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Abstract
1.	 Partial migration—wherein migratory and non-migratory individuals exist within 

the same population—represents a behavioural dimorphism; for it to persist over 
time, both strategies should yield equal individual fitness. This balance may be 
maintained through trade-offs where migrants gain survival benefits by avoiding 
unfavourable conditions, while residents gain breeding benefits from early access 
to resources.

2.	 There has been little overarching quantitative analysis of the evidence for this 
fitness balance. As migrants—especially long-distance migrants—may be particu-
larly vulnerable to environmental change, it is possible that recent anthropogenic 
impacts could drive shifts in fitness balances within these populations.

3.	 We tested these predictions using a multi-taxa meta-analysis. Of 2,939 reviewed 
studies, 23 contained suitable information for meta-analysis, yielding 129 effect 
sizes.

4.	 Of these, 73% (n = 94) reported higher resident fitness, 22% (n = 28) reported 
higher migrant fitness, and 5% (n = 7) reported equal fitness. Once weighted for 
precision, we found balanced fitness benefits across the entire dataset, but a con-
sistently higher fitness of residents over migrants in birds and herpetofauna (the 
best-sampled groups). Residency benefits were generally associated with survival, 
not breeding success, and increased with the number of years of data over which 
effect sizes were calculated, suggesting deviations from fitness parity are not due 
to sampling artefacts.

5.	 A pervasive survival benefit to residency documented in recent literature could 
indicate that increased exposure to threats associated with anthropogenic change 
faced by migrating individuals may be shifting the relative fitness balance between 
strategies.
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1  | INTRODUC TION

Migratory species are found across all major taxonomic groups 
(Dingle & Drake, 2007), an increasing number of which are recog-
nized as partial migrants (Chapman, Brönmark, Nilsson, & Hansson, 
2011b; Meller et  al., 2016; Reid et  al., 2018), wherein migratory 
and non-migratory individuals exist within the same population 
of a species (Chapman, Brönmark, Nilsson, & Hansson, 2011a; 
Lundberg, 1988). Previously underrepresented in migration liter-
ature (Chapman et  al., 2011a; Sekercioglu, 2010), partial migra-
tion has seen an increase in published studies only in recent years 
(Meller et al., 2016)—at least in part owing the greater empirical 
research enabled by advances in tracking technologies (Chapman 
et al., 2011a, 2011b; Reid et al., 2018). The emergence of rigorous 
study on this topic represents an opportunity to address unan-
swered questions surrounding the evolution and maintenance of 
partial migration (and behavioural polymorphisms in general), the 
ecological consequences of different migratory patterns and the 
evolution of migration itself (Chapman et al., 2011b; Sekercioglu, 
2010).

Migratory behaviours typically arise where temporary spatial 
displacement is an advantageous response to environmental varia-
tion (Alerstam, Hedenström, & Åkesson, 2012; Dingle, 1980). The 
potential costs of migration are high: migratory individuals may 
encounter unfamiliar environments with novel threats, as well as 
the energetic costs of movement (Wikelski et al., 2003), predation 
risks (Lindström, 1989; Ydenberg, Butler, Lank, Smith, & Ireland, 
2004) and temporal investment to the detriment of time otherwise 
invested in breeding fitness (Alerstam et  al., 2012). The biological 
processes underlying the evolution of migration are little known 
(Griswold, Taylor, & Norris, 2010; Townsend, Frett, McGarvey, & 
Taff, 2018; Vélez-Espino, McLaughlin, & Robillard, 2013), but in 
order to have evolved, migration must—in sufficient instances—offer 
a benefit relative to not migrating (‘residency’ hereafter) to either 
breeding success or survival (Griswold et al., 2010; Lundberg, 1988; 
McKinnon et al., 2010; Zúñiga et al., 2017).

Partial migration represents a behavioural dimorphism; in 
order for it to be maintained, either the two strategies yield equiv-
alent fitness returns—an evolutionary stable state—or they con-
fer overall balanced relative benefits which differ according to 
circumstance, known as a conditional strategy (Chapman et  al., 
2011b; Kokko, 2011; Lundberg, 1988). It follows, therefore, that 
in partially migratory populations residency may offer comple-
mentary fitness benefits to those offered by migration (Lundberg, 
1988; Zúñiga et  al., 2017). In the case of conditional strategies, 
these may refer to individual states such as sex or body condi-
tion (Hegemann, Marra, & Tieleman, 2015; Warkentin, James, & 
Oliphant, 1990), or external conditions, such as population density 
(Grayson & Wilbur, 2009) or environmental conditions (Chapman 
et  al., 2011b; Lack, 1968; Lundberg, 1987; Meller et  al., 2016). 
Additionally, the prevalence of each strategy within a population 
may itself influence the relative fitness benefits conferred by ei-
ther (Kokko, 2011; Lundberg, 1987).

