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Machine Learning Analysis of Individual Tumor Lesions in Four Metastatic
Colorectal Cancer Clinical Studies: Linking Tumor Heterogeneity to Overall
Survival

Diego Vera-Yunca,1 Pascal Girard,2 Zinnia P. Parra-Guillen,1,3 Alain Munafo,2

Iñaki F. Trocóniz,1,3 and Nadia Terranova2,4

Abstract. Total tumor size (TS) metrics used in TS models in oncology do not consider
tumor heterogeneity, which could help to better predict drug efficacy. We analyzed individual
target lesions (iTLs) of patients with metastatic colorectal carcinoma (mCRC) to determine
differences in TS dynamics by using the ClassIfication Clustering of Individual Lesions
(CICIL) methodology. Results from subgroup analyses comparing genetic mutations and TS
metrics were assessed and applied to survival analyses. Data from four mCRC clinical studies
were analyzed (1781 patients, 6369 iTLs). CICIL was used to assess differences in lesion TS
dynamics within a tissue (intra-class) or across different tissues (inter-class). First, lesions
were automatically classified based on their location. Cross-correlation coefficients (CCs)
determined if each pair of lesions followed similar or opposite dynamics. Finally, CCs were
grouped by using the K-means clustering method. Heterogeneity in tumor dynamics was
lower in the intra-class analysis than in the inter-class analysis for patients receiving
cetuximab. More tumor heterogeneity was found in KRAS mutated patients compared to
KRAS wild-type (KRASwt) patients and when using sum of longest diameters versus sum of
products of diameters. Tumor heterogeneity quantified as the median patient’s CC was found
to be a predictor of overall survival (OS) (HR = 1.44, 95% CI 1.08–1.92), especially in
KRASwt patients. Intra- and inter-tumor tissue heterogeneities were assessed with CICIL.
Derived metrics of heterogeneity were found to be a predictor of OS time. Considering
differences between lesions’ TS dynamics could improve oncology models in favor of a better
prediction of OS.

KEY WORDS: cetuximab; individual tumor lesion dynamics; machine-learning; metastatic colorectal
cancer; survival analysis; tumor size modeling.

INTRODUCTION

Model-Informed Drug Discovery and Development
(MID3) (1) has demonstrated its usefulness to improve drug
development in several cases, including the oncology area
and the modeling of tumor size (TS) (2,3). TS is often
expressed as the sum of longest diameters (SLD) of the

individual tumor lesions (iTLs) measurable and defined as
“target lesions” at baseline, as described by Response
Evaluation Criteria in Solid Tumors (RECIST) (4). Each
patient presents multiple iTLs, which can be primary or
metastatic and located in several organs or tissues. This
means that all tumor lesions, regardless of their location and
status, are reduced to this single SLD value, also called the
total TS, at each assessment visit within a patient. The iTLs
are assessed throughout the clinical study; the SLD is derived
at each time point and then categorized to quantify the tumor
response to the treatment (4). Observed or model-derived TS
metrics, such as the early tumor shrinkage (ETS, relative
reduction of total TS at certain time points) or time to tumor
growth, have been shown to be predictors of overall survival
(OS) (5).

As an oversimplifying measure of cancer progression, the
use of total TS may cause a loss of information with respect to
tumor heterogeneity that could carry valuable information to
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predict disease progression, drug efficacy, and OS accurately.
Indeed, differences in iTLs dynamics could reflect tumor
heterogeneity: tumor lesions may present several clones
which evolve in a Darwinian process at different rates,
showing different phenotypes and drug resistances (6). Tumor
heterogeneity is one of the factors involved in tumor
resistance (7) and tumor metastasis (8). Recently, some
modeling works in the oncology area successfully included
tumor heterogeneity (9) and related this lesions’ variability to
OS (10). Not including tumor heterogeneity into TS models
may hide iTLs resistance development or other differences in
response to treatment. This is not only due to the different
clonal phenotypes but also due to the different tumor
microenvironments in which the lesion has appeared.

In a previous work (11), the analysis of iTLs was
performed to assess differences in lesions dynamics by using
the Classification Clustering of Individual Lesions (CICIL)
methodology, which integrates knowledge from signal pro-
cessing and machine learning (ML). Results were used to
then inform decisions about building a longitudinal model for
iTLs or for total TS. The work presented in this paper
continues and expands the innovative approach started by
Terranova et al. by applying CICIL to four clinical studies in
which cetuximab was administered in different combination
therapies. TS data from these studies were analyzed either to
assess the iTL dynamics between different organs or anatomic
regions or to determine tumor dynamics differences within an
organ or tissue. Furthermore, several comparisons between
groups of patients based on differences in gene mutations and
tumor metrics were performed. The impact of tumor hetero-
geneity on the clinical outcome was also assessed.

