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Recent years have witnessed the tendency of measuring a biological sample on multiple omics scales for a
comprehensive understanding of how biological activities on varying levels are perturbed by genetic vari-
ants, environments, and their interactions. This new trend raises substantial challenges to data integra-
tion and fusion, of which the latter is a specific type of integration that applies a uniform method in a
scalable manner, to solve biological problems which the multi-omics measurements target. Fusion-
based analysis has advanced rapidly in the past decade, thanks to application drivers and theoretical
breakthroughs in mathematics, statistics, and computer science. We will briefly address these methods
frommethodological and mathematical perspectives and categorize them into three types of approaches:
data fusion (a narrowed definition as compared to the general data fusion concept), model fusion, and
mixed fusion. We will demonstrate at least one typical example in each specific category to exemplify
the characteristics, principles, and applications of the methods in general, as well as discuss the gaps
and potential issues for future studies.
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1. Introduction

1.1. Background

Through various unprecedented breakthroughs in sequencing
technologies and a significant reduction in costs, many biological
problems have been transformed into sequencing problems, thus
prompting an explosion of big biological data. While technical
advances have dramatically fostered biological and medical stud-
ies, they have also brought substantial challenges on integrating
multi-tissue type, multiple genome-wide scale assay data (e.g.,
ChiP-seq and RNA-seq) for accurate, comprehensive, and effective
analyses [1]. The bottleneck in research stems from the integrative
analysis of data to understand the biological processes and disease
mechanisms, rather than the generation of data.

Beginning in the last decade, there has been an emerging ten-
dency to measure the same individual or sample from multi-
omics perspectives, thereby providing the opportunity of building
predictive models for investigating relationships across biological
scales on an individual basis. Relationships of intense interests
include interactions and associations between biological entities
from different levels of biology, such as interactions among
DNA, RNA, proteins, and metabolites [2]. Understanding these
interactions are essential to determining complicated, interwoven
biological regulatory and protein networks with entities across
multi-levels that are a part of normal physiology and influence
the pathogenesis of complex diseases [3]. All of these relationships
are difficult to unveil from single-scale assays but may be facili-
tated by the investigation of the penetrating effects of genetic
and environmental perturbations in complex diseases, as demon-
strated in the TCGA [4] and ENCODE [5] inspired projects. Fusion
ig. 1. Relationship between data integration methods and principles of three types o
ethods in dealing with their samples. Fusion methods are ideal for matched individua
lso work for different individuals (solid arrow across). While most non-fusion integra
atched individuals, overlooking the additional information of matched samples (dashe
owing the differences in data access and modeling.
methods, a special form of integrative analysis, have been devel-
oped to meet the demand of scalable and integrative methods
based on an overall model, to tackle the complexity of multi-
omics datasets characterized by large dimensions and ever increas-
ing scales (e.g., in ENCODE) [6], and to reduce the confounders
from heterogeneity of samples. Fusion methods are different from
non-fusion ones in that non-fusion integrative methods usually
work on distinct biological samples and data sources (e.g., hetero-
geneous knowledge base and omics data), are conducted in
sequence, lack an overall model, or are tailored for specific applica-
tions (Fig. 1a). Therefore, non-fusion integration methods are diffi-
cult to generalize to other problems and scale up with increasing
types of assays, as seen in the Ping-Pong algorithm [7] and
kernel-based integration method PreDR [8]. Here, we review the
basic principles of sample-matched, multi-omics fusion methods,
elaborate on their major challenges and gaps, and discuss the
future outlook of fusion analysis for knowledge discovery: the pro-
cess of identifying novel knowledge from data.