Two of the main demographic parameters controlling population 
size are breeding success and survival (Griswold, Taylor, & Norris, 
2011; Lundberg, 1987), though the extent of the influence of each pa-
rameter on population size may differ between populations (Morrison, 
Robinson, Clark, Risely, & Gill, 2013). Theories surrounding the main-
tenance of partial migration have hypothesized that the balance of 
benefits between migration and residency hinges on differential ad-
vantages to survival versus breeding success between the strategies 
(Griswold et  al., 2010; Lundberg, 1988; Zúñiga et  al., 2017). These 
generally predict that migration confers survival benefit as it allows in-
dividuals to escape unfavourable climatic conditions and low resource 
abundance, while residency promotes breeding success through early 
access to better resources—such as territories or breeding locations 
(Chapman et al., 2011b; Kokko, 2011; Lundberg, 1987). Although rel-
ative fitness benefits have been quantified in many partially migratory 
populations (Bai, Severinghaus, & Philippart, 2012; Hansen, Aanes, & 
Sæther, 2010; Hebblewhite & Merrill, 2011; Palacín, Alonso, Martín, 
& Alonso, 2017), the generality of this prediction across taxa has not 
been tested previously. Assessing the prevalence of fitness parity be-
tween migrants and residents—and any patterns evident in the devi-
ation from this parity—has the potential to add to our understanding 
of the ontogeny of migratory behaviours, as well as shed light on how 
migratory species will respond to increasing anthropogenic threats.

Migratory individuals depend on a wide range of temporally 
and spatially distributed habitats and resources across the annual 
cycle, which is thought to expose migrants—especially long-dis-
tance migrants—to increased potential risks (Both et  al., 2010; 
Gilroy, Gill, Butchart, Jones, & Franco, 2016; Robinson et al., 2009; 
Wilcove & Wikelski, 2008). Rising temperatures have been linked 
to poleward range shifts in migratory species (Breed, Stichter, & 
Crone, 2013; La Sorte & Thompson, 2007), shorter migration dis-
tances (Heath, Steenhof, & Foster, 2012; Visser, Perdeck, Balen, 
& Both, 2009), earlier arrival times (Jonzén et  al., 2006; Usui, 
Butchart, & Phillimore, 2017) and earlier breeding times (Both 
et  al., 2004; Tomotani et  al., 2017). Furthermore, the capacity 
of migratory species to adapt to climate change is not universal 
(Fraser et al., 2013; Robinson et al., 2009), and inability to do so has 
been linked to population declines (Møller, Rubolini, & Lehikoinen, 
2008). Partial migration may confer some resilience to environ-
mental change, since some individuals are not exposed to the 
threats posed by migration (Chapman et al., 2011b); indeed, partial 
migration has been shown to be a positive predictor of popula-
tion trends in European birds (Gilroy et al., 2016). Climate change 
has been predicted to make residency increasingly beneficial and 
accordingly bring about a decrease in migratory tendency among 
partial migrants (Berthold, 2001; Pulido & Berthold, 2010). This 
may be particularly relevant in populations where selection pres-
sures favouring migration are weaker, such as at lower latitudes, 
where the reduced seasonality—and associated lower variability 
in resources (Robinson et al., 2009; Somveille, Manica, Butchart, & 
Rodrigues, 2013)—means fitness benefits may be more closely bal-
anced between resident and migrant strategies. Again, however, 
the generality of these patterns has not been tested across taxa.
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The growing bank of research surrounding partial migration 
represents an unexplored opportunity for quantitative synthesis, 
rendered particularly timely by the growing impacts of global en-
vironmental change on migratory species (Robinson et  al., 2009). 
Here, we employ a meta-analytic approach to assess whether the 
individual fitness benefits of migration and residency are indeed bal-
anced in partially migratory populations. We also evaluate the gen-
erality of patterns relating to the type of benefit—breeding success 
or survival—for either strategy. Additionally, we consider the poten-
tial influence of latitude and migratory distance on these relative 
benefits, further predicting that, were environmental change driving 
a change in balance, it would result in more benefits to residency in 
long-distance migrants or low-latitude systems.

