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Abstract

Myxomatous mitral valve degeneration (MMVD) is a leading cause of valve repair or replacement 

secondary to the production of mitral regurgitation, cardiac enlargement, systolic dysfunction, and 

heart failure. The pathophysiology of MMVD is complex and incompletely understood, but key 

features include activation and transformation of mitral valve (MV) valvular interstitial cells 

(VICs) into an active phenotype leading to remodeling of the extracellular matrix and compromise 

of the structural components of the MV leaflets. Uncovering the mechanisms behind these events 

offers the potential for therapies to prevent, delay, or reverse MMVD. One such mechanism 

involves the neurotransmitter serotonin (5HT), which has been linked to development of 

valvulopathy in a variety of settings, including valvulopathy induced by serotonergic drugs, 5HT-

producing carcinoid tumors and development of valvulopathy in laboratory animals exposed to 

high levels of 5HT. Similar to humans, the domestic dog also experiences naturally-occurring 

MMVD, and in some breeds of dogs, the lifetime prevalence of MMVD reaches 100%. In dogs, 

MMVD has been associated with high serum 5HT, increased expression of 5HT-receptors, 

autocrine production of 5HT within the MV leaflets, and down regulation of 5HT clearance 

mechanisms. One pathway closely associated with 5HT involves transforming growth factor beta 

(TGF-β) and the two pathways share a common ability to activate MV VICs in both humans and 

dogs. Understanding the role of 5HT and TGF-β in MMVD gives rise to potential therapies, such 

as 5HT receptor (5HT-R) antagonists. The main purposes of this review are to highlight the 

commonalities between MMVD in humans and dogs, with specific regards to 5HT and TGF-β, 

and to champion the dog as a relevant and particularly valuable model of human disease that can 

accelerate development of novel therapies.
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1. Introduction

Mitral regurgitation (MR) is a commonly encountered and clinically significant valvular 

heart condition and causes of primary MR, including myxomatous mitral valve degeneration 

(MMVD), represent an important global healthcare burden [1]. In the developed world, 

MMVD is the primary indication for surgical correction of severe MR [2]. The pathologic 

hallmarks of MMVD vary but mainly involve redundant valve tissue, prolapse, and 

involvement of multiple leaflet segments [3]. Gross findings typically include increased 

leaflet thickness as a result of extracellular matrix (ECM) remodeling and proteoglycan 

accumulation, leaflet prolapse or flail, and elongated or ruptured chordae tendineae [3]. The 

etiology of most cases of MMVD is unknown. In recent years, certain molecular pathways, 

namely the serotonin (5HT) and transforming growth factor beta (TGF-β) pathways, have 

been implicated in the etiology of MMVD in humans as well as in animals, such as the 

domestic dog (Canis familiaris). The similarities of disease between these two species are 

numerous and offer a unique opportunity for important insight. This review focuses on the 

comparative epidemiologic, gross, histological, and molecular characteristics of MMVD 

between humans and dogs, with particular emphasis on the 5HT and TGF-β pathways. 

These types of comparisons can reveal new therapeutic strategies to combat MMVD many 

of which could be tested in the dog.

1.1. Definition of myxomatous mitral valve degeneration (MMVD)

MMVD in both humans and dogs is defined by architectural disruption of the histological 

mitral leaflet layers involving excessive extracellular accumulation of proteoglycans within 

the spongiosa and fractured and disorganized elastin and collagen fibers within the fibrosa 

[4, 5]. These changes result in thickening, billowing, prolapse, and flail of the valve leaflets, 

and elongation and rupture of the chordae tendineae [6].

The extent of any one of these features tends to vary between species. In the dog, the most 

common occurrence of MMVD involves redundant and thickened valve tissue primarily 

affecting the entire anterior leaflet, while in humans, the middle posterior leaflet is most 

commonly affected, however substantial individual variation exists. One important feature of 

MMVD is mitral valve prolapse (MVP), which has been defined as systolic displacement of 

any portion of the valve leaflets beyond the plane of the MV annulus and into the left atrium 

as measured in a long-axis echocardiographic view, typically by > 2mm [7, 8]. One potential 

source of confusion is that MMVD and MVP are often contemporaneously present but are 

not synonymous. In humans, myxomatous degeneration can lead to MVP, but not all cases of 

MVP are due to MMVD. For example, some instances of MVP are characterized more so by 

superimposed fibrosis than by extensive deposition of ECM within the MV layers [9] while 

other forms of “syndromic” MVP occur secondary to connective tissue disorders, such as 

Marfan syndrome or Ehler-Danlos [10]. MVP is also present in valve disease secondary to 
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ventricular deformation due to dilated cardiomyopathy or myocardial infarction: for 

example, over one-third of patients with ischemic mitral regurgitation (IMR) present with 

MVP [11]. In contrast, virtually all instances of MVP in the dog are secondary to MMVD 

(Figure 1). In this review, we only consider MVP in the context of MMVD. Furthermore, in 

humans, at least 2 main subsets of MMVD are recognized. The first, termed fibroelastic 

deficiency, is characterized by loss of valve collagen, thin and transparent leaflets, and 

rupture of one or more thin chordae tendineae that typically affects only single portion of a 

leaflet (usually the middle scallop of the posterior leaflet) [12]. In the second, termed 

Barlow’s disease, there is excessive myxoid deposition, leaflet thickening, flail leaflet tips 

and redundant leaflet tissue, multiple segments of the MV leaflet billow onto the left atrial 

cavity during ventricular systole, causing MVP, and chordae tendineae are elongated or 

ruptured [13]. Based on the gross morphological characteristics, which can usually be 

examined using echocardiography, the Barlow’s form of MMVD in humans is most 

analogous to MMVD in the dog.