1.2. Challenges of multi-omics fusion analytics

A variety of challenges lie within multi-omics fusion analysis. It
inherits most of the challenges presented in heterogeneous, non-
fusion integrative methods, such as noisy, zero-inflated, and high
dimensional (easily in the thousands) data with a relatively much
smaller number of samples. In addition, fusion methods have
specific challenges that do not occur in sequential and customized
non-fusion methods that use multi-staged, filtering based
approaches [9]. The challenges usually originate from the overall,
scalable model when integrating all data sources, even after the
confounding issues from heterogenous samples have been greatly
f fusion methods. Panel (a) shows the differences between fusion and non-fusion
l samples although some of them (e.g., network-based model-fusion methods) may
tions were designed for applications with different individuals, many do work on
d arrow across). Panels (b–d) are our categorization of fusion integration methods,
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diminished. First of all, from the outset, data scales, or generally
speaking, data distributions across distinct scales, may be different,
even after uniform pipeline processing with standardized normal-
ization, as initial datasets often follow negative binomial distribu-
tions with different parameters, as demonstrated in TCGA and
ENCODE. Distributional differences may also be attributed to dis-
tinct data preprocessing methods across different types of omics
assays (e.g., between ChiP-seq and RNA-seq). Second, the number
of dimensions and the multitude of assays of the same type can
vary significantly across omics groups. For instance, in ENCODE,
the number of assays can vary from one (e.g., DNase-Seq and
RNA-seq) to hundreds (ChiP-seq). Thus, a simple concatenation of
different types of omics data for direct analysis will tend to favor
the assays with more dimensions. Third, although most assays tar-
get a particular biological entity (e.g., a genomic region), some
search for interactions between biological entities (e.g., Hi-C and
ChiA-pet), which further complicates the fusion analysis while
potentially limiting the use of many fusion methods and it calls
for particular design of fusion methods to adapt to these types of
interaction data, such as network-based fusion methods [10].
Fourth, the assays conducted on distinct samples may be different,
which causes some parts of the data to become totally inaccessible,
i.e. the data sparsity of the input matrix, as seen in ENCODE.
Finally, the data may have been collected with a distinct purpose.
For instance, many datasets were collected for case-control studies
(e.g., TCGA), while others were generated by data-driven projects
(e.g., ENCODE), which makes generalized fusion modelling much
more difficult to design.

1.3. Current methods and existing reviews

Multi-omics integration problems originated in the biomedical
domain more than a decade ago, including the concept of data
fusion [6]. However, the studies of the problem from mathemati-
cal, statistical and computational perspectives can be traced back
much earlier than that. Problems like multiblock regression [11]
and simultaneous component identification [12] were reported
as early as the 1930s [13] in mathematics and statistics. In com-
puter science, ensemble learning and deep learning-based integra-
tion methods were developed in the 2000s and 2010s respectively,
which are all related to the fusion analysis through multi-omics
datasets. Independently from each data science discipline, a signif-
icant number of fusion methods have been developed over the last
two decades, which are discussed in this mini-review.

Several reviews have summarized the progress in this field from
different perspectives [14]. Deun et al. provided a structured over-
view of simultaneous component based data integration from
multiblock datasets [12], thus providing a general mathematical
framework for matrix decomposition of multi-omics datasets. They
further categorized the framework into the following three modes
after applying weights to each data block (e.g., omics group): com-
mon component score decomposition for datasets with common
rows, common loading decomposition for datasets with common
columns, and the general mode with neither common component
scores nor common loadings [12]. Ritchie et al. termed the simul-
taneous analysis from multi-omics as meta-dimensional analysis
and further categorized them into three different approaches:
concatenation-based, transformation-based, and model-based
methods [9]. Concatenation-based integration combines multi-
omics datasets into a large matrix before applying a model.
Transformation-based integration converts each omics dataset into
an intermediate form (e.g., graph), then applies a model after
merging the intermediate forms. Model-based integration applies
a model to each omics dataset and then integrates the models
[9]. Lin et al. employed similar perspectives but took more of a
machine learning approach [15]. Bersanelli et al. summarized the
methods from both the problem and method perspectives then
reviewed the mathematical models of their representative meth-
ods [16]. Huang et al. used a similar angle for review and claimed
‘more is better’, as believed by most scientists [17,18], since more
measurements always carry more information, thus having the
potential to unveil relationships that would be impossible for sin-
gle omics analyses to catch [18]. Other reviews include description
of the whole processes of the integration [14] or focus on specific
problems such as clustering [19] and outcome prediction [20].

