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BACKGROUND: The effective detection and monitoring of potentially malignant oral lesions (PMOL) are critical to identify-

ing early-stage cancer and improving outcomes. In the current study, the authors described cytopathology tools, including 

machine learning algorithms, clinical algorithms, and test reports developed to assist pathologists and clinicians with PMOL 

evaluation. METHODS: Data were acquired from a multisite clinical validation study of 999 subjects with PMOLs and oral 

squamous cell carcinoma (OSCC) using a cytology-on-a-chip approach. A machine learning model was trained to recog-

nize and quantify the distributions of 4 cell phenotypes. A least absolute shrinkage and selection operator (lasso) logistic  

regression model was trained to distinguish PMOLs and cancer across a spectrum of histopathologic diagnoses ranging from 

benign, to increasing grades of oral epithelial dysplasia (OED), to OSCC using demographics, lesion characteristics, and cell 

phenotypes. Cytopathology software was developed to assist pathologists in reviewing brush cytology test results, includ-

ing high-content cell analyses, data visualization tools, and results reporting. RESULTS: Cell phenotypes were determined 

accurately through an automated cytological assay and machine learning approach (99.3% accuracy). Significant differences 

in cell phenotype distributions across diagnostic categories were found in 3 phenotypes (type 1 [“mature squamous”], type 

2 [“small round”], and type 3 [“leukocytes”]). The clinical algorithms resulted in acceptable performance characteristics 

(area under the curve of 0.81 for benign vs mild dysplasia and 0.95 for benign vs malignancy). CONCLUSIONS: These new 

cytopathology tools represent a practical solution for rapid PMOL assessment, with the potential to facilitate screening and 

longitudinal monitoring in primary, secondary, and tertiary clinical care settings. Cancer Cytopathol 2020;128:207-220.  

© 2020 The Authors. Cancer Cytopathology published by Wiley Periodicals, Inc. on behalf of American Cancer Society.  

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, 

which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial 

and no modifications or adaptations are made. 

KEY WORDS: artificial intelligence; biomarkers; cytology; oral epithelial dysplasia; point-of-care testing; single-cell analysis; 

squamous cell carcinoma.

Corresponding Author: John T. McDevitt, PhD, Department of Biomaterials, Bioengineering Institute, New York University, 433 First Ave, Room 820,  
New York, NY 10010-4086 (mcdevitt@nyu.edu).

1 Department of Biomaterials, Bioengineering Institute,  New York University, New York, New York; 2 Department of Oral and Maxillofacial Pathology, 
Radiology and Medicine, New York University College of Dentistry, New York, New York; 3 Department of Oral and Maxillofacial Medicine, Surgery, and 
Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom; 4 Department of Comprehensive Dentistry and Mays Cancer 
Center,  The University of Texas Health Science Center at San Antonio, San Antonio, Texas; 5 Department of Diagnostic and Biomedical Sciences,  The 
University of Texas Health Science Center at Houston, Houston, Texas; 6 Department of Radiology, New York University School of Medicine, New York, New 
York; 7 Department of Population Health, New York University School of Medicine, New York, New York; 8 SensoDx LLC, Victor, New York

We thank the University of Texas Health Science Center at San Antonio (Stephanie Rowan, Chih-Ko Yeh, Stan McGuff, and Frank Miller), the University of 
Texas Health Science Center at Houston (Jerry Bouquot, Nagi Demian, Etan Weinstock, and Nancy Bass), New York University/Bluestone Center for Clinical 
Research (Joan Phelan, Patricia Corby, and Ismael Khouly), and Sheffield Teaching Hospitals NHS Foundation Trust and the University of Sheffield (Paul 
Speight, Christine Freeman, Anne Hegarty, and Katy D’Apice) for assistance in obtaining clinical samples. We also thank Rho Inc (Julie Vick) for assisting with 
patient data management and for statistical and data analysis support (Robert James). Finally, we thank Shannon Weigum,  Pierre Floriano and Timothy J. 
Abram for early contributions to the project, including assay development and database organization.

Additional supporting information may be found in the online version of this article. 

Received: October 4, 2019; Revised: December 2, 2019; Accepted: December 12, 2019 

Published online February 7, 2020 in Wiley Online Library (wileyonlinelibrary.com) 

DOI: 10.1002/cncy.22236, wileyonlinelibrary.com

https://orcid.org/0000-0002-2126-9442
https://orcid.org/0000-0003-0681-4083
mailto:﻿
https://orcid.org/0000-0001-8789-9351
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mcdevitt@nyu.edu