2  | MATERIAL S AND METHODS

2.1 | Data collection

We carried out a systematic search of studies published until 
December 2017 using the search terms outlined in Table 1 via ISI 

Web of Science and Google Scholar, without constraining our results 
to any specific taxonomic group(s). For each search phrase, we ex-
tracted all results that fell into any of the Web of Science-defined cat-
egories deemed potentially relevant to partial migration (Behavioural 
Sciences, Biodiversity Conservation, Biology, Ecology, Entomology, 
Environmental Sciences, Environmental Studies, Evolutionary 
Biology, Fisheries, Marine Freshwater Biology, Ornithology, Zoology). 
For the results of the Google Scholar search, we extracted the first 
120 results for each search phrase using a browser-based web-scrap-
ing tool (Data Miner, 2017). The search syntax differs slightly to that 
used for Web of Science; Google Scholar automatically inserts the 
Boolean operator ‘AND’ between all search terms unless another 
is specified. Furthermore, truncation is not recognized by Google, 
which instead uses automatic word stemming as part of a suite of 
‘query expansion’ measures (Google, 2018).

Following Stewart and colleagues (Stewart, Pullin, & Coles, 
2007; and cited elsewhere as good practice—Côté, Curtis, 
Rothstein, & Stewart, 2013, p. 47), we also conducted supple-
mentary literature searches in order to add to—and validate the 
accuracy of—the results of the keyword search. These consisted 
of searching the reference lists of papers already in our accepted 

TA B L E  1   Search terms used to create unfiltered reference library

Database/Search engine Search terms

ISI Web of Science benefits AND migration    

benefits AND migration AND strategy

benefits AND migratory AND strategy

benefits AND partial AND migration

benefits AND resident AND migrant

consequences AND partial AND migration

consequences AND partial AND strategy

reproduct* AND benefits AND migration

reproduct* AND partial AND migration

fitness AND partial AND migration

survival AND benefits AND migration

survival AND partial AND migration

Google Scholar benefits migration    

benefits migration strategy    

benefits migratory strategy    

benefits partial migration    

benefits resident migrant    

consequences partial migration    

consequences partial strategy    

reproduction benefits migration    

reproductive benefits migration    

reproduction partial migration    

reproductive partial migration    

fitness partial migration    

survival benefits migration    

survival partial migration    

Asterisks in ISI WoS search terms indicate truncation, whereby words with multiple endings to the root word are included in the search.
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reference library and of the narrative review of partial migration 
by (Chapman et al., 2011b). We also carried out additional searches 
with altered keywords to ensure our results encompassed taxo-
nomic groups whose literature employs different migration termi-
nology (e.g. diadromy in fish).

We filtered the resulting papers according to their potential 
relevance to our research question. Filtering was done initially by 
abstract, then again by full-text, retaining any studies for which it 
appeared possible they could fulfil the following criteria:

Does the study compare either a resident and migrant population 
of the same species or a short-distance migrant and long-dis-
tance migrant population of the same species?

Does the study measure outcomes deemed by its authors to be a 
potential consequence of migratory strategy?

Does the study measure outcomes deemed by its authors to be 
ecologically beneficial/detrimental to the survival or reproduc-
tive success of individuals?

Can these outcomes be considered direct indicators of fitness?

Does the study report extractable data necessary for calculation 
of effect measures?

Are the data reported either raw observations or predicted by 
models fitted to raw data? (i.e. experimental data and theoretical 
models excluded.)

We included studies comparing short-distance migrants to 
long-distance migrants (in addition to those comparing residents to mi-
grants) in an attempt to encompass more of the spectrum of migratory 
differences, and acknowledging that distinctions between residents 
and migrants may in any case not necessarily be strictly dichotomous 
(Reid et al., 2018). We only considered effect sizes relating to traits we 
deemed directly indicative of survival or breeding success; this resulted 
in a smaller sample size by excluding measures of, for instance, oxida-
tive stress, predation risk and body size (see Table S1), but ensured that 
metrics could be reliably interpreted as direct measures of fitness. See 
Data sources section for a list of all data sources used in the analysis.

2.2 | Data extraction

We extracted means and standard deviations for all reported results 
that fulfilled the inclusion criteria. For each effect size, we also ex-
tracted sample size, year(s) over which the data were gathered, species, 
location of study, migratory distance and type of fitness metric (breed-
ing success or survival). Means and standard deviations were derived 
from raw data where these were given, and otherwise were model-
predicted (from models fitted to raw data—see Inclusion criteria). In in-
stances where standard deviations were missing, we calculated these 

from standard errors or confidence intervals; bounded data were logit-
transformed prior to these calculations. Where data were presented 
only in graphical format, we used digitizing software (WebPlotDigitizer 
version 4.1; Rohatgi, 2018) to extract these. Means, standard errors 
and sample sizes were then used to calculate Hedges’ d standard-
ized mean difference as a measure of effect size (Box S1; Hedges, 
1981; Hillebrand & Gurevitch, 2016) using the metafor package in r 
(Viechtbauer, 2010). We arbitrarily assigned effect sizes positive (>0) 
when resident individuals showed a fitness benefit, and negative (<0) 
when migrants showed a benefit. Benefits were considered as such 
according to the interpretations of the individual paper authors.