1.2. Epidemiology of MMVD

In humans, the estimated prevalence of MMVD in the global population is 2–3% with 15% 

of cases eventually requiring valve surgery [14]. The age-related nature of degenerative 

conditions such as MMVD coupled with the increasing life span likely contributes to this 

burden even as rheumatic causes of MR decline in the developed world [15]. In the dog, 

MMVD is the most common heart disease and is associated with increasing age and certain 

dog breeds [16–18]. The domestic dog has its origins between 20,000 and 40,000 years ago 

arising from 1 or more wolf species of the Canis family [19]. Since that time, selective 

breeding of the dog has resulted in an extremely wide phenotypic array of different dog 

sizes, conformation, and susceptibility to disease such that the highest occurrence of MMVD 

is in small and medium-sized chondrodystrophic dog breeds <15 kg of body weight. The 

prevalence of MMVD in this population is remarkably high with prevalence between 30 and 

70% in dogs over the age of 10 years, and lifetime incidence of MMVD in some of these 

breeds is close to 100% [17, 20]. The effect on mortality is substantial. Heart failure is the 

third most common cause of death or humane euthanasia comprising 4.9% of all dog 

mortality [21]. The clinicopathological aspects of MMVD including the clinical, gross, and 

histological features are similar across dogs.

Certain breeds of dogs exhibit extraordinarily high risk of MMVD [22]. One example is the 

Cavalier King Charles Spaniel (CKCS) breed, in which death due to heart disease comprises 

over 30% of all causes of death [21]. The CKCS is a small-sized breed of approximately 9 

kg of body weight that originated in England during the reign of King Charles II [23]. 

Beginning at the age of 3 years, the yearly incidence of MMVD in the CKCS is 

approximately 7% and rises to as high as 15% in subsequent years, such that virtually all 

dogs exhibit disease by the age of 10 years [23]. The contemporary CKCS breed standard is 

based on only a few foundational dogs, which is the likely cause of the high incidence of 

disease. One study[24] into the heritability of MMVD in the CKCS identified two loci 

associated with early onset of MMVD, but these results have not been reproduced in other 

studies [25].
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The clinical progression of MMVD has been termed “unrelentingly although variably 

progressive” [26]. The clinical consequences of severe MMVD include progressive MR, 

eccentric cardiac hypertrophy, systolic dysfunction, and if left uncorrected, left-sided 

congestive heart failure (CHF). MMVD is also associated with tricuspid valve degeneration 

in about 30% of canine MMVD cases [27]. Cardiac mortality in the 6 years following 

diagnosis of MMVD in the dog is 11% [28]. Unlike in humans, surgical repair in dogs with 

MR, while associated with improved outcomes, is expensive and not widely available [29]. 

Thus, the vast majority of dogs with severe MR and CHF secondary to MMVD receive only 

medical therapy with diuretics, ACE inhibitors, aldosterone receptor blockers, and positive 

inotropes [30]. The clinical course of spontaneous MMVD in the dog that starts with mild 

asymptomatic MR with variable progression to moderate MR with LV eccentric hypertrophy 

and left atrial enlargement, then to severe MR with clinical signs of CHF, occurs within the 

relatively short adult lifespan of the dog (~3–6 years) as compared to humans. As such, the 

MMVD in the dog represents a good model in which to better understand the 

pathophysiology of MMVD as well as to evaluate potential treatments to delay progression. 

Important pathological features of spontaneous MMVD in the dog and humans will be 

further discussed.

1.3. Comparative Anatomy and Pathology

The MV apparatus is subject to substantial and repeated mechanical stress, including tension 

when the valve is closed in systole, flexure during the opening of the valve in diastole, and 

shear stress across its surface from blood flow [31]. Heart valves open and close more than 3 

billion times in an average adult human lifetime, and of the 4 valves, the MV experiences the 

greatest transvalvular pressure gradient. During systole, the MV leaflets experience high 

degrees of strain with rapid stretching, a plateau phase with a constant strain state, and upon 

full closure, an extreme increase in stiffness to prevent further leaflet deformation and 

prevention of MR that is caused by straightening of collagen fibers within the leaflets [32]. 

The gross and histological structures of the human [33] and canine [5, 34] valve leaflets are 

similar and designed to withstand the repeated stress through a combination of a high degree 

of structural integrity and absorption of forces by inner layers of the MV leaflets.