Original Article

208 Cancer Cytopathology    March 2020

INTRODUCTION

Cancers of the lip, oral cavity, and pharyngeal subsites 
are estimated to affect >500,000 individuals globally 
each year.1 The National Cancer Institute's Surveillance, 
Epidemiology, and End Results (SEER) program has  
estimated 53,000 new cases and 10,860 deaths at-
tributed to oral and pharyngeal cancer (OPC) in 2019 
in the United States alone, of which approximately 50% 
will involve oral cavity subsites. Collectively, OPCs rep-
resent approximately 3% of all cancers.2 Approximately 
two-thirds of OPCs are diagnosed at stage III or stage 
IV when the 5-year survival rates are just 45% and 32%, 
respectively.3 For the remaining one-third of OPCs  
detected at early stages (localized),4 survival increases 
to 84%.2 Despite steady improvements in overall sur-
vival rates for patients with OPC over the last 40 years, 
identifying OPCs at an early stage remains a challenge 
for oral health care providers.5 The current diagnostic 
paradigm of procuring a biopsy is based on remote labo-
ratory services, which can take days or weeks to provide 
results, and this further prolongs anxiety for patients. A 
point-of-care (POC) solution could provide immediate 
feedback within the same visit. Thus, there is a strong 
need for technology-driven solutions that can precisely 
and rapidly diagnose the entire spectrum of oral epithe-
lial dysplasia (OED) and oral squamous cell carcinoma 
(OSCC) using minimally invasive sampling at the POC.

A successful diagnostic adjunctive test for primary 
care settings should be able to discriminate potentially 
malignant oral lesions (PMOLs) that are at “risk” (ie, 
malignant lesions or those with an elevated risk of un-
dergoing malignant transformation) from more com-
mon benign lesions with no malignant potential, thus 
improving the referral efficiency to secondary or tertiary 
care (eg, reducing overreferral of patients with benign le-
sions and improving the early identification and prompt 
referral of those with malignant or high-grade dysplastic 
PMOLs for oncologic care). Numerous adjunctive tests 
are available to assist in the diagnosis of PMOLs. In a 
meta-analysis of oral cancer adjuncts, vital staining and 
visualization adjuncts (eg, autofluorescence and tissue 
reflectance) demonstrated insufficient accuracy to be 
recommended for use as lesion triage tools by general den-
tists.6 However, cytology has demonstrated greater sensi-
tivity and specificity compared with the other adjuncts, 
suggesting its potential as a surrogate for gold-standard 

histopathology. This evidence to support the accuracy of 
cytology is based largely on accuracy studies performed 
in secondary and tertiary care settings. Although cytol-
ogy is unable to replace histopathologic diagnosis based 
on tissue architecture, this relatively inexpensive, easy to 
perform, and minimally invasive method may be useful 
for triaging lesions in any setting: primary care settings 
such as a dental office, low-resource/remote settings, 
and secondary and/or tertiary settings. Incisional biopsy 
followed by histopathologic examination represents 
the current standard of care for diagnosing PMOLs. 
However, incisional biopsy of PMOLs, particularly in 
those that are large, nonhomogeneous leukoplakias, 
leads to an underestimation of the severity of OED up 
to 30% of the time because the biopsy sample (typically 
measuring 5 mm in diameter) may not be representative 
of the variable pathology across the field of the entire 
PMOL.7 Brush cytology could enable a wider sampling 
of PMOLs that encompass larger areas or are multifocal 
with the potential to reduce sampling errors encoun-
tered with incisional biopsies.

Previously, we have demonstrated the conceptual 
basis and the efficacy of chip-based cell capture, multispec-
tral fluorescence measurements, and single-cell analysis 
approaches yielding high-content diagnostic information 
related to oral lesions.8-10 This compact and integrated 
lesion diagnostic adjunct approach has been studied pre-
viously through a multisite clinical validation effort that 
has led to the development of what to our knowledge is 
one of the largest oral cytology databases ever assembled 
for PMOLs.11,12 These efforts included the development 
of an “enhanced gold-standard” adjudication process12 
that was used to correlate brush cytology measurements 
with 6 levels of histopathological diagnosis, ranging from 
benign, to OED, to OSCC. The same approach demon-
strated strong promise for OSCC surveillance in patients 
with Fanconi anemia13 and for the development of a 
cytology-based numerical risk index for cancer progres-
sion.14 Overall, these past efforts have demonstrated that 
microfluidic-based cell capture systems with integrated 
imaging and embedded diagnostic algorithms can yield 
diagnostic accuracies that rival and exceed the capabilities 
of previously developed adjunct devices. These tools were 
developed previously to serve as adjunctive aids capable of 
distinguishing between high-risk and low-risk oral lesions 
with the goal of improving the pipeline of referrals from 
primary care settings to secondary and tertiary treatment 
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centers. Thus, these models were intended to assist pri-
mary care providers in making binary referral decisions 
and considered hundreds of complicated image-based 
cytomorphometric features with minimal clinical inter-
pretability (ie, “black box”).

