant 171 70 175 416

Wild-type 0 92 0 92

Co-deletion Status Codel 0 13 156 169

Non-codel 173 150 19 342

Astrocytome

Grade II 37 15 3 55

Grade III 43 62 8 113

Histologic type and Grade Oligoastrocytoma

Grade II 32 12 16 60

Grade III 20 18 15 53

Oligodendroglioma

Grade II 20 18 60 98

Grade III 3 18 52 73
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Table 3:
Comparison of nNMF clusters with subtypes previously reported using gene expression 
data on Head and Neck Squamous Cell Carcinoma study.

The first panel of the table represents the cross tabular comparison of nNMF subtypes with the gene 

expression subtypes as reported by TCGA study. Percentages of somatic mutations in a few previously 

highlighted genes[24] are shown in second panel of Table by nNMF clusters.

nNMF subtypes

C1 C2 C3 C4 Total

Expression Subtypes Atypical 9 9 47 3 68

Basal 24 45 2 16 87

Classical 11 5 26 7 49

Mesenchymal 16 15 8 36 75

Total 60 74 83 62 279

Somatic Mutation CDKN2A (%) 20.0 24.6 13.4 8.7

FAT1 (%) 8.0 24.6 7.5 17.4

TP53 (%) 60.0 58.5 46.3 60.9

CASP8 (%) 2.0 15.4 0.0 6.5

AJUBA (%) 8.0 6.2 0.0 2.2

PIK3CA (%) 6.0 13.8 23.9 13.0

NOTCH1 (%) 16.0 20.0 6.0 17.4

KMT2D (%) 14.0 7.7 14.9 8.7

NSD1 (%) 2.0 6.2 17.9 4.3

TGFBR2 (%) 4.0 3.1 0.0 2.2

HRAS (%) 2.0 4.6 3.0 2.2
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