Table 1.
Simulation scenarios with homogeneous/heterogeneous clusters.
Location | Homogeneous clusters | Heterogeneous clusters | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rural | Mixed | Urban | Two clusters | Three clusters | ||||||||||
Cases | Size | POP | RR | P | POP | RR | P | POP | RR | P | POP | H | POP | H |
600 | 1 | 2675 | 192.89 | 1.998 | 710196 | 2.85 | 1.946 | 786178 | 2.73 | 1.941 | 788853 | 190.16 | 1499049 | 190.16 |
2 | 22911 | 27.03 | 1.992 | 817050 | 2.70 | 1.943 | 1072181 | 2.43 | 1.932 | 1095092 | 24.6 | 1912142 | 24.6 | |
4 | 132343 | 7.05 | 1.979 | 1108440 | 2.40 | 1.931 | 2953077 | 1.81 | 1.881 | 3085420 | 5.24 | 4193860 | 5.24 | |
8 | 204829 | 5.35 | 1.971 | 1352284 | 2.24 | 1.923 | 5018909 | 1.63 | 1.836 | 5223738 | 3.72 | 6576022 | 3.72 | |
16 | 360275 | 3.9 | 1.961 | 1684327 | 2.1 | 1.914 | 7627173 | 1.53 | 1.785 | 7987448 | 2.37 | 9671775 | 2.37 | |
6000 | 1 | 2675 | 23.73 | 20.27 | 710196 | 1.45 | 20.09 | 786178 | 1.43 | 20.08 | 788853 | 22.3 | 1499049 | 22.3 |
2 | 22911 | 4.96 | 20.25 | 817050 | 1.42 | 20.09 | 1072181 | 1.36 | 20.05 | 1095092 | 3.6 | 1912142 | 3.6 | |
4 | 132343 | 2.21 | 20.21 | 1108440 | 1.36 | 20.04 | 2953077 | 1.22 | 19.88 | 3085420 | 0.99 | 4193860 | 0.99 | |
8 | 204829 | 1.92 | 20.18 | 1352284 | 1.32 | 20.02 | 5018909 | 1.17 | 19.73 | 5223738 | 0.75 | 6576022 | 0.75 | |
16 | 360275 | 1.66 | 20.15 | 1684327 | 1.29 | 19.99 | 7627173 | 1.15 | 19.57 | 7987448 | 0.51 | 9671775 | 0.51 |
Note: POP is the total population in the clusters. RR is the relative risk of the clusters. P is the incidence (×10−5) out of the clusters. Because the case numbers follow a Poisson distribution under the null hypothesis, the incidence rate also reflects random fluctuation out of the clusters. H is the difference between the maximal RR and minimal RR that reflects the strength of the heterogeneity among the clusters. Heterogeneity among the clusters becomes lower as the cluster number, total case number and cluster size grow.