The current study targeted the development of a 
Point-of-Care Oral Cytology Tool (POCOCT), which 
to our knowledge is the first precision oncology technol-
ogy capable of high-content cell analysis for near patient 
testing. The POCOCT platform comprises a minimally 
invasive brush cytology test kit, disposable assay cartridge, 
instrument, clinical algorithms, and cloud-based software 
services that automate the quantification and analysis of 
cellular and molecular signatures of dysplasia, with results 
available in a matter of minutes compared with days for 
traditional, labor-intensive, laboratory-based pathology 
methods. This article features the development of new  
diagnostic models using the same database described 
above with the goal of greatly simplifying the diagnostic 
algorithms and their interpretation through the classifica-
tion and quantification of cellular phenotypes, resulting in 
more informative and transparent models for cytopathol-
ogists. Likewise, this work has explored the usefulness of 
cell phenotype identification through machine learning, 
their implementation in diagnostic models with interpre-
table predictors and responses, and the practical applica-
tion of these software tools in a cytopathology service.

MATERIALS AND METHODS

Oral Cytology Data

Data used in the current study originated from the 
999-patient, multisite, prospective, noninterventional 
study evaluating the cytology-on-a-chip system for the 
measurement of cytological parameters on brush cytology 
samples to assist in the diagnosis of PMOL.11,12 Briefly, 
both histopathological and brush cytological samples 
for 714 subjects from 3 patient groups were measured:  
1) subjects with PMOL who underwent scalpel biopsy 
as part of the standard of care for microscopic diagnosis;  
2) subjects with recently diagnosed malignant lesions; and 
3) healthy volunteers without lesions. Histopathological 
assessment of scalpel biopsy specimens classified lesions 
into 6 categories (benign; mild, moderate, or severe dys-
plasia; carcinoma in situ; and OSCC), including healthy 
controls without lesions. Although the grading of OED 
traditionally has been considered subjective and lacking 

intraobserver and interobserver reproducibility,15,16 this 
new study implemented an “enhanced gold standard” 
adjudication.12 Here, 2 adjacent serial histologic sections 
were scored independently by 2 pathologists. In the event 
that the pathologists disagreed, a third independent adju-
dicating pathologist reviewed both sections. If the adjudi-
cator did not agree with either of the initial 2 pathologists, 
a third-stage consensus review was conducted to attain a 
final diagnosis. This “enhanced gold-standard” process 
was able to achieve 100% consensus agreement compared 
with an initial preadjudication agreement rate of 69.9%.

Brush cytology specimens were collected and 
processed using protocols published previously.11,12 
Cytopathological assessment of brush cytology specimens 
implemented a cytology-on-a-chip approach, which mea-
sured morphological and intensity-based cell metrics as 
well as the expression of 6 molecular biomarkers (αvβ6, 
EGFR, CD147, McM2, geminin, and Ki-67), resulting 
in a total of 13  million cells analyzed using >150 im-
age-based parameters. The molecular biomarkers were 
selected based on their capacity to distinguish benign, 
dysplastic, and malignant oral epithelial cells through 
prior immunohistochemistry studies.9,17,18 Specific  
details regarding the molecular biomarker selection, patient 
characteristics, sample collection and processing, cytology 
assay, and cytological parameters were published previ-
ously,11 and are summarized in the Supporting Methods.

Cell Identification Model 
Training and Validation

A cell phenotype classification model was explored for 
its ability to discriminate and quantitate the frequency 
and distributions of 4 cell phenotypes: type 1, in which 
cells present as polygonal in shape with a low nuclear-
cytoplasmic ratio (NC ratio) representing mature squa-
mous epithelial cells; type 2, in which cells present as 
small round cells representing immature parabasal cells; 
type 3 in which cells present as mononuclear leuko-
cytes; and type 4, in which cells are represented by lone 
(naked) nuclei without a cell membrane and cytoplasm. 
To recognize these cell types, a machine learning algo-
rithm was trained on 144 cellular/nuclear features from 
single-cell analyses, including morphological and inten-
sity-based measurements. Prior to model development, 
principal component analysis (PCA) was performed 
on the training set. The PCA method is an unsuper-
vised statistical learning technique for exploratory data 
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analysis that improves data visualization by reducing the 
dimensionality of complex data sets19 and has been used 
for phenotypic identification in flow cytometric data.20 
Detailed methods for the training and validation of the 
cell identification model are provided in the Supporting 
Methods.

Numerical Index and Diagnostic Models  
for Assessing PMOL

A numerical index was developed for the purpose of 
discriminating benign from dysplasia/malignant lesions  
(OED spectrum model 2|3). Detailed methods for the 
training and validation of the numerical index and a 
detailed definition of predictors are provided in the 
Supporting Methods. Briefly, subjects were dichotomized 
into “case” and “noncase” outcomes according to their  
lesion determination (noncase for benign lesions and case 
for [mild, moderate, or severe] dysplasia and malignant 
lesions). Due to the relatively few numbers of patients 
with moderate and severe dysplasia (total of 21 patients),  
these lesion determinations were combined. Least  
absolute shrinkage and selection operator (lasso) logistic  
regression was selected for its ability to reduce the num-
ber of predictors in high-dimensional data sets to improve 
prediction performance and generalizability.21-24 Nonzero 
lasso logistic regression coefficients were retained for the 
following predictors: percentage of nonmature squamous 
cells, percentage of small round cells, percentage of leuko-
cytes, age, sex, smoking pack-years, major axis diameter 
of the lesion, clinical impression of lichen planus, and 
lesion color (red, white, or red/white). Diagnostic per-
formance was characterized by the area under the curve 
(AUC), sensitivity, and specificity. Median numerical 
indices were compared for each diagnostic classification 
using a 2-sided Wilcoxon rank sum test at a significance 
level of P =  .05. Internal calibration was performed by 
sorting and grouping the predicted responses (ie, nu-
merical index) into deciles and measuring the observed 
percentages of dysplasia/malignant lesions in each decile. 
The Hosmer-Lemeshow goodness of fit statistic was used 
to assess the model fit.21