At the gross level the MV is closely related to the fibrous skeleton of the heart, which is 

made up of fibrocartilagenous tissue and includes the left and right fibrous trigones and 

much of the MV annulus [35]. The MV annulus is non-planar and saddle-shaped, which 

reduces tension on the tendinous chords and valve leaflets [36, 37]. Other features of the 

MV apparatus in both dogs and humans include the continuity of the anterior MV leaflet 

with the aortic valve cusps at the aortic root and the presence of an extensive branching 

network of tendinous chords connecting to an anterior and posterior papillary muscle [38]. 

The histological structure of the MV leaflet is also similar in humans and dogs consisting of 

inner layers of highly organized ECM and connective tissue elements (Figure 1A) [39, 40]. 

The two innermost regions of the valve are particularly important and include the spongiosa 

with its proteoglycan-rich ECM and the fibrosa with its collagen network that extends into 

the tendinous chords. Residing within the valve are valve interstitial cell (VICs), which arise 

from mesenchymal differentiation of endothelial cells that are present during embryonic 

development of the heart valve [41]. VICs play an important role in both healthy conditions 
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as well as during MMVD by regulating the composition of the spongiosa and fibrosa. The 

ECM and structural proteins within the MV leaflet are a dynamic network that is constantly 

being modified by the resident VICs in order to achieve a balance between synthesis and 

degradation in the ECM, which helps maintain normal structure and function. The 

proteoglycan-rich composition of the spongiosa helps mitigate the mechanical forces 

experienced by the valve and gives the leaflet its compressive properties that absorb high 

forces during leaflet coaptation. At the same time, the high density of collagen and elastin in 

the layers surrounding the spongiosa provides the leaflets with the necessary tensile strength 

needed during coaptation while the leaflets are closed [42, 43]. Surrounding the valve’s 

innermost layers an outer layer of loosely arranged elastic and fibrous fibers and surface 

covering of valve endothelial cells (VECs) create a barrier between the leaflets and blood. 

The VECs are attached to the ECM by a basement membrane and capable of responding to 

mechanical stimulus and sheer stress and actively communicating with the ECM and VICs 

through various signaling mechanisms [44].

The hallmark features of the Barlow’s form of MMVD in both humans and dogs include 

leaflet thickening, development of nodules along the leaflet edge, rupture of chordae 

tendineaae, expansion of the spongiosa, and collagen fiber loss and disorganization in the 

fibrosa (Figure 1B) [6, 18]. A key step in these changes is the activation of VICs, which 

transdifferentiate into a population of cells that presents phenotypic characteristics of several 

different cell types, including fibroblasts, smooth muscle cells, and myofibroblasts [45–47]. 

The role of activated VICs in cardiac valve remodeling, including fibrosis and calcification, 

is well established [48]. Stimuli for VIC activation include mechanical stress, injury to the 

leaflet endothelial surface, and signaling molecules, such as 5HT and TGF-β, among others 

[49]. Presumably, a degree of constitutive VIC activation occurs in response to normal wear 

and aging to repair and upkeep the leaflets [50], however MMVD is characterized by an 

abundance of activated VICs, as well as endothelial-to-meschymal transformation and 

migration of VECs into the inner valve layers. Activated VICs mediate excessive production 

of ECM, expansion of the spongiosa, and fragmentation and disruption of elastin and 

collagen that results in valve incompetence and MR. VIC activation is also present in 

secondary valve adaptation in IMR, and may mediate a compensatory increase in MV leaflet 

surface area to improve valve coaptation when left ventricle geometry has been disrupted by 

dilated or ischemic cardiomyopathy [51]. The molecular features of VIC and VEC activation 

and remodeling include a wide variety of signaling molecules including but not limited to 

5HT, TGF-β, lipopolysaccharide [52], vascular endothelial growth factor [46], matrix 

metalloproteinases (MMPs) [53, 54], and tissue inhibitors of metalloproteinases (TIMPs) 

[55, 56]. Over the past decade, the role of 5HT and TGF-β in activation of VICs and 

MMVD has been a subject of considerable interest.

2. Serotonin and TGF-β Signaling Pathways

5HT and TGF-β pathways play a significant role in the activation of human and canine MV 

VICs [57–60], and a better understanding of these pathways could improve our 

understanding of the pathogenesis of MMVD. The nature of the 5HT and TGF-β pathways 

and important similarities between human and canine MMVD is further described.
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Serotonin is a monoamine neurotransmitter produced by serotonergic neurons in the central 

nervous system as well as by enterochromaffin cells in the gastrointestinal tract. It is 

synthesized through the hydroxylation of tryptophan, mediated by tryptophan hydroxylase-1 

(TPH1), which is the limiting step in this reaction. In the periphery, 5HT is produced and 

stored mainly in gastrointestinal tract enterochromaffin cells and any 5HT released into 

circulation is rapidly taken up by platelets or other cells through the 5HT-reuptake 

transporter (SERT). Thus, SERT is a key protein that regulates the amount of available 5HT 

in the extracellular space by controlling the uptake and subsequent storage or metabolism of 

circulating 5HT. Platelets uptake and store large amounts of 5HT in their dense granules, 

and subsequently release 5HT in response to endothelial damage, immune complex 

formation, thrombin, collagen, and ischemia, amongst other stimuli, and mediate local 

vasoconstriction, platelet aggregation, and hemostasis. Serotonin internalized by SERT is 

subsequently metabolized by monoamine oxidase A (MAO-A) to form 5-hydroxyindole 

acetic acid (5-HIAA), which is then secreted into the urine.

