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Carbon Nanoparticles-Decorated 
Carbon Nanotubes
Ahmed Awadallah-F & Shaheen Al-Muhtaseb   *

Multi walled carbon nanotubes (MWCNTs) were decorated by activated carbon nanoparticles of 
resorcinol-formaldehyde aerogels. Carbon nanospheres and MWCNTs were mixed by equal mass ratios 
for different durations. The products were characterized by Raman spectroscopy, thermal gravimetric 
analysis, nanoscanning electron microscopy, transmission electron microscopy and x-ray diffraction. 
The results indicated that a significant decoration with carbon nanoparticles occurred onto the 
MWCNTs.

Carbon nanotubes (CNTs) drew a remarkable attention from their first discovery. This is attributed to their 
unique features, such as mechanical properties, electric properties, thermal stability, high chemical resistance and 
large surface areas1. As a result of these characteristics, they became strong candidates for numerous applications; 
including catalytic processes, water treatment, drug delivery, gene transfer, transparent conducting membranes 
and electrochemical analysis2–7. The idea of CNT decoration was introduced to widen their applications in differ-
ent fields. It was reported in various works of literature that it was possible to decorate CNTs with either organic 
compounds or metallic nanoparticles8–10. The importance of carbon aerogels is assigned to their hierarchical 
porous properties, which makes them suitable for use in numerous applications11–14. For example, carbon aerogels 
are utilized in catalyst support, separation tools, eclectic supercapacitor materials and battery construction15,16. 
It is noteworthy to mention that, to the authors’ knowledge, the carbon-carbon decoration of multiwall carbon 
nanotubes (MWCNTs) by carbon nanoparticles (CNp) was not tackled in literature. Therefore, in this work, we 
disclose our method of decorating MWCNTs with resorcinol-formaldehyde activated carbon aerogel (RFA) CNp. 
The hybrid carbon nanoproducts will be characterized by various devices for tracking the changes of outcome 
carbon nanoproducts.

Results and Discussion
Figure 1(a–c) exibits the characterestics of MWCNTs and RFA-CNp via XRD, Raman spectra and TGA, respec-
tively. Figure 1a exposes the XRD patterns of MWCNTs (black line) and RFA-CNp (red line) samples. It was 
observed from Fig. 1a that the characteristic bands of MWCNTs are at 2θ = 26°, 42° and 53.8°; which refer to 
(002), (100) and (004) reflection of the MWNTs, accdringly17. Moreover, RFA-CNp has no crystalline peaks as 
seen from Fig. 1a. The higher crystallinity in MWCNTs than RFA-CNp is due to the graphitic portion that results 
in the high order of MWCNTs’ structures.

Figure 1b shows the Raman spectra of MWCNTs (black line) and RFA-CNp (red line) samples. It is notewor-
thy to declare that the Raman spectra can be utilized to estimate the degree of defects or disorders of MWCNTs 
and RFA-CNp. The three fingerprint bands of pristine MWCNTs are the D-band at 1314 cm−1, G-band at 
1576 cm−1 and G’-band at 2625 cm−1. The intensity of the D-band (ID) indicates to disordered or amorphous 
carbon portions, while that of the G band (IG) indicates to graphite or ordered carbon portions in the MWCNTs, 
and that of the G’ band indicates to a second harmonic of the D-band18. Moreover, the relative crystallinity can be 
indicated by the ID/IG ratio. The values of ID/IG ratio are 0.48 and 1.25 for MWCNTs and RFA-CNp, respectively. 
Thus, the order (crystallinity) of MWCNTs is higher than that of RFA-CNp. Figure 1c shows the TGA thermo-
grams of MWCNTs (black line) and RFA-CNp (red line) samples. It is observed that the thermal stability of 
MWCNTs is higher than that of RFA-CNp. This is attributed to the presence of graphic structure that resists the 
thermal decomposition in MWCNTs, on contrary to the amorphous structure that has less resistance to thermal 
decomposition in RFA-CNp.