The objectives of this work were as follows: (i) to
determine tumor heterogeneity in lesion dynamics using
iTLs, (ii) to compare iTLs dynamics from patients based on
genetic mutations (KRAS) and different TS metrics, and (iii)
to apply these results in survival analyses of considered
clinical trials.

This approach was applied to four metastatic colorectal
cancer (mCRC) clinical studies. CRC is any kind of cancer
which affects the colon or rectum. More than 1.8 million new
cases and 881,000 deaths related to CRC were estimated to
occur in 2018 (12). If only mCRC is considered, the main
therapy for many years was 5-fluorouracil (5-FU) with folinic
acid (FA). This therapy regimen showed a poor response rate

(20%) and a median OS of about 6 months (13). Newer
chemotherapy drugs, like irinotecan and oxaliplatin, im-
proved the response rate to 31–34% and the median OS to
approximately 24 months (13,14). Monoclonal antibodies
have provided new weapons to fight mCRC. One of them is
cetuximab, a monoclonal antibody that targets the epidermal
growth factor receptor (EGFR). The EGFR is involved in
survival, proliferation, tumor invasion, and tumor immune
evasion. It has been observed that patients with RAS
mutations, including mutations of the KRAS and NRAS
genes, present poorer response to EGFR inhibitors (15) such
as cetuximab, which is the drug studied in this work.
According to intention-to-treat (ITT) populations in consid-
ered clinical trials, only information about KRAS status was
available and was accounted in our assessments.

To help the reader, a list of abbreviations used through-
out the text is reported in the Supplementary material.

METHODS

Trials and Data

TS data of iTLs in patients with EGFR expressing
mCRC were obtained from four clinical studies: (i) CRYS-
TAL (Cetuximab combined with iRinotecan in first-line
therapY for metaSTatic colorectAL cancer, electronic medi-
cal record 62202-013) (16), (ii) APEC (Asia Pacific non-
randomized, open-label phase II study evaluating the safety
and efficacy of folinic acid (FA) + 5-fluorouracil (5-FU) +
irinotecan (FOLFIRI) plus cetuximab (Erbitux) or FA + 5-
FU + oxaliplatin (FOLFOX) plus cetuximab as first-line
therapy in subjects with KRAS wild-type (KRASwt) meta-
static Colorectal cancer, electronic medical record 62202-505)
(17), (iii) Study 045 (electronic medical record 62202-045)
(18), and (iv) OPUS (OxaliPlatin and cetUximab in firSt-line
treatment of mCRC, electronic medical record 62202-047)
(19). Table I describes the main features of these four clinical
studies. More detailed information about the clinical studies is
presented in the Supplementary material. The ITT popula-
tions included RAS unselected subjects in CRYSTAL, Study
045, and OPUS studies and KRASwt subjects in the APEC
study.

Table I. Overview of Considered Cetuximab mCRC Clinical Studies

Study Study
phase

No. of
patients

Study arms Cetuximab dosing schedule

CRYSTAL III 1198 FOLFIRI (N = 599) vs FOLFIRI + cetuximab (N = 599) Initial: 400 mg/m2, then 250 mg/m2 weekly
APEC II 289 Investigators’ choice of FOLFIRI + cetuximab (N = 101) or

FOLFOX + cetuximab (N = 188)
500 mg/m2, every 2 weeks

Study 045 I 62 Cetuximab weekly (N = 13) vs Cetuximab every 2 weeksa

(N = 49)
Initial: 400 mg/m2, then 250 mg/m2 weekly (A) or
400–700 mg/m2 biweekly (B)

OPUS II 337 FOLFOX (N = 168) vs FOLFOX + cetuximab (N = 169) Initial: 400 mg/m2, then 250 mg/m2 weekly

FOLFIRI folinic acid + 5-fluorouracil + irinotecan, FOLFOX folinic acid + 5-fluorouracil + oxaliplatin
aAfter week 6, all patients are administered FOLFIRI every 2 weeks + their cetuximab dosing regimen, weekly or every 2 weeks depending
on the group the patients were in
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Tumor Size Quantification