Serotonin mediates its biological effects on cells by interacting with specific membrane 

bound receptors (5HT-Rs) [61]. At least 14 distinct 5HT-Rs have been characterized with the 

majority belonging to the G-protein coupled receptor superfamily. The type 2 subfamily of 

5HT-Rs (5HT-R2) including 5HT-R2A, 5HT-R2B, and 5HT-R2C has been previously 

associated with heart disease [62, 63]. 5HT-R2 signaling activates phospholipase C and 

increases intracellular calcium and stimulates protein kinase C. Of particular note is 5HT-

R2B, which induces Ras activation and Src phosphorylation that mediates tyrosine kinase 

signaling pathways via extracellular signal-regulated kinase 1 (ERK1) and 2 (ERK2) (Figure 

2) and induces cell cycle progression, mitogenesis, and activation of MV VICs [62, 64].

The TGF-β pathway shares several points of crosstalk with the 5HT pathway (Figure 2). In 

mammalian species, the TGF superfamily consists of 33 structurally related cytokines, with 

3 archetypal isoforms (TGF-β 1, 2, and 3) as well as 20 different bone morphogenic proteins 

(BMPs) [65]. The TGF system regulates a wide range of cell responses including cell 

proliferation, differentiation, migration, and apoptosis [66, 67] in a variety of cell types, 

including VICs. Receptor binding triggers phosphorylation of secondary messenger 

molecules within the Smad family, which translocate to the nucleus to regulate 

transcriptional activity. A role for 5HT and TGF-β has been increasingly understood in both 

human and canine DMVD.

3. Role of 5HT and TGF-β in Valve Disease

A connection between 5HT, TGF-β, and MMVD is supported by a variety of findings, 

including the capacity of 5HT to activate of human and canine VICs [68–70], increased 

transcription and expression of 5HT and TGF-β pathway components in affected MV tissue 

[54, 58, 71–74], increased local and circulating 5HT concentration in dogs with MMVD 

[74–77], inducement of valve lesions secondary to exogenous 5HT [78], 5HT-producing 

tumors [79, 80], or serotonergic drugs [81], and finally the ability of 5HT-R antagonists to 

block VIC activation and mitigate histological changes of MMVD in experimental models 

[59, 64].
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3.1. Activation of VICs by 5HT and Mechanical Stress

5HT and mechanical stress trigger activation and differentiation of VICs into an activated 

phenotype. Activation of VICs is characterized by increased phosphorylation of mitogenic 

pathways, such as the ERK1/2 pathway (Figure 2), expression of smooth muscle actin, and 

increased production of ECM and MMPs. As previously mentioned, heart valves are subject 

to high degrees of repetitive stress, and both 5HT and TGF-β help mediate response to this 

stress. MVD patients often have long-standing hypertension, which increases the risk of both 

primary and secondary MR [82] and contributes to increased strain on the valves. Previous 

studies utilized a stretch bioreactor to study the role of stress and 5HT on VIC activation in a 

variety of species and MMVD models. In a series of studies, porcine aortic valve leaflets 

were subjected to physiologic and pathologic levels of cyclic strain and demonstrated 

activation of VICs, increased expression of smooth muscle actin, MMPs, 5HT-R2B, and 

5HT-R2A, and increased production of ECM proteoglycans [83–85]. This response was 

heightened in the presence of 5HT stimulation or SERT blockade [86]. In other studies, 

canine MV leaflets were exposed to either cyclic or static strain and demonstrated 

significantly increased activation of VICs and expression of smooth muscle actin, MMPs, 

and glycosaminoglycans, and showed MV capacity for local production of 5HT mediated by 

TPH1 [87, 88]. Finally, human MV tissue subjected to biomechanical stress demonstrated 

increased 5HT signaling, resulting in increased 5HTR2A and 5HTR2B expression and 

activation of VICs [59]. Experimental models showing VIC response to mechanical stress 

are particularly important in the study of secondary valve diseases like IMR, in which 

tethering resulting from LV deformation is believed to be the main catalyst for MV 

remodeling. The mechanisms resulting in VIC activation in secondary MR likely vary by 

etiology (i.e. ischemic vs. overload); a prior study in sheep with IMR demonstrated that VIC 

activation and expression of TGF-β were augmented in sheep with ischemia and mechanical 

tethering of the chordae tendineae in comparison with tethering alone [51]. Increased 

circulating [89] and interstitial [90] 5HT have been reported after cardiac ischemia and may 

contribute to MV remodeling in IMR.