Following this same method, diagnostic algorithms 
for mild versus moderate dysplasia (OED-spectrum 
model 3|4), low versus high risk (model 4|4), moderate 
versus severe dysplasia (model 4|5), healthy control (no 
lesion) versus malignant (model 0|6), and benign versus 
malignant (model 2|6) also were developed, and the AUC, 

sensitivity, and specificity were reported as the mean and 
95% CIs for the cross-validated test set.

Cytopathology Software

Measurements of individual cells, such as morphomet-
ric appearance and biomarker staining intensity, were 
recorded using the open-source software CellProfiler.25 
All model development and data analyses were com-
pleted using MATLAB R2017b (MathWorks, Natick, 
Massachusetts) software. A graphical user interface 
for visualizing cytopathology results was developed in 
MATLAB R2017b. The results summary report tool was 
developed using Python 3.6.3. Figures for the cytopathol-
ogy software interface and the results summary were com-
piled from tests performed on the integrated POCOCT 
instrument.

Level of Integration

Data originating from our 999-patient National 
Institutes of Health Grand Opportunity (GO) study 
and used in the cell identification and diagnostic models 
were collected using nonintegrated cytology-on-a-chip 
flow cell prototypes, syringe pumps, research microscope 
stations, and a collection of commercial and open-source 
software packages (see Supporting Methods for more 
details).11 More recently, we integrated the cytology- 
on-a-chip technology into a POC device compris-
ing integrated instrument, microfluidic cartridges with  
onboard blister packs, and dedicated software. Likewise, 
sample processing steps have been reduced significantly. 
Cell identification and diagnostic models developed 
on the nonintegrated platform were translated into the 
POC instrument, and software screenshots and results 
reports presented herein were completed using this inte-
grated POC platform.

RESULTS

Cell Identification Model

A cell identification tool to assist in the accurate and 
precise estimation of histopathological endpoints for the  
entire spectrum of OED and OSCC was developed. 
Figure 1 shows the diagnostic categories and rates for 
oral cancer and dysplasia based on the World Health 
Organization classification26 found during mass screen-
ing,27 demonstrating 5-year malignant transformations28 
and 5-year cancer recurrence rates.29 The literature 
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presents a range of 5-year transformation and recurrence 
rates, and we believe the ones listed herein are representa-
tive of those reported previously.30

The POCOCT platform (Fig. 2) comprises a 
minimally invasive brush cytology test kit, disposable 
assay cartridge, instrument, clinical algorithms, and 

Figure 1.  Diagnostic categories for oral cancer and dysplasia based on the World Health Organization classification with 5-year 
malignant transformations and 5-year cancer recurrence rates. Although approximately 10% of US adults may present to their 
dentist for a routine care visit with an abnormal oral cavity lesion, approximately 83% of these lesions are diagnosed clinically as 
having no malignant potential, and 17% have unknown significance and meet the clinical criteria for potentially malignant oral lesions 
(PMOLs). Approximately 17% of patients with PMOLs are histopathologically diagnosed with oral epithelial dysplasia (OED) or oral 
squamous cell carcinoma (OSCC). OED is approximately 15 times more common than OSCC, yet only a small percentage of patients 
with dysplastic PMOLs undergo malignant transformation.

Figure 2.  The Point-of-Care Oral Cytology Tool (POCOCT) assay platform allows for the analysis of cellular samples obtained from 
a minimally invasive brush cytology sample. The cell suspension collected in this manner allows for the simultaneous quantification 
of cell morphometric data and the expression of molecular biomarkers of malignant potential in an automated manner using 
refined image analysis algorithms based on pattern recognition techniques and advanced statistical methods. This novel approach 
turns around cytology results in a matter of minutes compared with days for traditional pathology methods, thereby making it 
amenable to POC settings. The POC testing is expected to have tremendous implications for disease management by enabling 
dental practitioners and primary care physicians to circumvent the need for multiple referrals and consultations before obtaining 
assessment of molecular risk of PMOL.
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cloud-based software services to automate the quantifi-
cation and analysis of cellular and molecular signatures 
of dysplasia and OSCC. The cell identification tool auto-
matically classified 4 distinct cell phenotypes (Fig. 3A).  
Type 1 (“mature squamous” or “mature keratinocytes”) 
were broad/flat cells, measured approximately 50 to 

