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Abstract. Background/Aim: Prostate cancer (PCa) is the
most frequent cancer found in males worldwide, and its
mortality rate is increasing every year. However, there are
no known molecular markers for advanced or aggressive
PCa, and there is an urgent clinical need for biomarkers that
can be used for prognosis and prediction of PCa. Materials
and Methods: Mass spectrometry-based proteomics was used
to identify new biomarkers in tissues obtained from patients
with PCa who were diagnosed with T2, T3, or metastatic
PCa in regional lymph nodes. Results: Among 1,904 proteins
identified in the prostate tissues, 344 differentially expressed
proteins were defined, of which 124 were up-regulated and
216 were down-regulated. Subsequently, based on the results
of partial least squares discriminant analysis and Gene
Ontology and Kyoto Encyclopedia of Genes and Genomes
enrichment analyses, we proposed that spermidine synthase
(SRM), nucleolar and coiled-body phosphoprotein 1
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(NOLC1), and prostacyclin synthase (PTGIS) represent new
protein biomarkers for diagnosis of advanced PCa. These
proteomics results were verified by immunoblot assays in
metastatic PCa cell lines and by indirect enzyme-linked
immunosorbent assay in prostate specimens. Conclusion:
SRM was significantly increased depending on the cancer
stage, confirming the possibility of using SRM as a
biomarker for prognosis and prediction of advanced PCa.

According to a recent report from the American Cancer
Society, prostate cancer (PCa) has the highest incidence of
any cancer, and the mortality arising from PCa is second
among all male cancers in the USA (1). Although most PCa
is found at a local or regional stage, with a 5-year survival
rate of close to 100%, the 5-year survival rate for those with
late-stage PCa drops sharply to 30% (2, 3). Advanced PCa,
also called metastatic PCa, is an aggressive form that causes
the prostatic adenocarcinoma to spread to other parts of the
body, including pericapsular tissues, with lymph-node
involvement, and distant metastases, which is histologically
defined as stages T3 and T4 (4, 5). Overall, PCa has one of
the highest incidence and mortality rates among cancers, and
most of the deaths due to PCa are a result of metastasis.
Thus, finding a biomarker for advanced PCa associated with
metastasis and aggression is a pressing need in clinical
research aimed at treating PCa.

Tissue, blood, urine, and seminal fluids derived from
patients are the typical sources used for the study of PCa
biomarkers. Such bio-fluid samples are safe, owing to the non-
invasive collection methods used, and can be collected
quickly, lowering the cost of sample preparation. However, it
is difficult to find low-abundance biomarkers in these samples,
since most of the protein in the blood and urine is either
albumin or uromodulin, respectively. In contrast, tissues
collected after surgery can be used to directly observe the
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expression of tumor proteins, which might be used to indicate
metastatic PCa. In particular, tissue-based biomarkers can be
used as diagnostic, prognostic, and predictive markers (6).
Advanced PCa has a poor prognosis, and most PCa deaths are
caused by metastasis occurring after surgery (4). However, it
is highly important to analyze tissues acquired directly from
patients who have undergone surgery in order to predict
metastasis. To date, there are no molecular markers available
for accurate prediction and prognosis of advanced PCa.

During PCa diagnosis and treatment, decisions are based
on a risk stratification strategy, which integrates three
important prognostic and predictive factors: the pathological
tumor, node, metastasis (TNM) score for determining the
clinical stage; a biopsy Gleason Score (GS); and serum
prostate-specific antigen (PSA) level (7). The PSA test is
most often used for the early diagnosis of PCa and is the
U.S. Food and Drug Administration-approved biomarker for
PCa. However, the PSA level is not able to discriminate
aggressive or advanced PCa, particularly at PSA levels
below 20 ng/ml (8, 9). Another difficulty with PSA is that it
has a high false-positive rate, with only about 20% to 50%
of men with positive PSA results (2.5-10 ng/ml serum PSA)
being diagnosed with PCa after biopsy (10). A recent study
also indicated that the early detection of PCa using the PSA
test does not reduce the mortality rate of PCa. As such, the
currently available methods cannot provide accurate
parameters for prediction of metastatic potential.

Proteomics is an ideal and highly translatable technique for
identifying novel biomarkers. Over the past 15 years, a number
of potential tissue-based biomarkers for PCa have been
ascertained based on proteomics approaches. Traditionally, two-
dimensional difference gel electrophoresis (2D-DIGE) has been
utilized to identify candidate protein biomarkers by comparing
normal tissues with tissues representative of PCa or benign
prostatic hyperplasia with PCa (11-14). Although 2D-DIGE is a
familiar tool for proteomics analysis, recent mass spectrometry-
based proteomics, also known as shotgun proteomics, employing
nano liquid chromatography tandem mass spectrometry (LC-
MS/MS) have been used extensively, and such analyses can
identify up to 20 times more proteins relative to conventional
2D-DIGE analysis (15). In this study, we investigated the
differences in protein expression patterns between normal, PCa,
and advanced PCa tissues for the identification of differentially
expressed proteins (DEPs) using a shotgun proteomics approach.
The identified biomarkers were then verified for use in the
prediction and prognosis of advanced PCa.