Lesions TS was quantified either by computed tomogra-
phy scan or magnetic resonance imaging. At baseline, iTLs
were defined as measurable lesions representative of all
involved organs, with a maximum of 5 lesions per organ and
10 lesions in total. According to studies protocols, the same
method of assessment and the same imaging technique was
used to characterize each identified and reported lesion at
baseline and at each subsequent imaging time point. In the
CRYSTAL, 045, and OPUS studies , iTLs were
bidimensionally evaluated by using the modified WHO
criteria (20,21), which quantifies the total TS by measuring
the longest and perpendicular diameters of iTLs and then,
deriving the so-called SOPD, sums of the products of
diameters. In APEC, the assessment of response was
performed according to RECIST (4,22) which uses the sum
of longest diameters SLD of iTLs as a measure of total TS.
Thus, unidimensional measurements were collected for iTLs
in APEC, while bidimensional measurements were available
for the other studies (23). In addition to the recorded TS
measures over time, information about the lesion site was
collected for all iTLs as text in the case report form for all
studies. The lesion type was also coded as follows: primary,
metastatic, or node. Calculated SLD or SOPD of lesions
selected as target lesions and the recorded information on
non-target lesions and new lesions were used to derive
response and progression outcomes throughout the studies.

Dataset Preprocessing

iTL data from the four clinical studies was extracted
from the clinical database. Patients with only the tumor
assessment at baseline as well as tumor data measured after
tumor surgery procedures were excluded from the analysis.
The main CICIL analyses presented in this work used the
longest diameter as a single TS metric being available across
all studies. In the three studies having bidimensional mea-
sures of TS available for each iTL, CICIL was re-run for
comparisons of results with the two metrics.

CICIL Methodology

The previously developed CICIL methodology, imple-
mented in a Java-based platform, was used to evaluate the
similarities or differences between iTL dynamics (inter-
organs or intra-organ) (11). This methodology consists of 3
steps: (i) iTLs are classified based on their location and type
described by expert physicians, (ii) cross-correlation (CC)
values are estimated to assess the degree of similarity
between dynamics of two lesions, and (iii) similar cross-
correlation values are automatically grouped into clusters
using the K-means clustering method (24). This approach can
be easily applied to either the bi-dimensional product (WHO
criteria), the longest diameter (RECIST criteria) or any
future emergent volumetric measurement provided by pro-
gresses in tumor imaging and/or tumor size collection. Thus,
we could analyze lesion sizes regardless of tumor evaluation
criteria for diagnosis of progression of disease adopted in the
studies.

Two kinds of CICIL analyses were performed: inter-
class analysis and intra-class analysis. On one hand, the
inter-class analysis uses the sum of lesions TS within each
patient’s individual organs defined in the CICIL classifica-
tion. They are called class-related target lesions (cTLs).
Therefore, each patient shows a single cTL for each organ/
tissue. Then, the CC value of the pairs of cTLs the patient
presents with is computed to assess the difference in lesion
dynamics between organs or tissues. This analysis then
includes only patients presenting iTLs in more than one
tissue. On the other hand, the intra-class analysis uses the
iTLs from a single organ or tissue to compute the CC values
for the pairs of iTLs in that organ or tissue. This is
performed to determine the differences in lesion dynamics
between iTLs within the same patient’s individual organ or
tissue. Only patients presenting more than one iTL within
the same organ are included in the analysis of that specific
class. Figure 1 shows an overview of the CICIL
methodology.

Step 1: Rule-Based Classification

iTLs were classified according to the same methods
described in (11), which were defined for two other mCRC
clinical studies. Several keywords were defined for each
class in the classification text file of CICIL. These were
based on the recorded tumor location and anatomical and
physiological features observed on tumor lesions of these
organs. The CICIL platform performed the automated
classification process by recognizing the defined keywords
and locations of each lesion in the extracted clinical dataset.
Before running the classifier tool, missing or wrong organ
information was checked (and corrected, if needed) during
dataset preprocessing. Lesions with missing organ informa-
tion were classified in the general “Unclassified lesions”
class.

Step 2: Cross-correlation Analysis

In order to automatically compare hundreds of TS
dynamics, while keeping information on the lesion dynamics
across the whole study, the non-parametric comparison of two
TS time courses, treated as time series, was performed by
estimating the CC (25). The CC values can range from − 1 to
1. CC values equal or close to 1 indicate similar tumor
dynamics for the two compared lesions. CC values equal or
close to − 1 indicate opposite profiles. In contrast, CC values
close to 0 indicate undefined relationships (i.e., not distin-
guishable) or small trends towards similarity or difference
depending on the sign and absolute value of the CC. Thus,
the CC value obtained from two TS dynamics was used as a
metric of similarity or difference between such lesion
dynamics.