This mini-review, by no means, attempts to provide a system-
atic review on all existing data integration methods. Instead, we
focus on the analysis of multi-omics assays conducted on the same
samples, a trend that is increasingly evident recently. This there-
fore implies that we will not cover heterogenous data integration,
such as different sample integration and knowledge-based integra-
tion. It is our endeavor to provide a uniquely structured perspec-
tive for fusion methods as a specific type of integration and we
will summarize the selected methods from multi-dimensional
angles, specifically from both methodology and application (prob-
lem) perspectives. We will concentrate on basic principles of the
methods, many of which are mathematical or statistical, rather
than being overwhelmed with the details of biological/biomedical
problems and their implications.
2. Review of the methodologies

2.1. Categorization of fusion methods

Suppose we have collected multi-omics datasets from a set of
biological samples and multiple omics measurements. Without
losing generality and to unify the notation, we may assume these
datasets can be assembled as a big data matrix of X (matrices are
bolded throughout the paper) consisting of I rows of biological
samples and J columns of measurements, where the J columns
are further divided into K distinct groups. Each submatrix (Xk; I
rows and Jk columns) corresponds to the same type of omics assay
data, referred to as an omics data block (or simply data block in
this review). Note the difference between biological samples and
statistical samples/instances; rows can also be regarded as either
variables or features, while columns are regarded as statistical
samples, as in the case of Multiple Non-negative Matrix Factoriza-
tion (MNMF) [21]. By default, we assume rows are statistical sam-
ples, while columns are variables and will note where the
definition is switched. Then, this data model can be generalized
for multiblock datasets with common columns [12], as they can
be transposed into the proper format. Also note that the biological
samples can be either labeled with phenotypic classes (e.g., in
TCGA) or unlabeled (in ENCODE).

Based on the nature of fusion methods, we chose to divide them
logically into three exclusive and complementary categories: data
fusion approaches, model fusion approaches, and mixed fusion
approaches. In data fusion approaches (Fig. 1b; a narrowed view
of the concept, rather than the commonly used data fusion term
which envelops all the fusion analyses in this review), data from
different omics groups are first fused into one single data matrix
through fusion strategies, such as scale normalization across data
blocks, and dimension reduction. Then, traditional models can be
employed as if the data were from a single data source. This type
of fusion is similar to the concatenation-based methods from
Ritchie et al.’s review. In model fusion methods (Fig. 1c), each
omics data block underwent separate and independent modelling,
then had the models integrated as one for their application, in
which the original data is no longer utilized. This type of fusion
is similar to model-based approaches in Ritchie et al.’s review,
whereas transformation methods in Ritchie at al.’s review can be



512 E. Baldwin et al. / Computational and Structural Biotechnology Journal 18 (2020) 509–517
regarded either as data fusion methods, if the intermediate form is
regarded as data, or as model fusion methods if the intermediate
form is regarded as a model. Last, mixed fusion approaches access
each omics data block directly and build a comprehensive model
across multiple blocks for fusion analysis (Fig. 1d). Note that mixed
fusion approaches are not in Ritchie et al.’s review.

For each of the three types of fusion, various methods were
developed and formalized from mathematics, statistics, and com-
puter science perspectives. Meanwhile, these methods have been
employed for different problems, mainly from three aspects: bio-
logical mechanism discovery that aims to unveil relationships
between biological entities, clustering problems that partition bio-
logical samples and entities, and classification/regression problems
that build integrative models for biological/clinical classes or
outcomes. Therefore, we classify the methods using a two-
dimensional structure of method versus applied problems (Fig. 2)
with the goal of providing another perspective of comparison for
methods in this field. Of note, many methods were not limited to
a particular problem or method and thus can be multipurpose for
integrative approaches (e.g., MFA [22] and PARADIGM [23]). In
the following sections, we provide more details for each type of
Fig. 2. Categorization of fusion methods for multi-omics data integration. Methods a
categories are shown across the corresponding boundaries (e.g., PARADIGM and stSVM),
(e.g., MNMF/SNMNMF and MFA).
fusion methods, discuss the basic ideas, model assumptions, imple-
mentation, strengths, as well as limitations.

2.2. Data fusion methods

Matrix decomposition is the most common approach for data
fusion, using an overarching mathematical and statistical frame-
work to integrate omics datasets. Under the assumption that all
the data blocks share rows (identifiers), matrix decompositions
can be divided as either common dimensional space based decom-
position (or loadings) or common component-score decomposi-
tion, depending on whether the rows are regarded as samples or
variables.