100 µm in diameter, had a low NC ratio, and demon-
strated a relatively low cytoplasm staining intensity 
(Phalloidin-Alexa Fluor 647; Thermo Fisher Scientific, 
Waltham, Massachusetts). Type 2 “small round” cells 
were small (12-30 µm in diameter), highly circular cells 
with a high NC ratio and a brightly stained cytoplasm 

Figure 3.  A cell type identification model was developed to automatically classify cell types 1 to 4. Panel A (left) shows the 4 
distinct cell phenotypes that were identified: type 1 (“mature squamous cells”), type 2 (“small round cells”), type 3 (“leukocytes”), 
and type 4 (“lone nuclei”). Principal component analysis (PCA) (right) shows cell phenotypes clustered into distinct groups with 
substantial separation between cell phenotype labels, demonstrating strong promise for an effective cell phenotype recognition 
algorithm. Boxplots in panel B show the study population distributions of mature squamous cells (left), small round cells (center), 
and leukocytes (right), representing the predicted mean cell type percentages across 6 biomarker assays (αvβ6, CD-147, EGFR, 
geminin, Ki-67, and MCM2) within each lesion class: normal (121 cases), benign (241 cases), dysplasia (59 cases), and malignant 
(65 cases). The results shown include only patients with definitive lesion determinations and patients with evaluable data for all 6 
biomarkers. Panel C shows limited field-of-view cytology pseudocolor images (fluorescence images acquired with a monochrome 
camera and digitally assigned to red, green, and blue color channels) of benign (left) and malignant (right) lesions with the cell 
phenotype model output labels overlaid as follows: “M” indicates mature squamous cells, “S” indicates small round cells, “W” 
indicates leukocytes, and “L” indicates lone nuclei (unknown type [“U”] not shown). Fluorescent staining showed the cytoplasm 
(red), nuclei (blue), and Ki-67 biomarker (green). Dys indicates dysplasia; Mal, malignant.
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representing immature basaloid keratinocytes. Type 3 
“leukocytes” appeared as small, brightly stained pink 
objects measuring 6 to 23  µm in diameter represent-
ing mononuclear leukocytes. Type 4 “lone nuclei” rep-
resented by lone or naked nuclei without a cytoplasm 
appeared as brightly stained blue objects measuring ap-
proximately 5 to 12 µm in diameter.

The PCA scatter plot of the first 2 principal compo-
nents revealed a glimpse of the internal data structure and 
variance (Fig. 3A). Here, populations according to each 
cell type were clearly observed. Furthermore, >90% of 
the variance was explained by the first 20 principal com-
ponents from a total of 144, with 30% and 14% variance, 
respectively, explained in the first and second principal 
components. Despite types 2 and 3 having similar cyto-
morphology, the features with the largest association with 
the first principal component were NC ratio and mean 
cytoplasm intensity, suggesting that cell size and cellular 
actin content and/or distribution play a dominant role in 
explaining the variance among these cell phenotypes.

The cross-validated k-nearest neighbors (k-NN)  
algorithm resulted in an overall accuracy of 96.9% and 
an accuracy of 100%, 90.1%, 96.0%, and 99.0%, respec-
tively, for types 1 (mature), 2 (small), 3 (leukocytes), and 
4 (lone nuclei) cells. An additional label (“unknown”) 
was added for cells that had ≤4 similar neighbors. After  
accounting for this “unknown” cell type, the overall accu-
racy was 99.3%. When applied to the study population, 
cell phenotype distributions demonstrated significant 
differences across all diagnostic categories (Fig. 3B). The 
percentage of type 1 (mature) cells decreased with more 
advanced disease. In contrast, the percentages of type 2 
(small) and type 3 (leukocytes) cells increased with disease 
progression. Median values for type 1 (mature) and type 2 
(small) cells were significantly different between all lesion 
determinations. For type 3 cells (leukocytes), all lesion 
determinations had significantly different median values 
except for benign versus dysplasia (P = .0539).

The same cell identification model development 
process was completed on recently developed integrated 
instrumentation, cartridges, and cloud-based analysis 
tools. Images from 2 samples, one each from benign and 
malignant lesions, were collected using the POCOCT 
platform, and cell phenotype labels were overlaid on each 
recognized cell object (Fig. 3C). Here, the benign lesion 
sample contained mostly type 1 (mature) cells, whereas 
the malignant sample contained a mixture of primarily  

type 2 (small), type 3 (leukocytes), and type 4 (lone  
nuclei) cells.