Materials and Methods

Clinical tissues of PCa from patients. The biospecimens and data
used for this study were provided by the National Biobank of
Korea-Kyungpook National University Hospital, a member of the
Korea Biobank Network-KNUH, and were obtained (with informed
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consent) under Institutional Review Board-approved protocols
(approval number: KNUMC 2016-05-021). All samples were
obtained from 50 patients treated at the Kyungpook National
University Chilgok Hospital. All tumor samples were acquired after
acquiring patient consent for tissue sample donation and an
examination was performed. The diagnosis of PCa was verified
based on the outcomes of pathological analyses. For each patient,
both normal and tumor tissues were collected and used in these
studies. Both the normal tissues and PCa tissues (separated into T2
and T3 stages) were stored at —80°C before use.

Sample preparation for quantitative proteomics. The prostate tissues
were washed with 1 ml of PBS and then homogenized using a hand-
held homogenizer in sodium dodecyl sulfate lysis buffer (50 mM
Tris-Hcl, pH 6.8, 2% sodium dodecyl sulfate, 1% 2-
mercaptoethanol, and 12.5 mM ethylenediaminetetra-acetic acid)
including the Halt Protease Inhibitor Cocktail (Thermo Fisher
Scientific, Rockford, IL, USA). For complete protein extraction, the
homogenized tissues were sonicated for 2 min on ice and then
incubated at 4°C for 30 min on a rotating mixer. The samples were
centrifuged at 12,000 xg for 10 min at 4°C, and the supernatant was
transferred to low-protein binding E-tubes. The protein
concentration was measured with a BCA Protein Assay kit (Thermo
Fisher Scientific, Waltham, MA, USA). Proteins were reduced by
the addition of 15 mM dithiothreitol and incubated at 56°C for 30
min. The proteins were then alkylated with 60 mM iodoacetamide
at room temperature for 30 min in the dark. To remove the detergent
and chemical reagents, 10% trichloroacetic acid was added to the
protein samples and incubated for 4 h at 4°C. After centrifuging at
12,000 x g for 10 min at 4°C, the protein pellets were washed twice
with 500 pl of ice-cold acetone. The proteins were then centrifuged
at 12,000 x g for 10 min at 4°C, the pellets were then re-suspended
in 100 mM triethylammonium bicarbonate, and the resulting protein
concentrations were re-]measured using a BCA Protein Assay kit
for tandem mass tag (TMT)-based quantitative proteomics. Proteins
(100 pg) from the different prostate tissues were digested using
trypsin at 37°C overnight. For TMT labeling, 0.8 mg of the TMT
sixplex reagent, dissolved in 41 pl of acetonitrile (ACN), was added
to the peptides and incubated at room temperature for 1 h.
Hydroxylamine (5%) in 50 mM triethylammonium bicarbonate was
added to the labeled peptides and incubated for 15 min at room
temperature to stop the TMT labeling reaction. Finally, all the
labeled samples were combined into a low-protein binding E-tube.

To evaluate the number of proteins and peptides, the combined
peptides were separated using both a High-PH RP fractionation kit
and an OFFGEL fractionator (Agilent, Santa Clara, CA, USA). Both
fractionations were performed using the manufacturer’s instructions.
Briefly, eight different elution buffers were made in 0.1%
triethylamine with 10%, 12.5%, 15%, 17.5%, 20%, 22.5%, 25%,
and 50% ACN for the High-PH RP fractionation. After activation
of the High-PH RP fractionation column with ACN and 0.1%
trifluoroacetic acid (TFA), 100 ug of the peptides were dissolved in
water containing 0.1% TFA and added to the column. For the
washing step, 95% water in 5% ACN was added to the column,
after which the peptides were eluted using eight different buffers.
All of the samples were dried using a speed-vacuum system
(Labconco, Kansas City, MO, USA). To perform the OFFGEL
fractionation, we used high-resolution 24-well frame Immobiline
DryStrip gels (IPG strips) at pH 3-10. Following the manufacturer’s
procedure, 200 ug of the peptides were re-suspended in water
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including the OFFGEL buffer pH 3-10 and then loaded in each of
the 24-well frames. Focusing was performed at a maximum current
of 50 pA and stopped after the total voltage reached 50 kVh
(approximately 18 h). The samples were recovered from each well
and merged into groups of twelve consecutive fractions. All the
fractionated samples were desalted using a C18 ziptip (Millipore,
Milford, MA, USA) and then evaporated completely using a speed-
vacuum system.