Various measures of biological fitness exist, with different met-
rics more relevant for certain taxonomic groups/ecological systems 
than others. Indices of fitness were classed as pertaining either to 
breeding success (e.g. clutch size, offspring survival) or to survival 
(absolute survival, growth rate, see Table S1).

2.3 | Meta-analysis

We obtained overall predicted mean effect sizes (d) and their as-
sociated within-study variance (ψ) using meta-analytic random- 
effects models via maximum-likelihood estimation, weighting effect 
sizes by their inverse variance (1/ψ), a metric of precision/statistical 
power. We considered the resulting mean effect sizes as significant 
if the 95% confidence intervals did not include zero. As individual 
papers frequently yielded multiple effect sizes, we included ‘study’ 
as a random effect to account for within-study non-independence 
(Mengersen, Jennions, & Schmid, 2013). Even within studies, the 
methods and systems associated with each effect size were not 
identical, so the individual identity (ID) of each effect size was also 
included as a random effect (Viechtbauer, 2010). We assessed the 
presence of heterogeneity using Cochran's Q test, a significant re-
sult of which indicates that variation between effect sizes is greater 
than the expected result of chance sampling variability (Viechtbauer, 
2007). We created models for each taxonomic group individually 
(bird, fish, herpetofauna and mammal), as well as across all species.

2.4 | Meta-regression

To explore causes of heterogeneity and assess the influence of 
ecological predictors on the relative benefits of residency, we then 
added moderators (equivalent to fixed effects) to a meta-analytic 
random-effects model, with taxonomic group as an additional ran-
dom effect. The response variable in these models was again the 
standardized effect size (d), representing study-observed fitness 
benefit of residency over migration. We tested the influence of three 
moderators: latitude, migratory distance and type of fitness metric. 
Latitude was the approximate latitude of area shared by migrants 
and residents—that is the breeding ground if non-breeding partial 
migrants and the wintering ground if breeding partial migrants. 
The distance moderator was the natural log (to achieve a normal 
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distribution) of the one-way distance residents ‘saved’ by not migrat-
ing. In cases where residents were truly resident (n = 109), this was 
simply equal to the distance travelled by migrants. In cases where 
‘residents’ were in fact short-distance migrants being contrasted 
with long-distance migrants (n = 20), the ‘distance saved’ was the dif-
ference in distance travelled. Type of fitness metric was a two-level 
categorical predictor based on whether the fitness measure related 
to survival or to breeding success (Table S1). Continuous moderators 
(latitude and distance) were scaled and centred prior to analysis.

We followed an information theoretic approach to assess the 
influence of moderators, in which we fitted random-effects mod-
els with all possible combinations of the main effects. We also con-
sidered the potential influence of two-way interactions, but found 
these to be unimportant and excluded these from further analysis. 
This resulted in a candidate set of eight models. We used Akaike's in-
formation criterion adjusted for small sample size (AICc) to compare 
model fit and used the glmulti package (Calcagno & de Mazancourt, 
2010) to average over models in each candidate set within two AICc 
units of the best-ranked model to obtain AICc-weighted average co-
efficients and predictions (Burnham & Anderson, 2002). We exam-
ined the 95% confidence intervals of model-averaged coefficients in 
order to assess the importance of moderators.

2.5 | Study duration

We assessed the impact of study duration (number of years’ data con-
tributing to effect size estimates) on the detection of fitness differences, 
to evaluate whether deviations from the expected parity of fitness 
between residents and migrants were more likely to arise in shorter 
studies (and hence potentially reflect sampling artefacts). We fitted a 
meta-analytic random-effects model to measures for all species, with 
study duration as a continuous moderator on standardized effect size, 
and inferred moderator significance from coefficient confidence inter-
vals. Multi-level meta-analytical models carried out in metafor automati-
cally conduct an omnibus test for the significance of the influence of 
parameters on effect size (Viechtbauer, 2010); we also considered the 
results of this when interpreting the results of the model.

2.6 | Publication bias/sensitivity analysis

We evaluated the dataset for publication bias—which can result in 
unreliable conclusions (Jennions, Kahn, Kelly, & Kokko, 2013)—using 
a modification of Egger's regression test (Sterne & Egger, 2005). We 
fitted a multi-level random-effects model to the data with effect size 
standard deviation (√ψ) as a moderator; if the intercept of this model 
differs significantly from zero (p <  .1), then the data are considered 
biased (Habeck & Schultz, 2015; Jennions et  al., 2013). As meta-
analyses can be susceptible to the effects of outlying datapoints 
(Viechtbauer & Cheung, 2010), we assessed the sensitivity of our 
results. Following (Habeck & Schultz, 2015), we classified any effect 
size with a hat value (a measure of leverage: the influence of observed 

values on fitted values) of more than double the mean hat value of 
the dataset and standardized residuals greater than ±3 as an influ-
ential outlier (Stevens, 1984). Where such outliers existed, we reran 
the analyses without them to assess their influence on our results. 
Although a common approach in meta-analyses, weighting by inverse 
variance has recently been argued to result in biased results in some 
instances (Hamman, Pappalardo, Bence, Peacor, & Osenberg, 2018). 
We therefore also ran all analyses weighting by sample size, but found 
no difference in our results. We therefore report results from the in-
verse variance weighted models in the remainder of the paper.