3.2. Upregulation of 5HT and TGF-β Pathways in MMVD

5HT and TGF-β pathways are upregulated in MMVD as shown by increased transcriptional 

activity of various components of the 5HT and TGF-β pathways in various genomic 

expression studies of human and canine MMVD. These studies demonstrate many 

similarities between humans and dogs with MMVD with regards to 5HT and TGF-β. In 

studies of human valve tissue, transcriptional activity of 5HT-R2B was increased 28.4-fold 

vs. controls, and incubation with 5HT or TGF-β revealed a dose-dependent increase in cell 

activation and markers of cell proliferation, and collagen and proteoglycan synthesis [59, 64, 

91]. Studies in dogs [54, 70, 73, 92, 93] similarly revealed upregulated transcriptional 

activity of 5HT-R2B in affected MV tissue, which was also associated with increased protein 

expression of 5HT-R2B and VIC activation. In surgically excised myxomatous human 

valves, TPH1 was increased three-fold compared to non-diseased control tissue [88]. In 

dogs, local production of 5HT is evidenced by 3 to 5-fold increases in TPH1, as well as 

detectable 5HT levels in the culture media and valve tissue of valves undergoing cyclic 

strain [70, 87, 88, 94].
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Multiple mechanisms including inflammation, mechanical forces and angiotensin-II result in 

TGF-β secretion. Increased TGF-β signaling is associated with a variety of different MV 

diseases including those associated with fibrillin-1 mutations, X-linked MMVD, MVP, and 

IMR [95, 96]. A prior case report has described a patient with MMVD as well as 

myxomatous degeneration of the tricuspid and aortic valves who was found to carry two 

mutations in the TGFB2 gene [97]. In human and canine MMVD valves, TGF-β signaling, 

protein expression, and immunohistochemical staining for latent TGF-β receptors is 

increased [54, 58, 70, 71], and TGF-β level correlated with leaflet thickness in human 

MMVD [98], which suggests an implication of TGF-β in the progressive nature of MMVD. 

Human and canine MMVD samples also demonstrated up regulation of TGF-β–related BMP 

signaling molecules [54, 85, 99]. Angiotensin II receptor blockers reduced TGF-β-

dependent VIC activation and ECM production in cultured human VICs obtained from 

surgical specimens [100]. In a sheep model of IMR, TGF-β downregulation with losartan 

was associated with a reduction of fibrosis and MV thickness, while the compensatory 

increase in MV area was preserved [101].

3.3. Myocardial, Valvular, and Circulating 5HT in MMCD in Dogs

Two potential sources of increased 5HT signaling in MMVD include circulating 5HT or 

autocrine production of 5HT. In one study, dogs with MMVD had an approximately 50% 

higher 5HT serum concentration compared with control dogs [75]. There are potential 

important interbreed differences: CKCS, a breed with extremely high prevalence of MMVD, 

are reported to have particularly increased serum 5HT levels [75, 76, 102, 103]. The 

relationship between circulating 5HT and MMVD appears complex. Serum and plasma 5HT 

levels are higher in the early stages of the disease as compared to the later stages and 5HT 

levels are inversely correlated with the heart size in dogs with MMVD [76]. Free 5HT in 

circulation is rapidly taken up by platelets and the vast majority of circulating 5HT is stored 

in platelet dense granules as opposed to free in the plasma [74, 77]. Therefore, serum 5HT 

likely represents a small amount of plasma 5HT with a majority of serum 5HT secondary to 

platelet-release. Scanning electron microscopy studies of affected canine and human 

MMVD MV leaflets revealed denuded endothelium, exposure of subendothelial collagen, 

and expression of inflammatory molecules that could attract platelets and subsequent 5HT 

release [104]. 5HT in platelet rich plasma was higher in healthy CKCS, as well as both 

CKCS and mixed breed dogs with MMVD vs. healthy mixed breed controls [74]. Elevated 

5HT in dogs may therefore be related to platelet activation and release of its granules. 

Previous studies have shown that the degree of MR in dogs is correlated to platelet 

dysfunction [105, 106]. Of interest, the CKCS breed is also associated with an inherited 

thrombocytopenia and giant platelet disorder affecting approximately half of all CKCS dogs 

[107, 108]. Scanning electron microscopy of the giant platelets from these dogs revealed the 

presence of dense granules and other ultrastructural features similar to normal sized 

platelets. [107] In addition to having macrothrombocytes, the platelet population in CKCS 

dogs with MMVD also contains at least one flow cytometry scatterplot subpopulation with a 

higher percentage of surface-bound 5HT-positive expression and activation, but the exact 

relationship of platelet morphology, ultrastructure, and function to MMVD requires further 

study [77]. A previous study in rats reported that platelet lysate containing 5HT-activated 

cardiac myofibroblasts, led to overproduction of ECM, and provided proof of concept that 
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platelet-derived 5HT was capable of mediating cardiac cell activation [109]. Previous studies 

have also studied 5HT concentration in left ventricular and MV tissue [74]. Concentration of 

5HT in MV tissue from dogs with MMVD was 9-fold greater than in healthy dogs and 13.5-

fold greater than in dogs with other types of cardiac disease. Left ventricular 5HT 

concentration from dogs with MMVD was similarly increased.