2.2.1. Common dimensional space based matrix decomposition
Multiple non-negative matrix factorization (MNMF) [21], the

multiblock version of NMF [24], is a typical method that decom-
poses all the data blocks with the same loadings. Non-negative
decomposition ensures interpretability of the latent factors and
the corresponding coefficients (scores) by only using non-
negative values. In MNMF [21], each row is regarded as a variable
re categorized by multiple levels and applied problems. Methods spanning two
while methods usable for multiple problems are shown repeatedly in the same row
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(each corresponding to a dimension) even though it is an individ-
ual biological sample, while the genomic profiles (e.g., DNA methy-
lation, gene expression, and miRNA expression) are regarded as
statistical samples in the dimensional space. The basic idea of
MNMF is to decompose each omics data block (Xk) into the product
of a common but reduced dimensional space (Q in Eq. (1)) and a
score matrix (Fk in Eq (1); representing projections into the com-
mon space), often resulting in different projections in the common
space. MNMF solves both types of matrices by minimizing the
squared error subject to the constraints of non-negativity (Eq.
(2)). After projecting all measurements (columns, often being
genomic entities) into the new common space, clustering is con-
ducted to identify grouping across multi-omics datasets, called as
multi-dimensional modules, which indicate possible inter-
connections between the genomic entities. The inter-connections
may indicate functional associations between genomic variables
(e.g., genes and genomic regions) in perturbed cancer pathways,
as demonstrated by applying MNMF to clustering multi-scale mod-
ules in cancer genomic datasets [21]. It should be noted, MNMF
requires careful standardization before integration, as data within
the matrix are required to be non-negative.

Xk ¼ QFk k ¼ 1; � � � ; K; st: Q � 0; Fk � 0 ð1Þ

min
XK
k¼1

Xk � QFkj jj j2 ð2Þ

Other approaches within this framework include Statistical
Coupling Analysis-P (SCA-P) [25], which searches for the optimal
pattern matrix that reconstructs the original data matrix after
dimension reduction. The pattern matrix is a generalization of
the loading matrix.

2.2.2. Common component score based matrix decomposition
In contrast to common space decomposition, common score

based matrix decomposition searches for latent and consistent
scores across multiple data blocks (e.g., common effects among
multi-omics datasets). Multiple factor analysis (MFA) is a typical
example of this category and assumes common latent factor scores
between samples for determining the quantities in all data blocks
(F; Eq. (3)). For instance, driving biological factors may influence
the measurement of biological entities on varying scales. In this
case, the dimensional space for each data block can have variance
and not be of critical concern (Qk; Eq. (3)). MFA normalizes the data
blocks by dividing each block with the largest singular value in that
block, so that the first transformed factor of each block has the uni-
form variance of 1 [26]. In other words, MFA normalizes each
omics data block through its maximal information in a single latent
factor. Then, the normalized data block (Xk) is merged for a princi-
pal component analysis (PCA) or generalized singular value decom-
position (details in Section 2.2.3) to get a solution. Generally, it can
use minimum square errors to determine the theoretically optimal
solution (Eq. (4)). MFA can be employed to identify simultaneous
components, or hidden factors shared among multiple omics data-
sets. It has been demonstrated in clustering biological samples
(e.g., glioma) from microarray data to gene ontology [22] in addi-
tion to dealing with missing values in multi-omics data [27].

Xk ¼ FQ T
k ð3Þ

min
XK
k¼1

Xk � FQT
k

��� ������ ���2 ð4Þ

Unlike MFA which uses the singular value of each data block as
the weight, pattern fusion analysis (PFA) estimates the optimal
weights directly from all data blocks [28]. Other approaches under
this category include SUM-PCA [29], which simply merges all the
data blocks and performs a PCA, resulting in common scores across
data blocks. It uses an equivalent weight of 1 across the data
blocks. Another example is MCIA, which is similar to MFA, but uti-
lizes different strategies for weight [30].

If every data block has the same set of columns, the problem
becomes a tensor (three-dimensional matrix can be regarded as a
tensor) decomposition (or multi-way decomposition) [31], which
is an extension of two-dimensional matrix decomposition and is
usually common-score based. Many three-dimensional (3D) matri-
ces exist in biological studies, with dimensions like biological sam-
ples (e.g., neurons), variables (e.g., genes or time), and conditions
(e.g., assays). Methods using tensor decomposition include decom-
posing a matrix as a linear combination of basis two-dimensional
matrices (e.g., variable and condition) [32] in addition to decom-
posing a matrix as a linear combination of the product of latent
component scores from each of the three dimensions [33].