Figure 2(a–c) exibits the characterestics of MWCNTs decorated with RFA-CNp via XRD, Raman spectra and 
TGA, accordingly; for samples decorated for various number of days as denoted by the sample codes in the form 
nD where the number n stands for the number of days in mixing. It is seen form the XRD patterns in Fig. 2a that 
the crystallinity of MWCNTs decreases by increasing the time of mixture stirring. The characteristic peaks of 
MWCNTs are at 2θ = 26°, 42° and 53.8°; which refer to the (002), (100) and (004) reflections of the MWCNTs, 
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Figure 1.  (a) XRD patterns, (b) Raman spectra and (c) TGA thermograms of MWCNTs (black line) RFA-CNp 
(red line) samples.

Figure 2.  (a) XRD patterns, (b) Raman spectra and (c) TGA thermograms of MWCNTs/RFA-CNp hybrids 
with 50/50 g/g at mixing times of 0, 185 and 415 days.
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respectively19. The peak observed at 26° indicates to the (002) diffractions of graphite, which confirms that the 
hexagonal graphite structure is still in a good state in all samples20. The peaks at 2θ of 42.4° and 53.8° refer to 
the in-plane graphitic structure21. Furthermore, the intensities of the (002) diffraction in the samples 0D, 185D 
and 415D are 7774, 3229 and 1596, accordingly. Hence, the intensity of the (002) diffraction of 185D represents 
41.53% of that of 0D and the intensity of 415D represents 20.52% of that of 0D. Figure 2b shows the Raman spec-
tra of MWCNTs/RFA-CNp hybrids. Raman spectra can be utilized to assess the degree of defects or disorders of 
MWCNTs after decoration with RFA-CNp. Three characteristic peaks of pristine MWCNTs can be seen as the 
D-band at 1314 cm−1, G-band at 1576 cm−1 and G’-band at 2625 cm−1. The intensity of the D band (ID) indicates 
to disordered or amorphous carbon portions, while that of the G band (IG) refers to graphite or ordered carbon 
portions in the MWCNTs, and that of the G’ band indicates to a second harmonic of the D-line22. Moreover, the 
disorder/defects can be determined by the ID/IG ratio. The values of ID/IG ratio are 0.50, 0.52 and 1.00 for the 0D, 
185D and 415D samples, accordingly. Therefore, the degree of disorder/defects of decorated CNTs decreases 
when increasing the mixing time. On other words, the more migration of RFA-CNp particles to the surface of 
MWCNTs, the disorder/defects phenomena increases.

Figure 2c exposes TGA thermograms of MWCNTs/RFA-CNp mixture. It was observed that, when increas-
ing the mixing time, the thermal stability of MWCNTs decreases. For instance, the mass losses of the 0D, 18D5 
and 415D samples at 353 °C were 5.11, 6.56 and 7.38%, respectively. Furthermore, the mass losses of 0D, 185D 
and 415D samples at 484 °C were 8.67, 11.93 and 13.73%, respectively. The mass losses (%) of 0, 185 and 415D 
at 678 °C were 29.17, 34.23 and 42.69%, respectively. Similarly, the mass losses of 0D, 185D and 415D at 842 °C 
were 55.52, 61.71 and 69.02%, respectively. Consequently, the presence of RFA-CNp into the matrix of MWCNTs 
impacts significantly the samples’ thermal stability. The migration of RFA-CNp to the surface of MWCNTs sur-
face weakens the graphic structure of MWCNTs. XRD, Raman spectra and TGA of the utilized MWCNTs and 
RFA-CNp are described in the Fig. 1.