LC-MS/MS analysis. LC-MS/MS analysis was performed on both
an LTQ-velos Orbitrap spectrometer with an Eksigent nanoLC
chromatography system and a Q-Exactive spectrometer connected
with an Easy nanoLC-1000 chromatograph (Thermo Fisher
Scientific to reduce the technical variability. The samples were
dissolved in solvent A (98% water in 0.1% formic acid). The 75 min
gradient used for the Eksigent nanoLC was 5% solvent B (100%
ACN in 0.1% formic acid) for 10 min, 5-30% solvent B for 50 min,
30-90% solvent B for 5 min, and 90% for 10 min at flow rate of
300 nl/min using a home-made C12 reverse-phase analytical column
(75 pm x 100 mm, Jupiter C12 resin, 4 um particle size, 90 A pore
size; Phenomenex Inc., Torrance, CA, USA). In contrast, the 60-min
gradient for the Easy nanoL.C-1000 was 2 min to 5% solvent B, 50
min to 23% solvent B, 3 min to 90% solvent B, and this was
maintained for 5 min at a constant flow rate of 300 nl/min with a
commercial C18 reverse-phase column (75 pm x 150 mm, 3 um
particle size, 100 A pore size; Thermo Fisher Scientific).

The LTQ-velos Orbitrap was run using the following settings:
source voltage 1.8 kV; MS range m/z 300-1,800; MS resolution
30,000; top 10 data-dependent mode; MS/MS resolution 7500;
isolation width 3 m/z; normalized collision energy at 40% with higher
energy collision dissociation (HCD) mode; 0.1 ms activation time; and
first mass fixed at 100 m/z. For the Q-Exactive, full MS scans were
acquired at m/z 300-1,800 with a resolution of 70,000; 1x106 of target
value; and 120 ms of maximum IT. The top 15 data-dependent mode
was fragmented with normalized collision energy at 27% in higher
energy collision dissociation mode. MS/MS were obtained using the
following settings: MS/MS resolution of 17,500; isolation width of 1.5
m/z; AGC target at 1e6; 60 ms of maximum IT; and first mass fixed
at 100 m/z. The MS proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository with
the dataset identifier PXD013422 (16). Analysis was carried out by
using (LTQ-velos Orbitrap) supported by Basic Science Research
Capacity Enhancement Project through Korea Basic Science Institute
(National Research Facilities and Equipment Center).

Data analysis and bioinformatics. MS/MS data were used to query
the UniProtKB human database using MaxQuant 1.5.1.0
(downloaded from http://www.uniprot.org/proteomes/UP000005640;
including 71,772 protein sequences) (17). To identify proteins and
peptides, trypsin/P was used for the cleavage enzyme, and up to two
missing cleavages were permitted. Additionally,
carbamidomethylation on cysteine was set as a fixed modification,
whereas oxidation of methionine and acetylation of the N-terminus
were set as variable modifications. The mass tolerance was 5 ppm
for full MS and 20 ppm for MS/MS. The reporter ions were
calculated using the TMT sixplex tag on the peptide N-terminus and
lysine residues; in addition, the minimum ratio count was 2. All of
the other parameters were set to default values.

Search results were filtered at a MaxQuant score =40 and a false-
discovery rate <0.01, as well as by removing incorrect proteins from

the protein list that included reverse sequence, potential
contaminants, or those only identified by a modification site. The
protein ratio was calculated based on the reporter intensity of each
PCa group per the reporter intensity of the control group. The ratios
obtained were normalized to the median, and a log2-transformation
of the protein ratios was obtained.

The lists of Gene Ontology (GO) classifications and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) for pathway analysis
were generated using the Database for Annotation, Visualization,
and Integrated Discovery (DAVID). The functional enrichment
analysis of the GO and KEGG data was performed using DAVID
with an EASE score and a modified Fisher’s exact test p-value of
below 0.05 (18). The SIMCA P+ software (version 13.0; Metrics,
Umea, Sweden) was used for partial least squares discriminant
analysis (PLS-DA) to examine the extent of the differences among
patient groups. The input variables were the PCa versus control
ratios quantified with technical replication and featuring mean
centering and Pareto scaling.

Unsupervised hierarchical clustering was performed within
Perseus using Euclidian distance according to procedures previously
described (19). Briefly, the log2-transformed ratios were normalized
by their Z-score and clustered using a cluster number of 2 and a
maximum of 100 iterations. In addition, a one-way r-test was used
to distinguish the significantly changed proteins among the DEPs
relative to the T-stage, and a volcano plot was constructed using
Perseus according to the developer’s instructions (20). Gene
expression profiling interactive analysis (GEPIA) and cBioPortal
were used to compare the mRNA levels and protein ratios (21, 22).

Results

Quantitative tissue proteomics for profiling of prostate
cancer. To profile proteome alterations occurring in the
different stages of PCa, we used a MS-based quantitative
proteomics approach based on TMT (Figure 1). All the
tissues were obtained from the National Biobank of Korea-
Kyungpook National University Hospital. For the proteomics
analysis, we used 10 normal surrounding prostate tissues
from the patients, and two PCa tissues from each group
among 50 patients, as shown in Supplemental Table S1
which was selected for each stage with distinct
characteristics. The PCa groups were divided based on the
patient’s tumor T-stage (T2 as PCa or T3 as advanced PCa)
and serum PSA level. In order to clearly distinguish PSA
levels, a PSA value less than 5 ng/ml was defined as low
(LP) and greater than 20 ng/ml PSA was defined as high
(HP). Furthermore, a separate group demonstrating stage T3,
HP, and metastasis in regional lymph nodes (N1) was
defined as including patients with high-risk advanced PCa.
Ultimately, the patients were classified into six groups,
referred to as the control, T2-LP, T2-HP, T3-LP, T3-HP, and
T3-HP-N1 (Figure 1A).