Unless stated otherwise, results given are model-predicted stan-
dardized mean effect sizes (d) and associated 95% confidence inter-
vals. All statistical analyses were carried out in r version 3.4.2 (R 
Core Development Team, 2018).

3  | RESULTS

Of 2,939 studies found in the systematic literature search, 23 ful-
filled all inclusion criteria and contained suitable information for 
meta-analysis. We extracted 129 fitness measures from these 23 
studies, representing data from 18 species spread over twelve or-
ders. Data relating to species from the order Passeriformes (perch-
ing birds) accounted for 44% (n = 57) of all effect sizes extracted. 
The dataset encompassed studies from twelve different countries, 
of which all but one (the Republic of Seychelles, contributing five 
datapoints) were in the Northern Hemisphere. Years of data col-
lection spanned 38 years (1976–2013), but there was a strong skew 
towards more recent studies, with 84% of effect sizes collected 
between 2000 and 2013 (Figures S1–S3). Of these effect sizes, 
73% (n = 94) reported higher fitness in residents; 22% (n = 28) re-
ported higher fitness in migrants and 5% (n = 7) as being equal.

3.1 | Meta-regression

For meta-regression models fitted to all measures (n = 129), model 
selection revealed metric type to be an important predictor of 
whether either migratory strategy was advantageous, with resi-
dency yielding benefits for survival but not breeding success metrics 
(model-averaged coefficient estimate: 0.81, CIs: 0.17, 1.44; Tables 2 
and 3; Figure 1). Neither latitude nor migratory distance emerged 
as important predictors of strategy benefits (model-averaged coef-
ficient estimates—latitude: −0.05, CIs: −0.24, 0.15, distance: 0.03, 
CIs: −0.12, 0.17; Table S2).

3.2 | Individual taxonomic group models

Across all fitness measures for all species (n  =  129), we found no 
significant difference in fitness for migrants or residents (d = 0.20, 
CIs: −0.27, 0.66; Figure 2). However, there were differences within 
taxonomic groups: residency conferred fitness benefits for birds 
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TA B L E  2   Model-averaged coefficients from models fitted to dataset of effect sizes (n = 129) within two AICc units of the top model 
(n = 3) showing influence of moderator variables on standardized effect size

Moderator Estimate
Unconditional 
variance No. models Importance L95% U95%

Distance 0.028 0.005 1 0.207 −0.115 0.171

Latitude −0.047 0.01 1 0.26 −0.241 0.146

Intercept −0.421 0.136 3 1 −1.145 0.303

Metric: survival 0.805 0.106 3 1 0.165 1.444

Bold indicates important predictors, as determined from 95% confidence intervals.

Model AICc Delta AICc Weights

d ~ 1 + Metric type 401.8037 0 0.383356

d ~ 1 + Metric type + Latitude 403.2428 1.4391 0.186686

d ~ 1 + Metric type + Distance 403.6943 1.8906 0.14896

d ~ 1 + Metric type + 
Latitude + Distance

404.109 2.3053 0.121066

d ~ 1 405.4768 3.6731 0.061096

d ~ 1 + Latitude + Distance 406.5588 4.7551 0.035568

d ~ 1 + Distance 406.5911 4.7874 0.034997

d ~ 1 + Latitude 407.018 5.2143 0.028271

TA B L E  3   Candidate models fitted to 
dataset of effect sizes (n = 129) ranked by 
Akaike's information criterion adjusted for 
small sample size (AICc)

F I G U R E  1   Model-averaged coefficient 
estimates for fitness measures (n = 129). 
Positive estimates indicate a benefit to 
residency and negative values indicate a 
benefit to migration. Error bars represent 
95% confidence intervals. Confidence 
intervals of blue points exclude zero, and 
those of grey points include zero

F I G U R E  2   Effect sizes (d) predicted by 
individual meta-analytic random-effects 
models fitted to taxonomic subsets of all 
fitness measures (n = 129). Effect sizes 
greater than zero (dashed no-effect line) 
indicate a benefit to residency, and effect 
size values below zero indicate a benefit 
to migration. Error bars represent 95% 
confidence intervals. Confidence intervals 
of blue points exclude zero, and those of 
grey points include zero
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(d  =  0.55, CIs: 0.06, 1.03) and herpetofauna (d  =  0.35, CIs: 0.04, 
0.67), while migration was beneficial to mammals (d  =  −0.30, CIs: 
−0.60, −0.01), and neither strategy conferred a fitness benefit to fish 
(d = −1.31, CIs: −3.68, 1.05). For all taxonomic groups barring mam-
mals, Cochran's Q test was significant, indicating substantial unex-
plained heterogeneity among effect sizes (Table S3).