2.2.3. A common solution for matrix decomposition of the same rows
For matrix decomposition problems without extra constraints

(e.g., non-negativity), there is a common solution based on gener-
alized singular value decomposition (GSVD), even though these
problems differ in their target on common loadings, common
scores, or respective weighting strategies across data blocks. In
classic SVD, a matrix is decomposed into diagonal singular values
and two singular vectors consisting of unit vectors (referred to as
left and right singular vectors). In GSVD, weights can be imposed
on rows and columns, with a diagonal row weight matrix (M) or
a column weight matrix (A) [26], thus making singular vectors
often non-unit vectors (Eq. (5)). In MFA, the weight on each row
can be 1 or 1/I, while the weight on each column corresponds to
the largest eigenvalue of the respective data block, which is also
the square of the corresponding singular value [26]. The problem
in GSVD can be solved by converting it into a standard SVD calcu-
lation after multiplying the square root of the row weight matrix
(M1/2) in the left of data matrix (X) and the square root of the col-
umn weight matrix (A1/2) in the right. To solve the problem, one
can simply convert the SVD solution back to GSVD by multiplying
it with the reverse weight matrix (M�1/2 and A�1/2) [34].

For common score-based decomposition (e.g., MFA), each row is
a sample and each column is a variable. Thus, the right singular
matrix is the loading matrix interpreted geometrically as new
rotated dimension vectors, while the factor scores are contained
within the product of the left singular matrix and the singular
value matrix (Eq. (6)). The loading matrix Q, with a number of rows
equal to the number of columns (J) of the input matrix (X), can be
divided into sub-loading matrices corresponding to each data block
(K in total) [26] (Eq. (7)). Then, each data block (Xk) can be decom-
posed as the product of the common score matrix (F) and the dis-
tinct loading matrices (Qk), corresponding to the unique
dimensional space of each data block (Eq. (7) and Eq. (8)).

For common space decomposition (e.g, SCA-P [25]), the left sin-
gular matrix (P) corresponds to the loading matrix (dimension)
since each row of the input matrix (X) is one variable. The score
matrix (F) is the product of the singular value matrix and the trans-
posed right singular matrix (Eq. (9)). The score matrix has the
number of columns corresponding to the original matrix (X) and
can be further divided into submatrices with respect to each input
data block (Eq. (9)). Then, each input data block (Xk) can be decom-
posed as the product matrix of the common dimension space (P)
and the corresponding score matrix (Fk), as desired in this type
of matrix decomposition (Eqs. (9) and (10)).

X ¼ PDQ T where PTMP ¼ Q TAQ ¼ I; I : unit matrix ð5Þ

F ¼ PD; X ¼ FQ T ð6Þ
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Q ¼

Q 1

..

.

QK

2
66664

3
77775 ð7Þ

Xk ¼ FQ T
k ð8Þ

F ¼ DQ T ¼ F1; � � � ; FK½ � ð9Þ

Xk ¼ PFk ð10Þ
The above strategies can be applied to other methods, even in

future methods with novel weighting strategies. It guarantees the
optimal solution under full-rank decomposition, but can be subop-
timal in reduced-dimensional decomposition (less than full-rank of
the input matrix) under the object function of minimal square
errors.

2.3. Model fusion methods

Model fusion is not a completely new concept, as ensemble
learning (clustering and classification) and meta-analysis have
similar ideas, particularly in scenarios where the original datasets
are inaccessible. An example of model fusion is Bayesian consensus
clustering (BCC). BCC first estimates a separate clustering model
for each omics data block, then integrates all the models into a uni-
fied consensus clustering model without directly accessing the
original data [35]. In the first stage, a Finite Dirichlet (extension
of a beta distribution) mixture model (pk; Eq. (12)) is applied to
partition all the samples (I total) on each data block (K blocks total)
into a preset number of clusters (R total) based on Bayes rule (Eqs.
(11) and (12)). In the second stage, every sample (i) is assumed to
be assigned to a consensus cluster (Ci), which is generated through
a consensus Finite Dirichlet mixture probability (p; Eq. (13)). Then,
a probability (ak; Eq. (14)) that the clustering of a data block (k) is
consistent with the overall clustering is assumed and the posterior
clustering probability of both the data block clustering and overall
clustering is established based on the set of parameters and once
again Bayes rules (Eq. (15)). Even though in implementation, the
estimation of the parameters during the two stages are simultane-
ously conducted to get more accurate optimization, the method
still follows the model fusion framework. In application, BCC has
been employed to identify different subtypes among breast cancer
tumor samples [35].