Overall, we identified 1,904 proteins in the prostate tissues,
among which we were able to quantify 1,673 (87.9%) proteins
(Supplemental Table S2). To quantify the proteomics data, the
ratio of each PCa reporter’s ion intensity to that of the control
reporter’s was calculated and normalized using the median
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Figure 1. A: The experimental scheme for quantitative tissue-based proteomic profiling of prostate cancer (PCa) tissues. B: Overview of the frequency
of differentially expressed proteins from prostate tissues identified using a proteomics approach. C: Venn diagrams depicting the up-regulated (left)
and down-regulated proteins (right) among the patient’s with different T-stage (T2 as PCa, or T3 as advanced PCa) and serum prostate-specific
antigen level (LP: low level; HP: high level). Ctrl: Control; DEPs: differentially expressed proteins.
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value (Supplemental Figure S1). We examined the Pearson
correlation coefficients associated with the fractionation and
LC-MS/MS data to ensure confidence in the quantification
results. As expected, all the Pearson correlation coefficients
between the technical replicates were very high, at 0.87 on
average (Supplemental Figure S2). These data signified that
our proteomics approach was technically sound. In total, there
were 344 DEPs, including 124 up-regulated proteins, 216
down-regulated proteins that changed in their expression level
by more than two-fold (log2 scale <—1 and =1) when
comparing normal and PCa tissues (Figure 1B). Using a Venn
diagram of the DEPs in each PCa group, cysteine-rich
secretory protein 3 precursor (CRISP3) and alpha-N-
acetylgalactosaminidase (NAGA) were found to be up-
regulated in all the PCa groups relative to the normal tissues.
In contrast, nine proteins, agamous-like MADS-box protein
(AGL), CD9, antigen, glutamate receptor ionotropic NMDA
2D (GRIN2D), protein S100 A6 (S100A6), SI00A8, S100A10,
semenogelin-1 (SEMG1), SEMG2 and tropomyosin alpha-1
chain (TPM1), were reduced in all the PCa groups compared
with normal prostate tissues (Figure 1C).

Bioinformatics analysis of the proteomics results. Next, we
performed GO and KEGG enrichment analysis using DAVID
to understand the potential functional implications of the
DEPs identified in the PCa samples (Figure 2). We selected
the top five GO terms with respect to biological process
(GOBP), molecular function (GOMF), and cellular
component (GOCC) (Figure 2A). The GOBP showed that the
up-regulated proteins were involved in translation and rRNA
processing, whereas platelet aggregation, complement
activation, and muscle contraction were enriched in the
down-regulated proteins. With respect to GOMF, the most
highly enriched categories for the up-regulated proteins were
binding to poly(A) RNA, RNA, and nucleosomal DNA. In
contrast, antigen and heparin binding, as well as extracellular
matrix (ECM) structural constituents, were associated with
the down-regulated proteins. Lastly, in the GOCC categories
among the proteins changed in PCa there was an equal
representation of extracellular exosomes in both the up- and
down-regulated proteins. The up-regulated proteins were also
found to have GOCC categories that were partly
mitochondrial and partly ribosomal. In contrast, the down-
regulated proteins were exceptionally enriched for blood
microparticles and extracellular related categories.

For the KEGG pathway enrichment analysis, the proteins
increased in PCa were mainly associated with metabolic
pathways, such as valine, leucine, and isoleucine degradation
as well as propanoate, carbon, and fatty acid metabolism
(Figure 2B). In contrast, the down-regulated proteins were
associated with processing in the complement and
coagulation pathways, the extracellular associated pathway,
ECM-receptor interaction, and focal adhesion.

Next, we performed unsupervised hierarchical clustering of
the quantitative protein data to produce clusters of proteins
with similar patterns throughout the PCa development process
(Figure 3). The quantitative ratio of DEPs was re-normalized
using the Z-score. The horizontal axis was arranged in the
order T2-LP, T2-HP, T3-LP, T3-HP, and T3-HP-N1, which
was expected to reflect the order of increasingly advanced
PCa. A red-green plot was used to improve the visualization.
Based on this analysis, we generated seven clusters (A-G) that
contained 25, 101, 37, 12, 52, 28, and 89 DEPs, respectively.
Among these, three dominant clusters, clusters B (N=101), E
(N=52), and G (N=89), are shown in Figure 3.