3.3 | Study duration and publication bias

Mean benefits of residency over migration increased with the num-
ber of years over which effect sizes were calculated (coefficient es-
timate: 0.09, CIs: 0.02, 0.28, QM p-value: .0049; Figure 3). Among 
models that found a significant effect of migratory strategy on fit-
ness, only the herpetofauna subset showed any evidence of publi-
cation bias (intercept p-value: .0113; Table S4). This was, however, 
the group with the fewest studies contributing data, and Egger's 
test is potentially unreliable in cases with few studies (Cochrane 
Collaboration, 2011). Sensitivity analysis did not reveal any influen-
tial outliers in the dataset (Figure S4).

4  | DISCUSSION

Little is known about the fitness balances of migratory strategies 
necessary for the evolutionary maintenance of partial migration, or 
the extent to which global environmental change may be altering this 
balance through differential impacts on migratory individuals. We 
provide evidence that many partially migratory populations studied 

in recent decades show greater fitness in resident individuals, with 
these benefits generally relating to survival rather than breeding 
success. These results are contrary to predictions surrounding the 
ontogeny of migratory behaviours (Chapman et al., 2011b; Lundberg, 
1987), but are in line with predictions relating to the impacts of re-
cent anthropogenic change on the survival of migratory individuals 
(Berthold, 2001). The presence of residual heterogeneity in all mod-
els indicates that additional unexplored environmental factors may 
also be influencing effect sizes.

4.1 | Survival benefits of residency

Seasonal variability is considered one of the main drivers of mi-
gration, where migration may have evolved as a means of en-
hancing survival by allowing individuals to escape unfavourable 
conditions (Lundberg, 1987). This meta-analysis provides evidence 
that residency, rather than migration, confers a survival benefit—a 
result obtained from a synthesis of data gathered over the last 
four decades, a time marked by the cumulative impacts of increas-
ing anthropogenic environmental change (IPCC, 2013). Changes 
in seasonality—particularly warmer winters in the Northern 
Hemisphere (IPCC, 2013)—could plausibly alter the fitness costs 
associated with enduring a (formerly) harsh winter or undertak-
ing migration (Berthold, 2001, 2003). Milder winters (Nilsson, 
Lindström, Jonzén, Nilsson, & Karlsson, 2006) and year-round 
availability of artificial food sources (see Satterfield, Marra, 
Sillett, & Altizer, 2018) may render it unnecessary to undergo 
the costs of migration to escape unfavourable conditions, while 

F I G U R E  3   Left: Predicted effect of study duration on effect size (d) for fitness measures of all species (n = 129). Positive effect size 
values indicate a benefit to residency, and negative values indicate a benefit to migration. Dotted lines indicate 95% confidence intervals. 
Right: Raw values of effect size variance varying with study duration
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advancing spring temperatures also favour residents, as they are 
less likely than migrants to suffer phenological mismatches (Pulido 
& Berthold, 2010). By forgoing migration, residents are better able 
to exploit earlier optimal conditions, on which migrants may miss 
out if unable to advance sufficiently their spring arrival (Møller 
et al., 2008). Residents are also in a better position than migrants 
to react to environmental cues on the breeding grounds (Cobben 
& van Noordwijk, 2017; Visser, Both, & Lambrechts, 2004). 
Simultaneously, anthropogenic activity may be making migratory 
journeys increasingly hazardous. Migratory individuals’ exposure 
to and reliance on a greater range of resources and geographic 
regions puts them at greater risk to the dangers of an increasingly 
unpredictable world (Gilroy et al., 2016; Vickery et al., 2014). The 
predicted increase in extreme weather events brought about by 
climate warming—notably droughts at low latitudes—may be par-
ticularly detrimental to migratory species (IPCC, 2013; Robinson 
et  al., 2009). Increasing infrastructure and land-use change may 
also add to mortality risks associated with migration. The con-
struction of power lines, for instance, is associated with greater 
mortality in migrating birds (Palacín et al., 2017), while agricultural 
intensification, damming and hunting are all thought to have nega-
tive consequences for migratory birds (Adams, Small, & Vickery, 
2014; Vickery et al., 2014).