Figure 3(a–h) exhibits the NanoSEM photomicrographs of MWCNTs/RFA-CNp at variable times of stirring; 
0D, 185D and 415D. Figure 3(a,b) exposes the NanoSEM photomicrographs of MWCNTs and RFA-CNp sam-
ples, respectively. It is seen from Fig. 3a that the morphology of MWCNTs is tubular in shape. From Fig. 3b, it is 
observed that the morphology of RFA-CNp seems like a spherical style. On the other hand, Fig. 3(c,d) exposes the 
two amplifications of MWCNTs/RFA-CNp at 0D. It can be noticed that the morphology MWCNTs are in good 
state and that of RFA-CNp also remains well. Figure 3(e,f) shows the two amplifications of MWCNTs/RFA-CNp 
of 185D at 1μm and 500 nm, accordingly. It can be observed from Fig. 3(e,f) that the change appeared clearly on 
the outer surface morphology of MWCNTs, which becomes decorated with RFA-CNp. Figure 3(g,h) shows the 
two amplifications of MWCNTs/RFA-CNp of 415D at 1μm and 500 nm, accordingly. It can be noticed that the 
attachment RFA-CNp onto MWCNTs grows more densely and abundantly in the case of 415D. Therefore, it can 
be deduced that this hybrid carbon product has new features could be used in versatile applications and need 
further investigations.

Figure 4(a–f) exposes the TEM photomicrographs of MWCNTs/RFA-CNp at variable times of stirring; 0D, 
185D and 415D. Figure 4(a,b) shows the TEM photomicrographs of MWCNTs and RFA-CNs samples, accord-
ingly. It can be confirmed again that the morphological shapes of MWCNTs and RFA-CNp are tubular and seem-
ingly spherical style, accordingly. Figure 4(c,d) shows the MWCNTs/RFA-CNp of 0D at two magnifications; 1μm 
and 500 nm, respectively. It is observed from both magnifications that the morphologies of both of the MWCNTs 
and RFA-CNp remain well intact. Figure 4(e,f) exhibits the MWCNTs/RFA-CNs after stirring of 185D at two 
magnifications; 1μm and 500 nm, respectively. Through the observation it can be deduced that the MWCNTs 
become decorated with RFA-CNp. Figure 4(g,h) shows the MWCNTs/RFA-CNp of 415D at two magnifications; 
1μm and 500 nm, respectively. It can be noticed from both photos that the MWCNTs become decorated densely 
and abundantly with RFA-CNp. Overall observation, the presence of RFA-CNp onto the surface of MWCNTs 
led to new decorated carbon-carbon products with different features than the pristine MWCNTs or RFA-CNp.

Conclusion
The carbon-carbon decoration, specifically MWCNTs with carbon nanoparticles, is a novel trend that can lead to 
expanding the potential applications of such nanomaterials. This work is just a trial to confirm that it is possible to 
decorate MWCNTs with carbon aerogel nanoparticles (RFA-CNp) as an example. This is done by mixing in metha-
nol for long durations at a relatively high temperature. Various characterization techniques; including XRD, Raman 
spectra, TGA, NanoSEM and TEM were utilized to investigate the decorated products. The results referred to sig-
nificant changes in the properties of pristine MWCNTs and RFA-CNp, which confirmed the formation of hybrid 
carbon nanoproducts. Moreover, in comparison to the pristine MWCNTs or RFA-CNp, the produced hybrid 
carbon nanoproducts are featured with unique morphologies, crystallinities and extents of order/defects in their 
structures. Overall, it was found that mixing for 185 days resulted in decorating the MWCNTs with RFA-CNp to a 
noticeable extent, whereas mixing for 415 days resulted in a significant (and in an abundance of) decoration. These 
hybrid carbon nanoproducts could be used in numerous applications and are worthy of further investigations.

Experimental section
Materials.  MWCNTs (purity > 90%, with a diameter of 110–170 nm and length of 5–9 μm, resorcinol (purity 
99%) and formaldehyde (containing 10–15% methanol as stabilizer, 37 wt.% in H2O) were purchased from 
Sigma-Aldrich, (Germany). Sodium carbonate anhydrous (Fisher Scientific, UK). Ultra-pure water supplied from 
Elix®70 Water Purification System from Millipore Sigma. Other reagents (Acetone, methanol, acetic acid, nitric 
acid and ammonium hydroxide) are of analytical reagent grade. All chemicals are utilized as-received.
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Preparation of aerogels.  Aerogels were synthesised from resorcinol and formaldehyde in presence of 
Na2CO3 as catalyst. The pH level of the starting solution is adapted at a neutral level with HNO3 and NH4OH 
buffers. The quantities of resorcinol (R), Na2CO3 catalyst (C), formaldehyde (F), and water (W) that were utilized 
in the preparation of the aerogel were 12.44 gram, 0.0240 g, 17.40 ml, and 32.60 ml, respectively. These quantities 
refer to molar ratios of R:F = 0.5, R:C = 500 and R:W = 0.05. The medium temperature is controlled at 70 ± 1 °C. 