CC values were calculated without accounting for any
delay between TS dynamics (zero-time shift) as well as at
shifting one of the lesions over the other (and vice versa)
in time to maximize their CC value. The number of
assessments per lesion allowed us to check up to 12 time
shifts in both directions. Details on CC calculations are
reported in (11).
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Step 3: K-Means Clustering

K-means clustering is a ML unsupervised clustering
technique (24). As the last step of CICIL, this method was
used to group the different CC values into clusters. Then,
differences between these groups or clusters could be
assessed based on the centroid value (the average CC value
of each cluster) and the percentage of lesion comparisons
(i.e., CCs) and patients in each cluster. Two arbitrary cutoffs
were established for easy interpretation of results: clusters
with centroids below − 0.35 were considered as an indication
of different lesion dynamics, whereas those with centroids
above 0.35 were considered as pointing to similar dynamics.
Clusters with values in between were considered as suggest-
ing undefined relationships.

Beforehand, the number of clusters was selected with the
elbow method which allows to assess and then choose the
smaller number of clusters having a lower sum of squared
errors (SSE) (26). If SSE versus the number of clusters were
plotted, the arm would be the plotted line and the elbow
would correspond to the optimal number of clusters.

Survival Analysis

Overall survival time data were extracted from the four
studies in order to perform survival analyses and to assess
whether results from the CICIL analyses could be used as
predictors of survival time. Kaplan-Meier plots were ob-
tained, log-rank tests were computed, and a Cox proportional
hazards model was fitted to the data. One of the tested
predictors was the median CC for the inter-class analysis,

which was computed for each cetuximab arm patient as the
median of CC values at zero-time shifts obtained from the
different lesion pairs (e.g., liver-lung or liver-node) within a
patient. Given its relationship with patients’ response, the
KRAS status was also tested as a predictor.

Software

Dataset preprocessing was carried out in R version 3.5
(27) by importing the clinical SAS® dataset with the function
read_sas from the package haven 2.2.0 (28). The CICIL
methodology was performed in its Java-based software
version 1.0.4. (11). For the survival analysis, R was used to
run statistical tests and models, along with the survival
package (29).

RESULTS

For the CICIL analysis, 1781 patients from the four
previously described clinical studies were included: 1127
patients from CRYSTAL, 271 patients from APEC, 61
patients from Study 45 and 322 patients from OPUS.
Separate CICIL analyses were performed for each study by
considering different subsets of data: (i) all patients, (ii)
patients receiving cetuximab, and (iii) KRASwt patients
receiving cetuximab. All patients from the APEC and Study
045 studies received cetuximab. Figure 2 shows a tree
diagram with the number of patients considered at each stage
of this work.

Fig. 1. CICIL methodology overview. Clinical trials present in their case-report forms (CRFs) information about tumor size, time,
tumor location, and tumor type of individual tumor lesions (iTLs). This data can be used to classify these iTLs. Then, the degree of
similarity between the time-course of those lesions in a patient can be computed with the cross-correlation, both between lesions
belonging to different classes (cTLs, inter-class) and between iTLs within a class (intra-class). Similar cross-correlation coefficients
(CCs) are grouped by applying the k-means clustering technique to find differences between groups of CCs
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Classification

iTLs were classified into eight classes based on the organ
keywords and location information. This classification was
adapted from the previous work by Terranova et al. (11) and
found to be suitable for our clinical studies. The defined and
adapted classes were as follows: “Liver”, “Lung”, “Lymph
node”, “Other respiratory organs”, “Other digestive organs”,
“Other specified organs”, “Primary lesions”, and “Unclassi-
fied lesions”. The “Primary lesions” class was populated with
non-metastatic lesions, whereas “Unclassified lesions” class
contained lesions without proper organ information.

Similarly to the previously described CICIL work (11), a
second classification step was performed, as the “Other
respiratory organs”, “Other digestive organs”, “Other speci-
fied organs”, “Primary lesions” and “Unclassified lesions”
classes presented less than 30 patients. These classes with
low numbers of patients were combined into the “Other”
class. Table II shows the total number of cTLs (equal to the
number of subjects with at least one lesion in that class) and
the number of iTLs for each subset of data (all patients,

patients who received cetuximab, and KRASwt patients who
received cetuximab) across classes. The liver class repre-
sented 68% of all the iTLs measured across all studies. Lung
and lymph node classes accounted for 12% for iTLs each one.
The class Other only included 8% of iTLs.

Inter-class Analysis

All Patients

Only patients with more than one class could be included
in the inter-class analysis, so this reduced the number of
available cTLs for the analysis to 926 cTLs (from 404
patients) in the CRYSTAL study, 215 cTLs (from 94 patients)
in the APEC study, 30 cTLs (from 14 patients) in Study 045,
and 220 cTLs (from 99 patients) in the OPUS study.