Various other mechanisms could also explain the observed 
survival benefit of residency over migration. For instance, higher 
rates of emigration among migrants compared to residents could 
artificially increase ‘apparent survival’ in residents, such that our 
observed results reflect sampling error. However, as migrants tend 
to show high philopatry (Newton, 2008), it seems unlikely that this 
would be the sole driver of our results. Alternatively, as discussed 
above, the observed survival benefits of residency could reflect 
other individual traits such as sex, body size, and age, if these 
traits are themselves linked to migratory strategy (Chapman et al., 
2011b). However, for this to explain a pervasive survival benefit of 
residency across studies, the underlying trait linkages would have 
to be common across species, which seems unlikely. A further pos-
sibility is that parity of fitness is not in fact required for partial 
migration to persist over evolutionary time. It is possible for some 
behavioural polymorphisms to be maintained despite differences 
in mean fitness, if there is a high variability associated with the 
more beneficial strategy (Calsbeek, Alonzo, Zamudio, & Sinervo, 
2002). If, within a population, residency offers on average a 
greater survival benefit, but is a high-risk strategy associated with 
a large variance in survival, a migratory strategy could also persist 
within the population despite lower mean fitness. Nevertheless, 
a number of studies have reported that residency is increasing in 
certain species (Hebblewhite & Merrill, 2011; Meller et al., 2016; 
Van Vliet, Musters, & Ter Keurs, 2009), and migration distances 
declining (Berthold, 2001; Meller et al., 2016; Visser et al., 2009)—
findings which lend credence to an association between differen-
tial strategy fitness and recent anthropogenic change. Given the 
widespread incidence of partial migration across ecosystems, it is 
likely that responses to climate changes will be far from uniform 

across species (Chapman et al., 2011b; Griswold et al., 2011), and 
not necessarily straightforward (Nilsson et al., 2006).

We did not find a benefit to breeding success of residency, con-
trary to expectations based on their presumed greater capacity to 
respond to phenological mismatches and achieve early access to 
breeding resources (Pulido & Berthold, 2010). Theoretical models 
indicate that, at least for populations that share a breeding range, 
improved wintering conditions in the breeding range can result in 
better productivity for both migrants and residents, in addition to 
improved survival for residents (Griswold et al., 2011). If this were 
the case, we would not expect to detect breeding measures having 
an influence on the relative benefits of migratory strategies, as these 
would be balanced. Rather, this would simply contribute to a survival 
benefit of residency.

4.2 | Latitude and migratory distance

Although the direction of the model-averaged coefficient estimates 
for latitude and migratory distance were in line with our predictions 
(that residency should be increasingly beneficial in long-distance and 
low-latitude systems), both were close to zero and neither were sta-
tistically important (Figure 1; Table 1), indicating a high degree of 
uncertainty in these trends. The lack of a strong signal for the influ-
ence of migratory distance on the fitness returns of residency may 
be related to our controlling for taxonomic group. General between-
taxa differences in locomotive efficiency, body size and fluid dynam-
ics (Alerstam et al., 2012; Alexander, 2002) mean different migratory 
distances are differentially adaptive between—and accordingly cor-
related with—different taxonomic groups. For the fitness measures 
included in our meta-regression, mean (±SD) migratory distance 
for birds was 978.11  km (±1915.53), while for fish, herpetofauna 
and mammals was 17.77 km (±19.1), 0.69 km (±0.81) and 38.22 km 
(±4.38), respectively. The lack of distance effect may also indicate 
that the apparent survival benefit to residency is driven by increas-
ingly mild wintering conditions experienced by residents, rather than 
by greater mortality risks associated with migration.

We predicted that the lesser seasonality associated with low 
latitudes would lead to lower selection pressures on migration, and 
therefore a more delicate balance between strategies, more likely 
to shift in response to environmental change. However, higher lati-
tudes are currently seeing a greater impact of climate change (IPCC, 
2013), leading to the opposing pressures of traditionally higher sea-
sonality alongside a greater decrease in seasonality brought about 
by climate change—the individual effects of which it is not possible 
to tease apart here.