Cluster B was present at relatively higher levels in the T2
stage relative to the T3 stage. Cluster E showed a gradually
increasing pattern from T2 to T3, with the exception of T3-HP-
N1. Cluster G showed relatively high expression levels in the
groups T3-HP and T3-HP-N1, which would be expected to
represent highly aggressive PCa. GO and KEGG enrichment
analyses were performed using DAVID in order to understand
the biological relevance of the proteins contained in these
clusters. Interestingly, cluster B was highly associated with
mitochondrial-related functions, including metabolic pathways,
whereas cluster E was strongly related to muscle function,
ECM, ECM-receptor interactions, and focal adhesion
processes. Cluster G was enriched for proteins associated with
platelet degranulation, blood microparticles, as well as the
complement and coagulation cascades. The results of this
unsupervised hierarchical clustering with functional enrichment
suggested that mitochondrial function declines, whereas the
performance of muscle, extracellular proteins, and blood
microparticles increases relative to the progression of PCa.

Selection of candidate biomarkers in advanced PCa. In order
to explore the separation of the PCa groups, a PLS-DA using
the quantified ratio datasets was generated using SIMCA P+
software (Supplemental Figure S3). The PLS-DA gave
R2X=0.71 and Q2=0.31 for the discrimination of the PCa
groups. This result indicated that the technical replicates
within the groups were largely clustered together and were
clearly distinguishable from the other groups. In addition, the
T-stage was clearly distinguished on the y-axis, with T2 on
the upper side (red zone) and T3 on the lower side (blue
zone). In contrast, the PSA groups did not separate well
because the T2-LP group was found among the HP groups.
In order to find statistically significant DEPs in the T-stage
groups, we carried out a one-way #-test on the 344 DEPs using
Perseus, and the results are displayed as volcano plots (Figure
4). The DEPs in each of the T2 (T2-LP, T2-HP) and T3 (T3-LP,
T3-HP, and T3-HP-N1) groups were individually used to apply
a one-way r-test and were filtered using a p-value of less 0.05
and a greater than two-fold (log2 scale <—1 and =1) change in
expression. Consequently, we found 23 and 36 statistically
increased DEPs in the T2 and T3 groups, respectively.
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Figure 2. A: Gene Ontology (GO) functional enrichment analysis of the differentially expressed proteins found in prostate cancer. B: Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the differentially expressed proteins found in prostate cancer. GOBP:
Biological process; GOMF molecular function; GOCC: cellular component.

We had carefully selected the following criteria to identify
reliable candidate biomarkers in advanced PCa tissues and to
avoid false-positives due to chance correlations
(Supplemental Figure S4A). Of the 344 DEPs identified in
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our proteomics analysis, 45 proteins that were changed in all
the PCa groups, or only in the T3-HP-N1 group, were
selected. Accordingly, we included 55 statistically significant
DEPs found via a one-way t-test, displayed in a volcano plot,
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Figure 3. Unsupervised hierarchical clustering of proteins altered during the development of prostate cancer. T2/T3: T2/T3 stage; LP: low serum
prostate-specific antigen level; HP: high serum prostate-specific antigen level. KEGG: Kyoto Encyclopedia of Genes and Genomes; GO: Gene Ontology.

and a total of 89 DEPs were first selected (Supplemental
Figure S4B). Among these 89 proteins, we manually sorted
31 proteins with the same expression pattern as the genomics
database containing GEPIA and cBioPortal (Supplemental
Table S3). With the exception of previously reported studies
on 28 of these proteins in PCa, we singled out three proteins
that consisted of the up-regulated proteins spermidine
synthase (SRM) and nucleolar and coiled-body
phosphoprotein 1 (NOLC1) as well as the down-regulated
protein prostacyclin synthase (PTGIS) as being previously
unknown candidate biomarkers for advanced PCa.
Additionally, these three proteins also showed the greatest
change in the T3-HP-N1 group and were significantly altered
between the T2 and T3 stages. As such, these three proteins
were chosen as potential protein candidate biomarkers for
prognosis and prediction of advanced PCa. Furthermore,
cysteine-rich secretory protein 3 (CRISP3), which had been

previously shown to be altered in PCa, was selected as a
positive control for subsequent assays, immunoblot analyses,
and enzyme-linked immunosorbent assays (ELISAs) (23, 24).