When data from the four studies were analyzed together,
three clusters were used. About 61% of lesion pairs (from
64% of patients), grouped into cluster 3, showed similar
lesion dynamics. Cluster 2 contained 18% of comparisons.
This cluster presented a small positive correlation between

Fig. 2. Tree diagram showing the distribution of patients across different subsets of CICIL analyses. Analyses on
different subsets of patients were performed: (i) all patients, (ii) all patients receiving cetuximab either as
monotherapy or in combination (cetuximab arm), and (iii) KRASwt patients receiving cetuximab. All APEC
patients were KRASwt. *Not all patients were able to enter the CICIL analysis. Those without more than one
tumor size (TS) assessment or with missing organ information were excluded
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lesions. Remaining comparisons were included into cluster 1,
with a centroid close to − 1 indicating that those lesions
presented different dynamics. When time shifts were taken
into account, the percentages of lesion comparisons and
patients within clusters with similar dynamics or positive
correlation (clusters 2 and 3) increased to 87%. Thus, less
tumor heterogeneity across classes was suggested when
taking into account time shifts of lesions dynamics.

Comparison: Cetuximab Arm Patients Versus Non-cetuximab
Arm Patients

Patients in the cetuximab arm were used to look for
potential differences from patients not receiving cetuximab.
The optimal number of clusters was 3. Larger percentages of
lesion pairs (65%) and patients (68%) in the cetuximab arm
were found in cluster 3 compared to the group of patients not
receiving cetuximab (56% lesion pairs from 58% of patients).
Nevertheless, the percentage of lesion pairs (21%) and
patients (23%) in cluster 1 for the cetuximab group was
similar to those in the group not receiving this therapy (21%
lesion pairs from 25% of patients, respectively). This points to
a similar tumor heterogeneity in lesion dynamics between the
two subgroups. Results from the CICIL analysis on patients
receiving cetuximab are shown in Fig. 3. Inspection of
distributions of time shifts at which the maximum CC values
were achieved within cluster 3 suggests good synchronicity
(59% of maximum CCs at zero-time shift) between similar
cTLs dynamics. Cluster 2 showed that small shifts (from − 1
to + 1) accounted for most of the maximum CC values in this
cluster. Finally, cluster 1 presented all maximum CC values at
zero-time shift. Indeed, these came from lesion pairs with
only two tumor assessments, thus not allowing any series shift
in time. Overall, 23% of patients in the cetuximab arm
presented different lesion dynamics at zero-time shift, but if
time shifts are considered (especially small lags like ±1, as
stated above), only 14% of patients showed opposite lesion
dynamics. An illustrative representation of the impact of
small time shifts on CC is provided for cTLs with different
CC values at zero-time shifts in Supplementary Figure S1.

Comparison: KRAS Wild-Type Patients Versus KRAS Mu-
tated Patients

The CICIL analysis was also performed on KRAS
subsets of patients to compare KRASwt versus KRAS
mutated (KRASmut) lesion dynamics. Results based on the
combined dataset of the four clinical studies showed that
more similar lesion dynamics were found in patients with
KRASwt mCRC lesions (72% lesion pairs belonging to 74%
of patients) than in patients with KRASmut lesions (52%
lesion pairs belonging to 57% of patients). Cluster 1
(different lesion dynamics) included 16% lesion pairs from
18% of patients in the KRASwt group and 29% of lesion
pairs from 31% of patients in KRAS mutated group,
respectively.

The same pattern was observed when the analysis was
performed on the CRYSTAL and OPUS studies separately.
No conclusions can be drawn for APEC and Study 045
studies: APEC had no KRASmut patients and Study 045 had
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Fig. 3. Inter-class analysis results for the combined data from the four clinical studies for those patients who received cetuximab,
either as a monotherapy or in combination with the FOLFIRI (folinic acid + 5-fluorouracil + irinotecan) or FOLFOX (folinic acid +
5-fluorouracil + oxaliplatin) regimens. Results at zero-time shift (a) and when maximum cross-correlation coefficients (CC) values
are achieved (b) are shown. Horizontal lines show the centroids for each cluster. Table in c details the results of this inter-class
analysis for patients who were administered cetuximab. If the cluster centroid value was above 0.35, CCs from that cluster were
considered to show similar dynamics and summed to CCs from cluster 3. Note that patient percentages accounted for more than
100%, because a single patient can have lesion pairs in different clusters. d The distribution of time shifts or lags at which the
maximum CCs were obtained, within each cluster
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a low number of eligible patients (14). See supplementary
Table SI for more details.

Comparison: TS Measured as Product of Diameters Versus TS
Measured as Longest Diameter

For the three studies with bidimensional TS measure-
ments available, CICIL was re-run by using the SOPD of
cTLs. Results were then compared to those previously
obtained with SLD.