3.4. Serotonergic Drugs, 5HT-producing Tumors, and Experimental Models

The role of increased 5HT signaling in valve disease is further supported by development of 

valve injury secondary to 5HT-producing tumors, such as in carcinoid disease, as well as by 

toxicity of serotonergic drugs. Carcinoid tumors involve enterochromaffin cells in the 

gastrointestinal tract and release large amounts of hormone-like molecules, including 5HT, 

into the blood stream. Carcinoid heart disease, present in about 40% of patients with 

carcinoid tumors, is associated with thickening and regurgitation in the pulmonary and 

tricuspid valves [110] and, less commonly, in the mitral and aortic valves [111]. Importantly, 

it has been suggested that carcinoid involvement of the left-sided valves is associated with 

tumors that produce high levels of circulating 5HT [112]; in these cases distinct “carcinoid” 

plaques are present on the surface of the valves. Histology of these plaques on the valve 

surface reveals activated VICs and deposition of glycosaminoglycans within the ECM that 

resembles MMVD [111, 112]. Unlike in MMVD, which presents with weakening of the 

chordae tendineae, carcinoid tumors are associated with thickened and fused chordae 

tendineae, resembling rheumatic valve disease [111]. The histological differences in 

diseased valves associated with carcinoid tumors compared with the presentation of MMVD 

may reflect the involvement of other molecules secreted by carcinoid tumors, which include 

prostaglandins, histamine and bradykinin. Valvulopathy is also associated with a various 

serotonergic drugs, including methysergide, an ergot alkaloid for migraine headaches, 

fenfluramine-phenteramine and benfluorex for appetite suppression, pergolide for treatment 

of Parkinson’s disease, and methylenedioxy-N-methylamphetamine (MDMA), a recreational 

drug known as “ecstasy”, amongst others [81]. A common feature amongst these types of 

drugs is activation of 5HT-R2B [113]. MV disease associated with serotonergic drugs was 

often found in patients with pre-existing MMVD, likely compounding the effect of increased 

5HT signaling. Finally, animal models exposed to increased levels of 5HT develop valve 

lesion with features similar to MMVD [114–117]. Specifically, rats chronically injected with 

5HT had an increased prevalence of valve injury compared to wild type, and showed 

phenotypic activation of VICs [114, 116]. Rabbits fed a high 5HT-containing diet 

experienced increased plasma 5HT and urinary 5HT metabolite concentrations, mxyomatous 

thickening of the aortic mitral and tricuspid valve leaflets, and development of 

echocardiographic valvular regurgitation [117]. Activation of mitogenic and proliferative 

systems related to angiotensin II, TGF-β, and 5HT leads to accelerated MMVD lesions in 

mice and sheep valves [118–120]. Collectively, these findings lead to the hypothesis that 

blockade of 5HT and subsequent suppression of this and other pathways, such as TGF-β, 

might represent a potential treatment for MMVD.

3.5. Antagonism of 5HT-R2B as a Potential Treatment for Valvular Disease

The link between 5HT and MMVD presents potential for novel treatments, such as 5HT-R2B 

antagonists. Studies in cell culture and animal models have repeatedly demonstrated that 
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5HT-R antagonists mitigate VIC activation and the subsequent valvular histological changes 

associated with MMVD [59, 64, 94, 113, 121, 122]. In one study, the specific 5HT-R2B 

inhibitor LY272015, prevented activation of canine MV VICs in the presence of 5HT 

concentrations ranging from 10−6 to 10−8 M (Figure 3).[59] In a study of cultured MVs from 

sheep subjected to cycle strain, treatment with a 5HT2B/2C or TPH inhibitor reduced markers 

of VIC activation and matrix catabolic enzymes, such as MMP1, MMP13, and cathepsin K 

[94]. In mice with MMVD due to chronic administration of angiotensin II or 

nordexfenfluramine, antagonism of 5HT-R2B reduced histological lesions in the valve 

leaflets (Figure 4) [59, 121]. Thus, a hypothesis that 5HT-2R antagonism, and in particular 

5HT-R2B antagonism, can mitigate MMVD is supported by extensive preclinical data. In 

addition to targeting of the 5HT-R, the uptake of 5HT, which is mediated by SERT, 

represents another potential therapeutic avenue.

3.6. Role of SERT in Valvular Disease

As previously mentioned, in cardiac and valve tissue, internalization and subsequent 

metabolism of 5HT is achieved through SERT and MAO-A, respectively. The role of 5HT 

and SERT in embryological heart valve development, specifically the endothelial-

mesenchymal transformation of the endocardial cushions, has been reviewed [123, 124]. 