Verification of candidate biomarkers using immunoblot
analysis and ELISA. To verify the proteomics results, we
used an immunoblot assay to determine whether the three
candidate proteins and the control protein could be detected
in prostate specimens and in PCa cell lines, including
LNCaP, LNCaP-LN3, PC-3, PC-3M, and DU-145, when
compared to RWPE, a normal prostate cell line. As shown in
Figure 5A, except for DU-145, the protein expression of
SRM in all the PCa cells was observed to be significantly
increased in the LNCaP, LNCaP-LN3, PC-3, and PC-3M cell
lines. NOLC1 appeared to be slightly elevated in all the PCa
cell lines. Another candidate biomarker, PTGIS, which was
reduced in our proteomics analysis, was confirmed to be
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Figure 4. Volcano plot depicting the T2-stage and T3-stage sets of differentially expressed proteins via the tandem mass tag analysis. ctrl: Control.
ATPS5I, ATP synthase subunit e, mitochondrial; AZGP1, zinc-alpha-2-glycoprotein; CAl, carbonic anhydrase 1; CAVINI, caveolae-associated protein
1; CRISP3, cysteine-rich secretory protein 3; EWSRI, RNA-binding protein EWS; FABPS, fatty acid-binding protein, epidermal; FGB, fibrinogen
beta chain; FHL2, four and a half LIM domains protein 2; HBAI, hemoglobin subunit alpha; HBB, hemoglobin subunit beta; KHDRBS1, KH
domain-containing, RNA-binding, signal transduction-associated protein 1; LTF, lactotransferrin; MFGES, lactadherin;, NAG, alpha-N-
acetylgalactosaminidase; NCBP1, nuclear cap-binding protein subunit 1; PPT1, palmitoyl-protein thioesterase 1; SEMGI, semenogelin-1; SEMG2,
semenogelin-2; SRM, spermidine synthase; TPM, tropomyosin alpha-4 chain; TRIM33, E3 ubiquitin-protein ligase; TSNAX, translin-associated

protein X; UAP1, UDP-N-acetylhexosamine pyrophosphorylase.

dramatically reduced in all the PCa cell lines compared with
the normal prostate cell line. CRISP3, as the positive control,
was elevated in the LNCaP, LNCaP-LN3, and PC-3M cell
lines compared to the normal prostate cell line.

In addition, the candidate biomarkers were verified in
normal and PCa tissues using immunoblot analyses (Figure
5B). As expected, SRM, NOLCI, and CRISP3 were
significantly increased in the T2 and T3 PCa samples when
compared with normal prostate tissues. However, for PTGIS
there was no significant difference between the normal and
PCa tissues. Interestingly, both SRM and CRISP3 were found
to be increased in the T3 samples compared the T2 samples.

To confirm the immunoblot results, we carried out an
indirect ELISA using the prostate tissues from patients with
PCa and healthy controls (Figure 5C). As expected, the
relative protein levels of SRM were significantly elevated in
all PCa tissues (n=31, p<0.01) and from men who went on to
be diagnosed with T2 stage (n=15) or T3 stage (n=16, p<0.01)
PCa when compared with normal tissues. There was also an
increase in SRM level between the T2 and T3 stages (p<0.05).
NOLCI1 was also elevated in tumor tissues (n=31, p<0.05); in
addition, the expression of NOLC1 in the T3 (N=16, p<0.05)
and T2 stages were also higher than in the control tissues.
Unfortunately, the protein range for the T3 group appeared to
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be very wide. PTGIS, which was expected to be reduced in
PCa, was in fact only slightly reduced in PCa (n=30, p<0.05)
when compared to normal tissue, and the levels of PTGIS in
the T3 group were slightly lower than those in the T2 group.
Overall, we observed that the expression of SRM was more
affected in advanced PCa than the expression of NOLCI or
PTGIS, indicating that SRM might be an important prognostic
and predictive biomarker candidate for advanced PCa.

Discussion

We adopted an MS-based proteomics approach to identify
potential prognostic and predictive protein biomarkers from
PCa tissues. In addition, we attempted to reveal the
relationship between serum PSA levels and protein
expression levels in PCa, which had previously remained
unexplored. Previous proteomics studies in PCa tissues did
not consider serum PSA levels but instead concentrated on
the TNM stage and biopsy GS only. Typically, most
clinicians consider the serum PSA level to be normal at
levels below 4 ng/nl and often recommend a prostate biopsy
if the PSA level is above 4 ng/ml. The risk of PCa based on
serum PSA level can be divided into three stages: low,
intermediate, and high risk. For patients with low-risk PSA
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Figure 5. A: Immunoblot analysis verifying the expression of the protein candidate biomarkers for prostate cancer in prostate cancer cell lines. B:
Randomly selected prostate tissues in T2 and T3 stages among 50 patient tissues. C: Confirmation of spermidine synthase (SRM), nucleolar and
coiled-body phosphoprotein 1 (NOLC1) and prostacyclin synthase (PTGIS) as protein candidate biomarkers for prostate cancer using enzyme-
linked immunosorbent assay. CRISP3: Cysteine-rich secretory protein 3 precursor; GAPDH: glyceraldehyde 3-phosphate dehydrogenase.