When all studies with SOPD measurements were ana-
lyzed together, similar percentages of lesion pairs (65% and
63% with SLD and SOPD, respectively) and patients (67% in
both groups) were found in cluster 3. Percentages of lesion
pairs (21%) and patients (23%) in cluster 1 were the same for
both analyses. Nevertheless, the CRYSTAL study, the largest
study in this work, presented larger percentages in cluster 3
with SOPD than with SLD measurements, both with respect
to lesion pairs (60% vs 56%, respectively) and to patients
(66% vs 62%, respectively). Cluster 1 included 22% versus
25% of lesion pairs and 23% versus 26% of patients, with
SOPD and SLD, respectively.

Study 045 results displayed the same trend as CRYS-
TAL. However, due to the low number of lesion pairs, this
result might not be as informative as the ones obtained in
other studies. For the OPUS study, the percentages of lesion
pairs and patients in clusters 2 and 3 were higher for SOPD
than for SLD, but the same percentages were found in cluster
1 for both metrics. Overall, no major differences between
SLD and SOPD results were shown for this study. See
Supplementary Table SII for more details.

Intra-Class Analysis

The CICIL methodology was also applied to assess the
differences across iTL dynamics grouped into the same class.
Therefore, CCs were computed across iTLs from the same
class within the same patient. Supplementary Table SIII
shows the intra-class analysis results for each class for the
combined dataset of patients treated with cetuximab.

Overall, cluster 3 or both clusters 3 and 2 (provided the
latter one presented a high-value centroid, i.e., greater than
0.35), included 71–88% of CC values for all the considered
classes (“Liver”, “Lung”, “Lymph node”, and “Other”). This
means most lesion pairs showed similar lesion dynamics
within every class. When time shifts were considered, the
three main classes (“Liver”, “Lung”, and “Lymph node”)
decreased their percentage of CCs in cluster 1 (different
lesion dynamics) from 8–23% at zero-time shift to 4–14% at
maximum CC values. The “Other” class also decreased its
percentage of CCs in cluster 1 from 29% at zero-time shift to
14% at maximum CCs.

Application of CICIL Results into Survival Analysis

Following the inter- and intra-class analyses, we assessed
whether a metric related to the CC values (representative of
tumor heterogeneity) could be predictive of OS. The inter-
class median CC for each patient was derived as a unique
metric to then assign the patients to two groups: patients with
a median CC value equal to or below 0.35 and patients with

median CC value above 0.35. The CC value of 0.35 was
selected because it was considered an appropriate conserva-
tive threshold. Setting a higher threshold would have meant
that more CCs would have been considered to present
different dynamics. Nevertheless, similar results were ob-
tained when considering a threshold of 0.5.

A log-rank test was first performed on the meta-
analysis pooled dataset, and the median CC value was
found statistically significant (p value = 3.42 × 10−5). When
each study was assessed individually and for any subset of
data, only CRYSTAL showed statistically significant results
(p value equal to 7.15 × 10−5). A Kaplan-Meier plot for the
meta-analysis pooled data was then used to estimate median
survival time in each group, which was 85.9 weeks (95%
confidence interval (CI) 79.7–94 weeks) for those patients
whose CC was above 0.35 and 62.7 weeks (95% CI 54.6–
78.3 weeks) for the other group of patients. Figure 4a shows
the Kaplan-Meier plot for the meta-analysis, stratified by
the two CC groups. The potential confounding between
KRAS status and heterogeneity quantified as median CC
was also evaluated by deriving Kaplan-Meier plots stratified
by the median CC (categorized as before) for KRASwt and
KRASmut patients separately. In both groups, the median
CC was found to be significant (p values equal to 0.0024 and
0.017 for KRASwt and KRASmut groups, respectively).

A multivariate Cox proportional hazards model was
fitted to the meta-analysis pooled dataset using several risk
predictor variables: KRAS status (categorized as KRASwt
or KRASmut), ECOG performance score at baseline (as
fully or not fully active), TS at baseline (continuous
variable), and the ETS defined as the TS ratio at 8 weeks
as a continuous variable (TSratio ¼ TS0−TS8