Increasingly, the role of SERT in MMVD is a subject of interest. In the mature heart, SERT 

continues to regulate VIC activity and composition of the ECM by controlling extracellular 

concentrations of 5HT [124]. SERT deficiency presumably increases extracellular 5HT, 

which through 5HT-R2B and related TGF-β pathways, induce VIC differentiation and 

proliferation. In SERT-KO mice, valvular fibrosis develops as a result of sustained 

interaction between 5HT and 5HT-R2B [125, 126].

Expression of SERT is altered in dogs with spontaneously occurring MMVD [70, 127] as 

well as in pig disease models [128]. Specifically, MMVD tissue from dogs exhibits 

decreased SERT expression and decreased SERT protein levels, particularly in advanced 

stages of disease [70, 127]. Polymorphisms in the SERT gene have been described in 

humans and dogs. One polymorphism in humans involves 14 short (s allele) or 16 long (l 
allele) repeat sequences in the promoter region of the SERT gene, resulting in SERT mRNA 

molecules of either 484 or 528 base pairs [129]. The s allele is associated with decreased 

SERT expression compared to the l allele and differences in carrier status have been studied 

in a variety of diseases including idiopathic pulmonary hypertension [130], irritable bowel 

syndrome [131], and psychiatric disorders [132], indicating the wide ranging effects of 

disruption to 5HT metabolism. In humans with MV MMVD, the ll genotype was associated 

with surgical repair at a younger age in men and a lower SERT expression, suggesting a 

reduced capacity for 5HT uptake and metabolism of extracellular 5HT [133]. Dogs lack the 

specific insertion/deletion polymorphism that is present in humans, however, at least 6 SNPs 

in the canine SERT gene have been identified, including three that on the basis of structural 

protein modeling were predicted to be damaging to protein structure and function [134].
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4. Discussion

There are no medical treatments available for MMVD and surgical intervention is the only 

option for patients that develop severe MR. The ability to prevent, slow, or reduce 

progression of MMVD through medical means that address the fundamental 

pathophysiology would treat MMVD in a manner that surgery cannot achieve. It is 

increasingly clear that the pathophysiology of MMVD in humans and dogs with respect to 

5HT and TGF-β pathways is strikingly similar as are the molecular, histological, and gross 

changes typical of MMVD they induce. At its core, upregulation of 5HT signaling through 

5HT-R, and in particular, 5HT-R2B, leads to activation of VICs and the subsequent 

remodeling of the ECM and fibrosa and loss of gross structural integrity. The 5HT and TGF-

β systems are a likely common pathway leading to myxomatous valve change in response to 

a variety of injurious causes. Despite the mounting promising literature on the potential of 

5HT-R2B to prevent the development and progression of MMVD, it is important to note that 

due to the scarcity of specific inhibitors available the long-term central and peripheral effects 

of inhibiting 5HT-R2B remain to be defined. 5HT-R2B receptors are expressed in cerebellar 

Purkinje cells and may mediate the central effects of 5HT-R2B inhibition, including motor 

and sleep-wake cycle modifications reported in rats treated with the selective antagonist 

SB-215505 [135]. Additionally, acute treatment of mice with the 5HT-R2B selective 

antagonist RS127445 resulted in selective schizophrenic-like behavior including social 

interaction deficit and reduction of startle response to acoustic stimuli [136]. In the liver, 

5HT-R2B receptors are necessary for tissue regeneration following hepatectomy in mice 

[137]. A similarly protective role of 5HT-R2B within cardiac valve pathological remodeling 

cannot be excluded.

The dog, and in particular the CKCS breed, represents a model to further study 5HT and 

TGF-β mechanisms and to test novel therapies. One main purpose of this review is to 

highlight the potential value of spontaneous MMVD in the dog as model for human disease. 

Specifically, the relatively rapid progression of MMVD coupled with the short life span of 

the dog creates an opportunity to test the effect of 5HT-R2B antagonism and other 

therapeutics on echocardiographic valve morphology and severity of MR, indirect measures 

of disease severity such as circulating cardiac biomarkers like N-terminal pro-B-type 

natriuretic peptide, as well as central and peripheral side effects. Surgical repair or 

replacement of the MV in privately-owned dogs is not widely available or performed, and 

many dogs develop severe MR and eventually suffer from congestion and systolic 

dysfunction [30]. Thus, novel therapeutic strategies can be tested across a range of clinically 

important events, ranging from the onset of disease through progression of MR, 

development of systolic dysfunction and CHF, and ultimately, cardiac mortality. In addition, 

therapy has been increasingly asked to address outcomes relating to symptoms or quality of 

life. These “patient-centered outcomes” are amenable to study in privately owned dogs 

through the use of previously validated survey instruments that are completed by the dog 

owner [138]. For these many reasons, study in dogs with MMVD has certain advantages 

over experimental laboratory animal models. The advantages and limitations of 

experimentally induced animal models, such as those involving use of mice, have been 

previously reviewed [139–141]. Briefly, advantages include the many physiological 
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similarities between the mouse and humans, relative ease of housing and use, and 

availability of genetically altered strains that facilitate use as a model species. Disadvantages 

include the many instances in which mice respond to interventions very differently than 

humans, differing phenotypes of disease versus their human comparisons, concerns 

regarding animal welfare and biomedical testing, and the inability to know which lines of 

evidence will faithfully translate to similar findings in humans. Thus, data from large 

animals with spontaneous disease can help accelerate clinical studies in humans in ways that 

experimental mouse models cannot.