Significantly different at *p<0.05 and **p<0.01.

level (4 to 10 ng/ml), it is ambiguous as to whether they
have PCa or not. In addition, if the PSA level is above 10,
patients are classified as at intermediate risk, and above 20
as high risk (25, 26). For this reason, we classified patients
into low PSA (LP; <5 ng/ml) or high PSA (HP; =20 ng/ml)
groups at each T-stage in order to be able to assess the

protein changes in PCa based on the serum PSA level. Our
original intention was to define a 4 ng/ml as being cut-off
for the low PSA group. Unfortunately, this PSA level was
extremely rare in the patients for whom we had PCa tissue
samples. Accordingly, we selected 5 ng/ml as the cut-off
value for the low PSA group.
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Using a TMT-based proteomics approach, a total of 1,904
and 1,673 proteins were identified and the quantified from
PCa tissues, respectively. Specifically, we found that there
were 344 DEPs, of which 124 were up-regulated and 216
were down-regulated in the PCa samples. Among these,
CRISP3 was found to be increased in all PCa groups, as has
been presented in other previously published studies (23, 24).
CRISP3 is closely associated with cancer progression,
including aggressive PCa, as based on ETS-related gene
(ERG) status and phosphatase and tensin homolog (PTEN)
deletion, as well as with castration-resistant PCa. In addition,
S100A6, S100AS8, and SI100A10 were all down-regulated in all
of the PCa groups. The S100 family of proteins consists of
calcium-binding proteins that are known to play an important
role in tumorigenesis by controlling cell differentiation,
growth, migration, and invasion. Of the 21 members of the
S100 family, SI00A3, S100A4, S1I00AS8, S100A9, and S100P
have been reported to modulate tumor growth and invasion
in PCa (27-30). However, the functions and mechanisms of
S100A6 and S100A10 in PCa remain unknown.

We used a PLS-DA score plot with protein ratios for each
PCa group to discriminate between the differences in the
proteomics data from each of the different PCa groups.
Interestingly, this PLS-DA analysis of the proteomics data
showed that the T-stage to be clearly distinguished between
T2 (red zone) and T3 (blue zone), while these PCa groups
could not be distinguished based on the PSA level. Thus,
although T-stage classification is possible using the
proteomics results from the PCa tissues, serum PSA levels
cannot be predicted using proteomics data. These results
suggested that the relationship between serum PSA level and
protein expression in prostate tissues is imperfect.

Next, we used functional enrichment analysis by DAVID
to provide insight into the biological properties of the DEPs
we identified in the PCa tissues. As shown in Figure 2, the
proteins that were up-regulated or down-regulated in PCa
clearly had functional differences. The up-regulated proteins
in the tumors were predominantly mitochondrial proteins,
leading to an increase in metabolic pathways, including
amino acid and fatty acid metabolism. In contrast, numerous
down-regulated proteins were extracellular-related proteins
or associated with muscle contraction, ECM-receptor
interactions, or focal adhesion. Another group of proteins
decreased in the PCa tissues was related to blood
microparticles, which influence the complement and
coagulation cascades and platelet degranulation. These
bioinformatic results are very similar to previous proteomics
studies conducted in PCa (31-33). In fact, these three protein
groups, including the mitochondrial proteins, extracellular-
related proteins, and blood microparticle proteins, are known
to be highly related to the occurrence of cancer.

The reprogramming of cellular metabolism in mitochondria
is a well-known cause of tumorigenesis, and these
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reprogramming activities have been recently recognized as a
hallmark of cancer (34, 35). Previous metabolomics studies
have revealed general amino acid metabolism changes in PCa,
and that the metabolism of some amino acids, such as
histidine, serine, threonine, alanine, and tryptophan, are
activated in PCa cells following exposure to androgens (36,
37). Moreover, cancer requires a substantial reorganization of
the ECM during its development and progression. The ECM
is often deregulated and becomes destroyed in various cancer
types, leading to a remodeling of the tumor microenvironment
(38, 39). In particular, cell-cell and cell-ECM adhesions are
known to be significantly associated with a number of
biological functions involved in cell growth, morphogenesis,
cell motility, and inflammation. Tumor cell adhesion to the
ECM plays an important role in the invasion and metastasis
associated with the progression of cancer (40, 41).
Additionally, blood microparticles can be spontaneously
released from tumor cells, and their levels in plasma are
related to cell stimulation, proliferation, and the activation of
coagulation (42, 43). Conversely, proteins associated with
blood microparticles are expected to be less than normal in
tissue. Complement derived from blood microparticles plays
a central role in the immune system and is able to promote the
growth of cancer cells in situations involving chronic
inflammation. Consequently, complement proteins can help
orchestrate invasion and metastasis (44). Therefore, changes
in mitochondrial proteins, extracellular-related proteins, and
blood microparticle proteins in PCa are essential factors and
have been previously identified in other types of cancer.