TS0 , where TS0 is the
TS at baseline and TS8 is the TS at 8 weeks). These
predictors had been already selected in a previous internal
analysis based on total TS, and they were found to be
statistically significant. The patient median CC value was
added on top of this multivariate Cox model, both as a
continuous and as a binary variable, to test its statistical
significance as a predictor of risk. Results for the model
containing the continuous median CC variable showed
statistical significance for all predictors, except for the
KRAS status which was significant in the univariate analysis
but dropped from the final models (p value > 0.05). The p
value of the median CC was 0.006 with hazard ratio (HR) of
0.74 (95% CI 0.60–0.92). This indicates that a CC value
increase of one unit (e.g., from − 0.5 to 0.5, thus reducing
tumor heterogeneity) would lead to a decrease in the risk of
death of 26%. Although the KRAS status itself was not
significant, the addition of an interaction term between the
KRAS status and the continuous median CC resulted to be
significant (p value = 0.022) and suggested that the effect of
our heterogeneity measure was less pronounced in
KRASmut patients with an average increase of the risk in
this patient population by 60%. If median CC was intro-
duced into the multivariate Cox model as a categorized
binary variable reflecting the two groups (median CC above
or equal to/below 0.35), the same predictors were signifi-
cant. The median CC presented a HR of 1.44 (95% CI 1.08–
1.92, p value = 0.012) for the group equal to or below 0.35
(i.e., more tumor heterogeneity). These results are shown in
Fig. 4b and c. This means that patients with the median CC
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equal to or below 0.35 presented an average 44% increase
in the risk of death. Of note, the lack of significance of
KRAS status in the multivariate analysis was true only on

this reduced CICIL analysis set which included only
subjects having the median CC available (i.e., iTLs in more
than one class). Indeed, p values smaller than 0.001 were

Fig. 4. Survival analysis for the cetuximab arm of the meta-analysis pooled dataset. The Kaplan-Meier plot
stratified by the median cross-correlation coefficient (CC) value is shown in (a). The median CC used as a predictor
was categorized into two groups: median CC equal to or above (green) and below (orange) 0.35. The dashed lines
show the median survival time for each group. The p value from the log-rank test is shown in the plot. Below the
Kaplan-Meier plot, the number of patients (with percentages in parenthesis) at risk of death at each time is shown in
a tabular format. The survival forest plot obtained from the final multivariate Cox proportional hazards model is
shown in (b). ECOG score at baseline, tumor size (TS) at baseline, TS ratio at 8 weeks, and median CC predictors
were assessed as predictors. Results are shown in c reporting the number of patients, hazard ratios (HR) along with
their 95% confidence interval (95% CI), and p values (statistical significance) for each predictor included in the
multivariate Cox proportional hazards model
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obtained when running the analysis on all patients (includ-
ing those without the median CC).

DISCUSSION

Despite enriching data analysis in oncology, lesion
heterogeneity has been often ignored or disregarded in the
TS modeling, as also highlighted by the limited number of
published works in this field (9,10). This is due to the complex
models and methods needed to consider differences between
organs or tissues, as well as the intra-tumor heterogeneity
within an anatomic area. Models with such features are
complex and computationally expensive. Thus, being able to
efficiently assess and quantify the heterogeneity in iTLs TS
dynamics prior to any modeling analysis is extremely valuable
to inform and to guide the best modeling strategies. The
recently proposed CICIL methodology addressed this objec-
tive by exploiting ML techniques to inform subsequent
modeling steps (11). This approach provides a user-friendly
and automated framework to quantify heterogeneity in tumor
dynamics at different levels: (i) between iTLs within an organ
and (ii) between lesions located in different tissues. Results
can be used to make data-driven modeling decisions, for
example, about the use of total TS versus iTLs TS, and about
the level (within or across tissues) of tumor heterogeneity to
be accounted for in the model.

In this work, we used CICIL to analyze TS data of
patients’ iTLs from four mCRC studies investigating
cetuximab treatment. The classification of iTLs considered
the three main lesion classes “Liver”, “Lung”, “Lymph
node”, and the general class “Other”. The low number of
iTLs for the least frequent classes (i.e., “Other respiratory
organs”, “Other digestive organs”, “Other specified organs”,
“Primary lesions” and “Unclassified lesions”) did not allow us
to assess intra-tumor heterogeneity in those classes separately
and they had to be pooled into a single class called “Other”.
Results indicated that the majority of iTLs were located in the
liver (68%). Liver was also the most representative class in a
previous analysis of two other cetuximab mCRC clinical
studies (11). This is in line with available literature highlight-
ing the liver as the most common site of metastasis in mCRC
patients due to its anatomical position with respect to the
portal circulation (30,31).

CICIL results from the intra-class analysis indicated little
intra-tumor heterogeneity in TS dynamics of patients’ iTLs
from the same classified tissue (less than 23% of iTL pairs at
zero-time shift across the three main classes). Such results
were obtained with a rich dataset including 863 patients and
2990 iTLs across studies which supports the robustness of the
conclusions. Thus, we considered it conceivable to neglect
intra-tumor heterogeneity in subsequent subgroup analyses
performed in this work.