4.3 | Taxonomic differences

Our results suggest the within-taxonomic group variability in our 
data is less marked than the between-group differences; in addition 
to the stark differences in migratory distance between taxonomic 
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groups, between-taxa variances in body size, general physiology and 
life histories may also be driving differences in relative fitness ben-
efits and susceptibility to the effects of climate change. Altitudinal 
migrants, such as in the ungulate populations which comprised our 
mammal data, may benefit from climate change-induced longer 
vegetation growth periods, resulting in comparatively more for-
age of higher nutritional value in the higher-altitude migrant ranges 
(Rolandsen et al., 2017). Differences between taxa may also not nec-
essarily be down to direct taxonomic differences; we did not, for 
instance, distinguish between different models of partial migration, 
which differ according to which season (breeding or non-breeding) 
residents and migrants are allopatric (Chapman et al., 2011b). These 
different models may result in different benefits to either strategy. 
A reduction in resource variability at a shared non-breeding range 
is predicted to improve resident breeding success, while the same 
for a shared breeding range should bring about higher survival in 
residents (Griswold et  al., 2011). Non-breeding partial migration 
was much more common in our data for birds, fish and herpeto-
fauna, while all mammal fitness measures were from breeding par-
tial migrants. Additionally, differences between the highly variable 
migratory systems found in fish—freshwater/marine/estuarine, cata-
dromous/anadromous—may go some way towards explaining vari-
ance within that group. Indeed, there is an argument to move away 
from traditional dichotomous models of partial migration in general, 
which—while useful—may ultimately be more simplistic than realistic 
(Reid et al., 2018).

4.4 | Study duration

That we found residency to be increasingly beneficial as individ-
ual study duration suggests that deviations from parity in fitness 
benefits detected in our meta-analyses were unlikely to be due 
to sampling artefacts. Furthermore, if individual fitness benefits 
were balanced between strategies through facultative migratory 
tendency—with individuals switching strategy between years—we 
would expect longer-running studies to be more likely to find parity 
between strategies, but we find the opposite result. This also im-
plies that short-term studies may be inadequate as a means of un-
covering differences in demographic parameters between migratory 
strategies. Similar results have been found by Pearce-Higgins and 
colleagues (Pearce-Higgins et  al., 2015), whose recommendations 
concerning the importance of long-term studies as a means of deter-
mining impacts of climate change we echo.

4.5 | Future recommendations

This study represents a step towards a more comprehensive under-
standing of migratory strategies within partial migrants. The results 
of this meta-analysis are in part a reflection of the nature of the 
available literature the concerning partial migration. Taxonomic bi-
ases, particularly the ornithocentrism in animal migration literature 

found elsewhere (Bauer et  al., 2009), are partly a result of migra-
tory behaviour being more common in certain groups and partly a 
reflection of feasibility: species more readily tracked and monitored 
are more likely to be the subject of studies relevant to this topic. 
Similarly, while the prevalence in this study of data from the Northern 
Hemisphere is in part a product of a more general bias found across 
ecological literature (Amano & Sutherland, 2013; Martin, Blossey, & 
Ellis, 2012), there is also greater prevalence of terrestrial migratory 
species in the Northern Hemisphere due to a combination of high 
seasonal variability and greater land mass (Somveille, Rodrigues, & 
Manica, 2015).

That we had a strong temporal skew towards more recent years 
(Figure S3) is unsurprising; as well as the increase in ecological re-
search over time (Hillebrand & Gurevitch, 2016), partial migration as 
a topic has become more prominent in recent years, and rendered 
more feasible as tracking methodologies become more advanced. 
The study is subject to certain practicalities of meta-analyses—such 
as the necessary exclusion of studies not reporting the required 
statistics for calculation of our chosen standardized effect size. 
Statistical rigour and quality of reporting have improved with time 
(Hillebrand & Gurevitch, 2016)—making recent papers more suitable 
for inclusion in meta-analyses. The continuation of these trends may 
better enable future temporal analyses of relative fitness benefits, 
which may shed more light on responses to increasing anthropo-
genic influence.

5  | CONCLUSIONS

We provide evidence that residency results in higher fitness than mi-
gration in certain partially migratory populations and that residency 
confers a greater benefit to survival than to breeding success. While 
not conclusive, this accords with the prediction that global environ-
mental change may be altering the fitness balance in favour of resi-
dency (Berthold, 2001), through milder climatic conditions lessening 
pressures to migrate, and increased mortality risks associated with mi-
gration. If accurate, this indicates that anthropogenic change may alter 
selection pressures to increasingly promote residency—or, indeed, 
promote plasticity in migratory strategy in response to environmental 
unpredictability (Reid et al., 2018). Despite the growing literature de-
voted to partial migration, only twenty-three studies were ultimately 
suitable for inclusion in this meta-analysis. Continued research, espe-
cially examining direct fitness measures, coupled with improved/more 
standardized reporting (sample sizes, measures of variance), will facili-
tate deeper investigation into the topic, while our results concerning 
study duration point to the value of long-term studies. Climate warm-
ing is predicted to continue at an unprecedented rate, with significant 
implications for global biodiversity (IPCC, 2013; Parmesan, 2006). 
Understanding whether migratory species may be able to mediate 
its negative consequences—and the demographic processes through 
which this may occur—is critical for effective conservation measures 
(Newson et al., 2009), while also providing an opportunity to shed light 
on the evolution of migratory behaviours.
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