As presented, many different lines of evidence support the importance of 5HT and TGF-β in 

MMVD, but the particular source of increased 5HT is still unknown. Candidates include 

platelet-derived 5HT, autocrine 5HT production within the valve or heart tissue, and 

increased 5HT levels secondary to deficient uptake and metabolism. Future studies to 

address these questions could lead to a wider array of therapeutics than just 5HT-R 

antagonists. Further discovery and characterization of various SERT polymorphisms in the 

dog represent an area of potential importance given the close association of particular SERT 

polymorphisms in humans with need for early MV surgery.

While there are many gross, histological, molecular, transcriptional, and translational 

similarities between MMVD in humans and the dogs, the two conditions are not entirely 

homologous. Currently, a single phenotype of MMVD is considered in the dog and is most 

analogous to the form of MMVD in humans described as Barlow’s disease. Studies should 

strive to specify and describe the MMVD phenotype when comparing human valves to 

valves from dogs.

In conclusion, MMVD in the domestic dog represents an underutilized model of human 

disease. Many lines of evidence point toward the 5HT and TGF-β pathways as playing an 

important role in MMVD, and novel therapeutic strategies are at a point in time ready for 

testing. Such studies can further our understanding of the pathophysiology of MMVD and 

accelerate the discovery of new therapies for humans with MMVD.
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Abbreviations

5-HIAA 5-Hydroxyindole Acetic Acid

5HT Serotonin

5HT-R Serotonin Receptor

BMP Bone Morphogenic Protein

CHF Congestive Heart Failure

CKCS Cavalier King Charles Spaniel
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ECM Extracellular Matrix

ERK Extracellular Signal-Regulated Kinase

MAO-A Monoamine Oxidase

MDMA Methylenedioxy-N-methylamphetamine

MMP Matrix Metalloproteinase

MMVD Myxomatous Mitral Valve Degeneration

MVP Mitral Vave Prolapse

SERT Serotonin-Reuptake Transporter

TGF-B Transforming Growth Factor Beta

THP1 Tryptophan Hydroxylase-1

TIMP Tissue Inhibitor of Metalloproteinase

VEC Valve Endothelial Cell

VIV Valve Interstitial Cell
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Figure 1. 
Normal mitral valve structure (A) and mechanism of myxomatous mitral valve disease 

(MMVD) (B). The normal valve is made up of a layer of endothelial cells surrounding the 

atrialis layer, which is made up of elastic and collagen fibers, the spongiosa layer, which 

consists of extracellular matrix (ECM) rich in proteoglycans and the occasional valvular 

interstitial cell, and the fibrosa, which consists of tightly packed collagen fibers. In valves 

affected by MMVD, the interstitial cells are activated into a myofibroblast-like phenotype, 

which is accompanied by excessive deposition of ECM, dissolution and fragmentation of the 

elastic and collagen fibers of the atrialis and fibrosa, endothelial to mesenchymal cell 

transformation and migration of endothelial cells into the spongiosa, and denudation of the 

endothelial cell lining and exposure of the subendothelial collagen.
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Figure 2. 
Proposed mechanism of serotonin (5HT) and transforming growth factor beta (TGF-β) in 

myxomatous mitral valve disease (MMVD).
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Figure 3. 
Isolated canine mitral valve valvular interstitial cells (VICs) treated with serotonin (5HT) 

and vehicle or 5HT and the specific 5HT-receptor subtype 2B antagonist LV272015 (LY) 

reveals LY reduced phosphorylation of ERK1/2, which is a marker of VIC activation. 

Adapted from Driesbaugh et al [59].
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Figure 4. 
Blockade of mitral valve changes by antagonism of the serotonin 2B receptor (5HT-2BR) in 

a mouse model of myxomatous mitral valve disease (MMVD) created by angiotensin II 

(AngII). Representative H&E (A) and modified Movat pentachrome (B) staining of cross 

sections of the mitral valve from mice treated for 28 days with saline or AngII with or 

without treatment with the 5HT-R2B antagonist LY272015 (LY). Quantitative analysis of 

average valve leaflet area for each treatment group indicated a reduction of valve area in 

AngII mice treated with LY as compared to positive control (C). Representative H&E 

staining of mitral valve from mice exposed to nordexfenfluramine for 28 days showing 

myxomatous leaflet nodules (D) and prevention of valve lesions in 5HT-R2B KO mice (D). 

(A-C) from Driesbaugh et al [59]; (D-E) from Ayme-Dietrich et al [121].
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