In the inter-class analysis, tumor heterogeneity between
lesions located in different tissues (cTLs) was found to be
higher. In particular, in the analysis based on the cetuximab
arm, 36% of CCs or cTLs pairs (from 38% of patients) were
found to follow different TS dynamics at zero-time shifts. This
percentage is also marginally larger than the one (35% lesion
pairs from 30 to 35% patients) obtained in a previous work
(11), and it is mainly driven by the CRYSTAL study (44%
lesion pairs from 45% patients) as the largest study in this

work. When time shifts were considered, such percentage of
CCs dropped to 13%. This points to the possibility that time
delays could account for some of the observed tumor
heterogeneity in the patient, e.g., a delayed response to the
drug in some tumor tissues. It should be noted that in both
analyses some patients presented iTLs with only two TS
assessments, which made their CCs not as informative as
those coming from lesions with more than two TS
measurements.

Cetuximab patients with cTLs expressing KRASwt
genetics showed less tumor heterogeneity in TS dynamics
than KRASmut patients. Cetuximab, as an EGFR inhibitor
monoclonal antibody, presents lower efficacy if lesions
present with KRAS mutations (32). Therefore, we may relate
this increased tumor heterogeneity in KRASmut patients to
their reduced response to Cetuximab.

For those studies that measured the longest diameter and
the perpendicular one, inter-class results obtained with the
longest diameter were compared to those using the product of
diameters as TS metric. The combined analysis from the
pooled dataset did not suggest any differences between
results obtained with SOPD and SLD metrics. Nevertheless,
results for the CRYSTAL study showed smaller differences in
cTL dynamics and then in tumor heterogeneity when SOPD
was used as the TS metric (38% with SOPD vs 45% with
SLD). This may point to a better characterization of tumor
heterogeneity when bidimensional data are collected for this
case study. Indeed, literature shows that such differences
between TS metrics depend on the kind of cancer: in some
cases, there are no differences between unidimensional or
bidimensional measurements (33), while in other cases, there
are significant differences between results obtained with these
two metrics (34,35).

Tumor heterogeneity results obtained in the inter-class
analysis were found to be a predictor variable of OS time in
the form of median CC. Its significance was proven both
alone (log-rank test and the Kaplan-Meier plot) and in
combination with other known risk predictors (multivariate
Cox proportional hazards model). Increased risk of death
with increased heterogeneity was suggested by all tested
models. Interestingly, the model including a significant
interaction term between the heterogeneity metric and the
KRAS status suggested a relevant decrease of risk (about
40%) with decreased heterogeneity in KRASwt patients, but
a small decrease (about 3%) in KRASmut patients. This
points to a reduced impact of heterogeneity in TS dynamics
on risk for KRASmut patients which is however already
associated with a lower treatment effect in this subpopulation.
Pharmacokinetic-tumor size-overall survival relationships can
be affected by immortal time and selection bias (36), in
particular, in situations without dose-ranging data. As the
estimation of our tumor heterogeneity measure is related to
the number of tumor assessments the patient had over the
study and this depends on the immortal time, the potential for
immortal bias cannot be excluded. More sophisticated models
including time-dependent covariates allowing a change in
status over time may be tested in future works to overcome
the potential for immortal time bias.

As one of the major outcomes of this work, such results
further highlight the impact of tumor heterogeneity on tumor
response and the importance of including it into survival
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analyses. Besides, modeling in the oncology arena could
benefit from including measures of tumor heterogeneity data
such as CC values. For example, the use of “tissue-agnostic”
datasets in which individual lesions are considered and
grouped based on the degree of similarity in their TS
dynamics could improve the performance of TS models in
favor of a better prediction of OS time.

CONCLUSIONS

The CICIL outcome obtained from a large dataset of
tumor measures was assessed with respect to different factors
(genetic mutations, tumor metrics), and its direct link with a
clinical endpoint was quantified. Comparisons between
KRASwt and KRASmut patients indicated less heterogeneity
in tumor lesions dynamics in the KRASwt subgroup which is
known to well respond to Cetuximab treatment. The method
used to measure the lesion TS did not lead to different results
except for the single-study analysis of CRYSTAL where an
apparent heterogeneity was compensated and reduced when
including the perpendicular diameter and obtaining the
SOPD. An increased risk of death with increased heteroge-
neity was suggested by all tested models, especially in
KRASwt patients. A reduced impact of heterogeneity in TS
dynamics on risk for KRASmut patients was indicated.

The identification of a new metric of tumor heterogene-
ity related to a clinical outcome as OS is a relevant finding in
the exploration of TS metrics that can inform clinical
development decisions. This further supports the use of
continuous TS response metrics as endpoints in early clinical
oncology studies in order to improve design efficiency.
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