L ¼ fLkig Lki 2 1; � � � ;Rf g : clustering of sample i in k data block

ð11Þ

Xki �
XK
k¼1

pkrf Xkijhkrð Þ pkr ¼ P Lki ¼ rð Þ ð12Þ

Ci : overall clustering with P ¼ ðp1; � � � ;pRÞ for overall clusters
ð13Þ

P Lki ¼ rjCið Þ ¼ v r;Ci;akð Þ ¼ ak if Ci ¼ Lki
1�ak
R�1 otherwise

ak 2 1
R
; 1

� �(

ð14Þ

P Ci ¼ rjL;P;að Þ / pr

YK
k¼1

v Lki; r;akð Þ Bayes rule ð15Þ

Another model fusion example is ENDEAVOUR [6], a pioneer
paper on data fusion in the broad sense. ENDEAVOUR first sought
to rank each column of a heterogeneous data source about all gene
properties, resulting in a rank ratio for each gene, in each column,
based on its value or the statistical significance. Then, a global
order statistic was defined based on a multivariate cumulative dis-
tribution, assuming the rank ratio followed a uniform distribution
with a density of 1 (see the integration function in Eq. (16)).
ENDEAVOUR finally employed either a beta distribution or a
gamma distribution to test the significance of the order statistic,
based on whether the number of columns was larger than 5 (an
empirical cutoff). The method successfully validated genes causing
DiGeorge syndrome that were prioritized through the fusion-based
method [6].

Q r1; � � � ; rnð Þ ¼ n!
Z r1

0
� � �

Z rn

xn�1

dxndxn�1 � � �dx1 ð16Þ

An example of mathematical model fusion is Gene Network
Reconstruction (GNR) [10]. It first constructed a gene regulatory
network from each individual microarray gene expression dataset
using singular value decomposition. Then, it employed linear pro-
gramming to estimate the optimal network structures by minimiz-
ing the overall errors over all the networks of the individual
datasets, without accessing the original gene expression data.

2.4. Mixed fusion methods

A majority of fusion methods employ a mixed approach, which
applies a fusion model that accesses the data of all the omics blocks
directly to estimate optimal parameters for the overall fusion
model. For example, iCluster (integrative clustering [36]) assumes
an overall clustering partition (Eqs. (17)–(19)) across multiple data
blocks and then estimates the latent variables (partition matrix Z)
directly using all the data. This approach is clearly distinct from
BCC. Specifically, iCluster represents each data block (Xk) as the
product of the partition matrix (Z) and coefficient matrix (Wk),
with assumed error terms of a Gaussian distribution (Eq. (19)).
Then, it uses maximum likelihood estimation (log-likelihood) to
infer the parameters [36]. iCluster+ further generalized iCluster
by incorporating discrete variables as well as continuous variables
[37]. iCluster has been used to identify known and novel subtypes
of breast and lung cancers from concordant DNA copy number
changes and gene expression [36] while iCluster+ has accurately
grouped cell lines by their cell-of-origin for several cancer types
using genomic, epigenomic and transcriptomic profiling [37].

Zn�R ¼ Z1; � � � ; Zj; � � � ZR
� �

R clusters in total: ð17Þ

Zj ¼ ½0; � � � ;0; � � � ; 1ffiffiffiffi
nj

p ; � � � :; 1ffiffiffiffi
nj

p ; � � � ;0; � � � ;0�
T

ð18Þ

X1 ¼ ZW1 þ e1

XK ¼ ZWK þ eK ð19Þ
Sparse Multi-Block Partial Least Squares (sMBPLS [20]) regres-