Numerical Index and Diagnostic Models  
for Assessing PMOL

Expanding on this capability, a numerical index for dis-
criminating benign from dysplasia/malignant lesions 
was developed using the cell phenotypes as predictors. 
Figure 4A shows the receiver operating characteris-
tic curve representing discrimination performance of 
the multivariate model. The numerical index is a score  
between 0 and 100 that can be interpreted literally as the 
probability of dysplasia/malignancy. The diagnostic accu-
racy of the model is defined by the cutoff score that maxi-
mizes its AUC (benign vs dysplasia/malignant numerical 
index cutoff value of 36). Predictors for the model were 
retained as follows: cell phenotype distributions (types 1, 
2, and 3), age, sex, smoking pack-years (ie, packs smoked 
per day times years of smoking), lesion size (maximum 
diameter), clinical impression of lesion as lichen planus, 
and lesion color (white, red, or both) (Fig. 4B). Minimal 
differences were observed between training and test error 
(28% and 27% misclassification rate, respectively, on 
the training and test sets), which suggests no evidence of 
overfitting. The numerical index demonstrated signifi-
cant differences between all lesion diagnostic categories 
studied (P < .01) except for mild versus moderate/severe 
dysplasia (P = .1519) (Fig. 4C); however, significant dif-
ferences were observed in a dichotomous model for mild 
versus moderate dysplasia (ie, model 3|4) (P = .04). Model 
calibration demonstrated the numerical index compared 
with the observed percentages of dysplasia/malignant 
subjects when sorted and grouped into deciles (Fig. 4D). 
A nonsignificant result of the Hosmer-Lemeshow good-
ness of fit test suggested that there was no evidence of a 
poor fit (P = .6259).

Models also were developed for dichotomous 
classification across the OED spectrum, and Figure 5 
summarizes the diagnostic performance of these mod-
els. The clinical algorithms resulted in AUCs ranging 
from 0.81 (95% CI, 0.76-0.86) for benign versus mild 
dysplasia (model 3|4) to 0.97 (95% CI, 0.94-1.00) for 
healthy controls (no lesion) versus malignancy (model 
0|6). Although previous work demonstrated AUCs of 
0.836 for the binary low-risk versus high-risk (model 
4|4) split and 0.883 for moderate versus severe dysplasia 
(model 4|5),11 these new optimized models presented 
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herein resulted in improved AUCs of 0.88 (95% CI, 
0.84-0.93) and 0.92 (95% CI, 0.88-0.96) for the same 
diagnostic splits, respectively.

Cytopathology Software

A cytopathology interface tool was developed to assist 
pathologists in reviewing the brush cytology test results, 
enabling rich content cellular analyses on single-cell 
and multicell levels (Fig. 6) (see Supporting Figs. 1-6). 
This interface enabled the pathologist users to access 
data stored and processed on cloud-based services, view 

results summaries, explore cytology results through 
data visualization tools, and generate automated oral 
cytopathology reports (Fig. 7) which provide the  
adjunctive referral recommendations and summarize 
important information from cytology, including total 
cell count, cell phenotype distributions (types 1, 2, 
and 3), and mean values for the NC ratio, molecular 
biomarker fluorescence intensity, and cell circularity. 
The ability to assess cumulative data on this cloud-
based cytopathology platform may improve pathologist  
decision making (eg, through learning about their own 

Figure 4.  Algorithm results of the dichotomous benign versus dysplasia/malignant lesion model from 241 subjects with benign 
lesions and 124 subjects with dysplasia and malignant lesions for 6 molecular biomarker assays on the Point-of-Care Oral Cytology 
Tool (POCOCT) system. Panel A shows the receiver operating characteristic (ROC) curve for the model. The least absolute shrinkage 
and selection operator (lasso) logistic regression coefficients are provided in panel B. The predictors were as follows: “1-%TYPE 1” 
(percentage of cells that were nonmature squamous cells), “%TYPE 2” (percentage of cells that were small round cells), “%TYPE 3”  
(percentage of cells that were leukocytes), “AGE,” “SEX,” “PACKYR” (pack-years of smoking), “LSIZEMAX” (lesion diameter of the 
major axis), “LICHENFN” (clinical impression of lichen planus), and “LESIONCOLOR” (red, white, or red/white). The boxplot in panel 
C shows cross-validated algorithm response (“numerical index”) for the lasso logistic regression on the test set averaged over all 
biomarker assays. Distribution of scores are represented for benign (241 lesions), mild dysplasia (38 lesions), moderate/severe 
dysplasia (21 lesions), and malignant (65 lesions). Panel D shows a model calibration plot of the predicted responses (numerical 
index) sorted and grouped into deciles versus the observed percentages of dysplasia and malignant lesions. Mod/sev dys indicates 
moderate/severe dysplasia.
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histopathologic assessment versus the POCOCT and, 
ultimately, the surgical pathology).

DISCUSSION

The results of the current study demonstrated an evo-
lution of the POCOCT technology toward a rapid and 
simple brush cytology analysis for POC or in a remote 
laboratory setting. We demonstrated that: 1) cell phe-
notypes can be determined accurately through the auto-
mated cytological assay and machine learning approach; 
2) significant differences in cell phenotype distributions 
across diagnostic categories are found in 3 phenotypes 
(types 1, 2, and 3); and 3) these cell phenotypes are valu-
able predictors in distinguishing lesion diagnostic cat-
egories in a multivariate lasso logistic regression model. 
The compilation of these results has suggested that the 
observed cellular phenotypic variations within cytological 
samples are equated with disease severity, and therefore 
may be useful in the evaluation of PMOLs. Although 
cell phenotyping can be completed by a pathologist by 
manually identifying cells in a cytological sample, this is a 
lengthy process that is subject to human errors. Providing 
a means with which to automate metrics, such as the dis-
tributions of cell phenotypes, may increase the adoption 
of this POCOCT approach through a cytopathology ser-
vice and allow for pathologists to complete more efficient 
and more effective recommendations.