Figure 3.  NanoSEM photomicrographs of MWCNTs/RFA-CNp with 50/50 g/g mixing ratio at different mixing 
times and different scales of magnifications. (a,b) refers to pristine MWCTs and CNp, respectively. Each couple 
of photomicrographs of (c,d) 0D, (e,f) 185D and (g,h) 415D refer to different scales of magnifications for the 
corresponding sample.

https://doi.org/10.1038/s41598-020-61726-4


5Scientific Reports |         (2020) 10:4878  | https://doi.org/10.1038/s41598-020-61726-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

The gels were cured and dried by supercritical CO2 extraction as detailed elsewhere23,24. Supercritical drying is 
conducted by utilizing a critical point dryer (E3100 Critical Point Dryer, Quorum Technologies - Preparation for 
Excellence, UK).

Preparation of activated carbon aerogels.  The dried resorcinol/formaldehyde aerogels are placed in 
a ceramic crucible into a tube furnace (Nabertherm GmbH, Germany), while flowing a stream of nitrogen gas 
(1.0 × 102 cm3/min). The tube furnace is firstly kept at ambient temperature for ½ h to make sure that air is fully 
replaced with nitrogen. Afterwards, the temperature of the furnace is increased up to 500 °C with a rate of 10 °C/min,  

Figure 4.  TEM photomicrographs of MWCNTs/RFA-CNp with 50/50 g/g at different aqueous mixing time of 
stirring and different scale of magnification. (a,b) refers to pristine MWCTs and CNp, respectively. Each couple 
of photomicrographs of (c,d) 0D, (e,f) 185D and (g,h) 415D refer to different scale of magnifications.
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kept at 500 °C for 180 min, and then let to cool down spontaneously to ambient temperature while flowing nitro-
gen. The outcome RF carbon aerogel is later activated within the same ceramic crucible (after cleaning thoroughly 
from previous residues) by switching the nitrogen gas with a carbon dioxide gas stream (1.5 × 102 cm3/min), 
heating-up the sample again with a ramp of 10 °C/min up to 700 °C, keeping the sample at 700 °C for 1 h, and then 
cooling the product spontaneously to ambient temperature while still flowing CO2 gas24,25. The outcome sample is 
redeemed to be an activated carbon aerogel and is called resorcinol-formaldehyde carbon aerogel nanoparticles, 
which are denoted as RFA-CNp.

Synthesis of carbon nanospheres-decorated carbon nanotubes.  MWCNTs and RFA-CNp were 
mixed in a fixed weight proportion of 1:1 (this ratio is selected as a fair example of the amount used between the 
two main ingredients) in reflux with methanol while stirring for 0, 185 and 415 days at 100 °C. The identity of 
these samples will be called hereafter; 0D, 185D and 415D, respectively. The sample 0D refers to mixing the sam-
ples manually in a dry state. All samples are then dried at 110 °C for 3 days25.

Characterization
FT-Raman spectra were estimated by a Bruker FT-Raman spectrometer of type RFS 100/S. The morpholog-
ical strutures of carbon materails were invetiagted via a FEI Nova™ nanoscanning electron microscope 450. 
Thermogravimetric analyses (TGA) are conducted (from 30 °C to 800 °C with a heating rate of 10 °C/min) uti-
lizing a Perkin Elmer Pyris6 TGA analyzer with a flow of nitrogen. Transmission electron microscopy of (TEM) 
was conducted with a FEI Tecnai G2 F20 FE-TEM. X-ray diffraction (XRD) tests are carried out by Miniflex II 
Benchtop XRD apparatus, manufactured by Rigaku Corporation Japan.
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