sion is another example of a mixed fusion method. sMBPLS applies
a weight (wk vector) to each column of an explanatory data block
(k) to get a linear combination of all the columns in that data block,
resulting in a vector for each block (tk; Eq. (20)). Then, it applies
another weight (bk) to each block to get a weighted value for each
sample, yielding a combined explanatory vector (t; Eq (21)). Simi-
larly, it applies a weight to each column of the response variables,
thus obtaining a response vector (u; Eq. (21)). Then, it tries to get
the maximal covariance between the weighted explanatory vector
(t) and the response vector (u), as well as two regularization terms
for the explanatory and response vectors, respectively [20] (Eqs.
(22) and (23)). sMBPLS has identified multi-dimensional regulatory
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modules for ovarian cancers and observed higher functional
enrichment than those which only a single type of omics data
[20]. Another example in statistics-based mixed fusion is eCAVIAR,
which identifies co-location signals of Single Nucleotide Polymor-
phisms through integration of genome-wide association studies
and expression quantitative trait loci [38]. Other statistical-based
mixed fusion methods include PSDF [39] and COALESCE [40] for
clustering and iBAG [41] for outcome prediction, all of which use
Bayesian model-based integration and parameter estimation.

t1 ¼ X1w1; � � � ; tK ¼ XKwK ð20Þ

t ¼
XK
k¼1

bitk u ¼ Yq ð21Þ

max
wk ;q;t;u

ðcov t;uð Þ �
XK
k¼1

XJk
j¼1

2k wkj

�� ���XJY
j¼1

2k qj

�� ��Þ k adjuted parameter

ð22Þ

Subject to wkj jj j2 ¼ 1; qj jj j2 ¼ 1; bj jj j2 ¼ 1 ð23Þ
As an example of a network approach, PARADIGM constructs a

network based on canonical pathways and the central dogma. It
connects different biological entities (DNA, mRNA, protein, and
activity) of a gene [23] and uses factors (constraint functions) to
represent the relationships among them, both within the same
gene and across genes. Then, it takes results from multiple omics
datasets and categorizes them as activated (1), neutral (0), and
inactivated (�1). Utilizing the categorization of genes and their
network structure, it estimates the log likelihood of the unknown
status of other genes and uses the status with the largest likelihood
as the final status of the biological entities [23]. PARADIGM has
identified altered activities in pathogenesis pathways of glioblas-
toma multiform and breast cancers [23]. Other examples include
similarity network fusion (SNF), which fuses a similarity network
derived from each data block, then uses a graph diffusion approach
on the network to obtain an overall similarity network topology
[42].

For a typical example of a machine learning approach,
Mobadersany et al. [43] developed an integrative deep learning
approach that combined histology images and genomic mutation
data to predict cancer survival rates. Image data features were
extracted by convolutional layers, and then combined with geno-
mic data using fully connected layers, followed by a Cox model
in the output layer. Another machine learning based fusion
approach employs a smoothed t-statistic support vector machine
model (stSVM) [44]. It does as its name suggests and integrates
network information with experimental data by smoothing t-
statistics of individual subjects over a target network, before train-
ing a support vector machine classifier.

2.5. Comparison of methods

While a comprehensive and comparative study of all fusion
methods is out of this scope, we will briefly compare methods from
both theoretical and practical perspectives. Readers can refer to
comparative studies in research papers such as Liu et al. [45] and
a few comparative review papers such as Tini et al. suggested
SNF achieved the best clustering for complicated data, seconded
by MFA [19].

First, assumptions on the reviewed methods are distinct. Matrix
decomposition based data fusion methods are usually model-free
unless specific statistical tests are required for the derived
parameters. Statistics based model and mixed fusions are usually
accompanied by a probability distribution, often a Gaussian distri-
bution [36] for convenience. Thus, non-Gaussian datasets have to
undergo data transformation, using either the theoretical relation-
ship between distributions or a log-based transformation. On the
other hand, non-statistical machine learning methods, such as sup-
port vector machine and deep learning are usually model free.

Second, method performance and practical implementation
make a great difference. Multiple omics datasets easily reach tens
of thousands of columns and hence trigger the curse of dimension-
ality. For instance, an optimal SVD/GSVD may become impossible
as the intermediate matrices become unable to load into the mem-
ory. Due to this, dimension reduction using the first few dimen-
sions is a common practice. For instance, MNMF only uses the
first 200 dimensions to facilitate the iterative process of updating
the factor and score matrices. Similarly, for SVD based implemen-
tation, approximation approaches can be used for fast calculation
of the first few singular values for large-scale matrices [46]. See
more details in the review of Meng et al. which covers dimension
reduction techniques for multi-omics data [47].