The optimized numerical index for evaluating 
PMOLs developed herein represents a simple, practi-
cal, and effective approach that is directly applicable to 
clinical implementation and interpretation. Although 
previous models have relied on complicated high- 
dimensional cytological parameters, the classification 
and quantitation of cell phenotypes greatly simplifies 
the predictive algorithm and its interpretation, sub-
stantially improves performance for diagnostic splits 
compared with these earlier efforts,11,14 and supports 
the translation of research methodologies from labora-
tory-based microscopy stations into an integrated POC 
instrument. With a total of 9 predictors, the practi-
cal model developed in the current study represents a 
sparse solution (ie, reduction of >150 variables to 9) 
with greater potential generalizability without sacrific-
ing any diagnostic performance. Furthermore, excellent 
model calibration performance and significant differ-
ences between the diagnostic endpoints has demon-
strated strong potential for the numerical index as a 
continuous indicator of PMOL risk. Although previ-
ous work was focused primarily on delivering binary 
results for referral decisions,11 this new work involves 
a cytopathology interface tool, which was developed to 
assist pathologists in reviewing the brush cytology test 
results, and a numerical index, thereby enabling rich 
content cellular analyses on single-cell and multicell 

Figure 5.  Diagnostic models for the oral epithelial dysplasia (OED) spectrum. Results are shown for the cross-validated clinical 
algorithms for benign versus dysplasia (model 2|3), mild versus moderate dysplasia (model 3|4), low versus high risk (model 4|4), 
moderate versus severe dysplasia (model 4|5), healthy control (no lesion) versus malignant (model 0|6), and benign dysplasia versus 
malignant (model 2|6) models. Model responses for each subject were averaged over all biomarker assays to inform diagnostic 
performance. The area under the curve (AUC), sensitivity, and specificity are shown as the mean and 95% CI values for the cross-
validated test set.
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Figure 6.  The cytopathology interface tool provides pathologists with cloud access to test results summaries and detailed (A) data 
visualizations, (B) scatter plots, and (C) histograms for >150 different cytology parameters. With this tool, pathologists can view 
all cells within the field of view, zoom in for more detail, and isolate individual cells of interest. L indicates lone nuclei; M, mature 
squamous cells; NC, nuclear-cytoplasmic ratio; S, small round cells; U, unknown type; W, leukocytes; WBC, white blood cell.
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levels. This interface enables the pathologist to access 
data stored on cloud-based services, view results sum-
maries, explore cytology data through data visualization 
tools, and generate a report that provides recommenda-
tions. Accurate diagnostic models spanning the entire 
OED spectrum also have demonstrated the potential 
for the POCOCT to be used for multiple applications, 
such as screening PMOLs in primary care and the sur-
veillance of patients with a history of OED and OSCC 
in secondary or tertiary care settings.

Although light-based adjuncts offer clinicians a 
new perspective with which to view a lesion at the POC, 
to the best of our knowledge their diagnostic useful-
ness remains unproven.5 Rashid and Warnakulasuriya 
reviewed the performance of light-based adjuncts in 
discriminating between low-risk and high-risk lesions 
(VELscope [Apteryx Imaging; Akron, Ohio] [sensitiv-
ity/specificity: 30%-100%/15%-100%], ViziLite Plus 
[Zila Pharmaceuticals, Phoenix, Arizona] [sensitivity/

specificity: 0%-100%/0%-78%], and Microlux DL 
[Addent Inc, Danbury, Connecticut] [sensitivity/speci-
ficity: 78%/71%]) and concluded that there was insuf-
ficient evidence to validate their efficacy as screening 
adjuncts.31 Despite the numerous adjunctive tests cur-
rently available to assist in the diagnosis of PMOLs, to 
the best of our knowledge only cytology has demon-
strated potential as a surrogate for gold-standard histo-
pathology.32 Several commercial cytopathology services 
currently exist, including OralCDx (CDx Diagnostics 
Inc, Suffern, New York), OralCyte (ClearCyte 
Diagnostics Inc, Bellevue, Washington), Cyt ID 
(Forward Science, Houston, Texas), and ClearPrep OC 
(Resolution Biomedical, Tustin, California). OralCDx, 
for example, provides an oral brush sample collection 
kit for their BrushTest.33 Despite the ease of collection, 
samples need to be shipped to a commercial laboratory 
for analysis, resulting in delays between sample collec-
tion and test results. Furthermore, the test often returns 