We used several criteria to identify the significant
biomarkers from our proteomics data, including statistical
methods and comparing our results with previously generated
genomic databases. First, a one-way r-test, visualized using a
volcano plot, was performed using the Perseus software
platform, where we divided the PCa tissues into the T2 and T3
groups to ascertain statistically significant DEPs among the 344
identified DEPs. As shown in Figure 4, for patients with T2 or
T3 PCa, we were able to identify 23 and 36 significant DEPs,
respectively, which satisfied the cut-off criterion of p<0.05. In
addition, we were able to include 11 DEPs that were altered in
all of the groups. These proteins were expected to be useful for
the diagnosis and prognosis of PCa. Moreover, 34 DEPs that
were specifically altered only in the T3-HP-N1 group were also
included and were presumed to be biomarkers specific for
advanced PCa. The 89 selected DEPs were compared with
previous genomics results from GEPIA and cBioPortal, and
this analysis confirmed our proteomics results. GEPIA
compared the mRNA differences between the normal tissue
and tumors using the TCGA and Get databases, and cBioPortal
obtained comparative results between PCa and metastatic PCa
based on two previous studies (45, 46). We then excluded
proteins that have previously been reported to have a
relationship with PCa. With the exception of a few of the
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proteins we identified, most were already known, including
CRISP3 and S100A8, and have been previously studied in
relation to PCa. Eventually, we accepted three proteins, namely
SRM, NOLC1, and PTGIS, as new candidate biomarkers for
advanced PCa, none of which have been previously studied in
relation to PCa as far as we are aware. In order to verify the
proteomics data, we performed both immunoblot analysis and
ELISA, and the data generated for these three candidate
biomarkers were consistent with our proteomics results. As
expected, SRM and NOLC1 were increased in PCa tissues in
both the immunoblot analysis and ELISA, whereas PTGIS
slightly decrease.

SRM is a polyamine biosynthetic enzyme. During
polyamine biosynthesis, ornithine decarboxylase (ODC)
produces putrescine, and SRM and spermine synthase
sequentially generate spermidine from putrescine and spermine
from spermidine, respectively (47). Polyamines modulate gene
expression by altering DNA structure and regulating signal
transduction pathways, and they are consequently associated
with proliferation, tumor invasion, and metastasis (48, 49). As
such, increased levels of polyamines due to their enhanced
biosynthesis have been found in many cancer types, including
skin, breast, colon, lung, and prostate (50). Northern blotting
of polyamine metabolism regulatory genes in human PCa
specimens indicated that ODC and the other polyamine
metabolism genes S-adenosylmethionine decarboxylase
(AMDI) and spermidine/spermine Nl-acetyltransferase
(SATT1), with the exception of SRM, were relatively increased
in highly aggressive PCa compared to normal tissues (51). In
another meta-analysis study of microarray studies performed
in PCa, the mRNA levels of the polyamine biosynthesis
pathway containing SRM were found to be elevated (52).
However, the role of SRM in PCa is not yet known. SRM has,
however, been shown to be regulated by androgen in the rat
prostate (53) and transcribed by the Myc gene (c-MYC)
oncogene in B-cell lymphomas (54). Moreover, increased
spermidine levels are involved in normal cellular growth and
proliferation via a post-translational modification, termed
hypusination, of lysine-50 in eukaryotic translation initiation
factor 5A2 (elF5A2) (55, 56). Even though the role of SRM in
PCa has not been clearly elucidated, our immunoblot analysis
and ELISA results indicated that there was a significant
difference in its expression among the T2, T3, and normal
tissue groups. Thus, we suggest that SRM expression in
prostate tissues might be used as a prognostic and predictive
candidate biomarker for advanced PCa.

NOLCI1 was initially identified as a nuclear localization
signal binding protein that acts as a shuttling chaperone
between the nucleolus and the cytoplasm (57, 58). Previous
studies have shown that NOLC1 is more highly expressed in
nasopharyngeal carcinomas than in normal tissues and plays
a role in tumorigenesis by working together with TP53 (59).
In contrast, expression of NOLCI1 is reduced in human

hepatocellular carcinoma tissues (60). It is known that the
overexpression of NOLC1 in hepatocellular carcinoma cells
suppresses cell proliferation, whereas knockdown of NOLC1
can increase the growth of cancer cells (61). According to a
recent report, nucleolar-localized NOLCI1 interacts with
telomeric repeat-binding factor 2 (TRF2), and the
overexpression of NOLCI1 inhibits cell proliferation by
inducing apoptosis and cell-cycle arrest in HepG2 cells (62).
Therefore, although the protein expression levels of NOLC1
differ depending on the type of cancer, NOLCI1 is also
expected to play a role in the development of PCa.

Lastly, PTGIS is known to functionally combine with
inducible cyclo-oxygenase-2 and contribute to cancer
progression. PTGIS is often down-regulated in many cancer
types, but this has not been demonstrated for PCa (63, 64).
PTGIS is known to be down-regulated via epigenetic
mechanisms in human non-small cell lung cancer (65), and
genetic variations in PTGIS are also associated with breast
cancer progression and survival (66). Furthermore,
hypermethylation of the PTGIS gene promoter led to a
decrease in its expression in colorectal cancer (67). In
contrast, the protein expression levels of PTGIS were
significantly higher in hepatic metastases compared with
primary colon cancer tissues (68). Here, we demonstrated a
reduction in the levels of the PTGIS protein in PCa.

Three PCa candidate protein markers were shown to be
associated with tumors, and these are projected to play an
important role in PCa. In particular, SRM was observed to
be significantly increased at the T3 stage relative to the T2
stage via ELISA. Based on these results, SRM appears to
be a promising new candidate biomarker for assessing
advanced PCa.
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