Finally, careful consideration in the application of methods
should be conducted. First, we should choose the methods based
on the nature of scientific problems and data, as many methods
are designed for a particular problem (such as clustering). An
example is that categorized data in multiple scales (from DNA to
protein) are required for PARADIGM, which makes many problems
without the specified data inapplicable. Another example is that
NMF-based methods require non-negative data, which also limits
some applications if transformation to nonnegative data does not
make sense. Second, we should understand the implications of
the input matrix, such as what corresponds to samples and what
corresponds to variables. This will influence interpretation of the
results, as seen in NMF-based methods [21]. Last of all, we need
think over whether the model makes sense for the problem in
hand, and can address questions such as: what do the common
scores mean and how do they make sense in the biological or
biomedical context?
3. Summary and outlook

While there are a variety of fusion methods on integrating
multi-omics datasets, we have categorized them into several
groups due to their distinct perspectives. First upon the type of
fusion, as in data fusion, model fusion, and mixed fusion, each of
which was developed from mathematics, statistics, and computa-
tional disciplines, though many are transdisciplinary. From the
application perspective, we have divided them into mechanism
discovery, clustering, classification and prediction. We demon-
strated each specific category with at least one example to exem-
plify the main characteristics of that category, as well as covering
other instances as needed. We focused on the main mathematical
and statistical principles while also highlighting certain significant
achievements and applications.

It is evident that existing methods are not evenly represented in
each category by methodology and application. Most fusion meth-
ods are mixed ones, spanning mathematics, statistics, and compu-
tational disciplines. Matrix decompositions are enriched in data
fusion methods, mainly from the mathematics discipline. Many
model fusion methods are both statistical and mathematical. From
the application perspective, clustering methods are overrepre-
sented, seconded by mechanistic ones, and least of all by classifica-
tion and prediction ones. Most methods were motivated by TCGA
datasets [4] because of its well-designed control-case sample col-
lection and data generation, availability of multiple omics assays
of the same individuals, and a moderate number of samples. Of
note, between mechanism discovery and clustering, there is a
gap or underrepresentation of problems, which prioritize the pair-
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wise relationships between biological entities from multi-omics
perspectives, such as SNP-SNP interactions [48,49], gene-gene
interactions, and sample-sample similarities.

Several facts may explain the current status of method develop-
ment for fusion methods. Clustering approaches are relatively
easier to design and implement, although the validity of the whole
partition is harder to assess, and a rigorous measurement of perfor-
mance is not well established. Enrichment studies can help explain
the promise of clustering to some extent. Mechanistic approaches
are usually not well-defined and hard to justify due to lack of a
benchmark. However, some discoveries can be verified by wet
lab experiments and demonstrate high significance, which further
drives the advance of these type of discoveries. Classification and
prediction problems have well established assessment criteria;
however, due to large dimensions and relatively small sample
sizes, it is very difficult to reach a sufficient accuracy for many
applications.

Current methods are usually problem-specific, bound to and
driven by particular problems (e.g., TCGA), rather than providing
a general, ubiquitous solution for all fusion problems. Because of
this, there are almost no one-size-fits-all, state-of-the-art methods
and pipeline for the diverse problems that require multi-omics
fusion. This partially hampers the dissemination of information
to the final users of these methods, who are often biologists.

Although fusion methods have had significant breakthroughs
from both theoretical and practical perspectives, especially from
mathematical and statistical fields, caution should be taken during
application as heterogeneity may still be an issue for multi-omics
datasets. Heterogeneity may arise from distinct sample collection
and processing, different measurements across omics types, the
presence of other nuisance factors, and covariates that are involved
in collecting samples and generating the data. In the future, fusion
models are expected to be more flexible for incorporating these
factors to reduce false discoveries caused by noisy, missing values
[27], and confounders. Heterogeneity is especially prominent when
integrating single-cell sequencing data as the matched samples for
distinct omics measurements are currently intractable but mea-
surement of similar samples are possible, making anchored [50]
or coupled clustering [51,52] adequate solutions. Without careful
modelling and application, more multi-omics data is not necessar-
ily better than single scale omics data. Additionally, most statistical
models are based on a Gaussian distribution, whereas omics data-
sets often follow negative binomial distributions. Thus, future
studies should consider a scenario for more accurate modelling.
Finally, with ever-increasing sample sizes encountered in modern
studies and datasets, the power of most methods should improve,
while the influence from noise will significantly diminish. With
development of technology and fusion methods advancing, there
is great potential to foster further biological and medical studies
and their applications.
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