Figure 7.  Oral cytopathology test results. The algorithm result is a numerical index between 0 and 100 with a cutoff value of 36 
that distinguishes benign and dysplasia/malignant (“atypical”) lesions (left). Other informative cytopathology results are shown 
on a reference range, including total cell counts, cell phenotype distributions, mean values for the nuclear-cytoplasmic (NC) ratio, 
molecular biomarker fluorescence intensity, and cell circularity. Images and outlines of the cells are provided for additional test 
context (right). afu indicates arbitrary fluorescence units.
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an ambiguous “atypical” result for which the positive 
predictive value for dysplasia or carcinoma has been  
determined to be only 30% to 40%.34 In addition, prior 
studies of cytology adjuncts demonstrated methodolog-
ical gaps by performing only matched gold-standard  
histopathology on a subset of lesions with a higher 
index of suspicion for malignancy, and not for lesions 
with a lower index of suspicion, which frequently are 
encountered in primary care settings.35,36 A clinically 
validated POC cytology service capable of distinguish-
ing the degree of OED in PMOL and stratifying the 
risk of malignant progression as a numerical index in 
near real time would fulfill a significant unmet need, 
mitigating unnecessary referrals to experts, leading to a 
more efficient process in surveillance clinics, and reduc-
ing the patient distress related to waiting for test results.

One limitation of the current study was that pre-
vious studies of the POCOCT, and cytology adjuncts 
in general, primarily focused on PMOL evaluation in 
secondary care settings in which the prevalence of dys-
plastic and malignant lesions may be substantially higher 
than in the primary care setting. In addition, although 
expert clinicians in secondary and tertiary care settings 
have extensive training and experience in the recognition 
and risk stratification of PMOLs, primary care clinicians 
may have difficulty distinguishing PMOLs from nor-
mal/nonneoplastic lesions. Thus, the POCOCT tech-
nology may potentially have a larger impact in primary 
care settings, in which there is a strong need to accurately 
interrogate the PMOLs detected there and generate a  
dichotomous outcome to indicate whether referral of 
patients to higher care settings for expert evaluation and 
possible biopsy is required and if such referral should be 
urgent.

The current study has provided a key step toward 
the development of new tools that could pave the way 
for new capabilities in the area of “precision lesion di-
agnostics.” Helping to push forward this theme, we 
have demonstrated the usefulness of temporal changes 
in the numerical index in a pilot study of patients with 
Fanconi anemia.13 These efforts demonstrated strong 
potential for patient-specific temporal changes in the 
lesion numerical index to track early signs of disease 
for this high-risk population. Plans currently are in 
place to: 1) evaluate the POCOCT's precision lesion 
diagnostic capabilities through a prospective longitu-
dinal study of malignant transformation and cancer 

recurrence; and 2) move the POCOCT into a clinical 
trial to assess its diagnostic performance versus routine 
care in primary care clinics.

Conclusions

The results of the current study have demonstrated the 
usefulness of a POC-amenable cytology platform that has 
the potential to screen and monitor oral lesions across 
the entire diagnostic spectrum of OED. Cell phenotype 
distributions provided additional information in the  
assessment of PMOL. Furthermore, a practical model 
comprised of patient information, lesion characteristics, 
and cell types from cytology demonstrated performance 
characteristics similar to those of more complicated mod-
els that have been developed previously. Cytopathology 
software may assist expert pathologists and nonexpert care 
providers in reviewing and understanding the brush cytol-
ogy test results. We developed data visualization tools to 
provide high-content cellular analyses on single-cell and 
multicell levels with full transparency of test results data 
for pathologists. In addition, oral cytopathology results 
summarized the test's most important predictors through 
indications of potential lesion progression for care provid-
ers and patients. Along with recently developed instru-
mentation and cartridges, this simple and sensitive system 
could provide noninvasive triage for PMOLs detected in 
primary, secondary, and tertiary care settings.

Future work may expand the use of molecular 
biomarkers and explore the identification of additional 
rare cell phenotypes to further improve performance. 
Future clinical studies also may be directed to deter-
mine whether brush cytology could enable a wider 
sampling of large/multifocal lesions compared with 
incisional biopsies via multiple site-precise samplings, 
the effect of inflammation on the cytological analysis, 
whether the system can identify candida and distin-
guish clinical leukoplakia from neoplastic versus non-
neoplastic conditions, and its placement in existing 
monitoring algorithms for PMOLs. Clinical trials are 
needed to assess the POCOCT's ability to identify ear-
ly-stage cancer compared with existing protocols and to 
validate the POCOCT as a substitute for biopsy. Future 
publications will describe and validate the integrated 
POC hardware (ie, instrument, cartridge, and assay). 
To accelerate the translation and expand the adoption 
of the POCOCT platform, a cytopathology service for 
secondary and tertiary care oral cytology applications 
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currently is in development. Scaling and distribution of 
this versatile cytology approach is now underway with 
the potential to serve diagnostic and surveillance appli-
cations in primary, secondary, and tertiary care settings.
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