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Abstract
In the era of precision medicine, novel designs are developed to deal with flexible clin-

ical trials that incorporate many treatment strategies for multiple diseases in one trial

setting. This situation often leads to small sample sizes in disease-treatment combi-

nations and has fostered the discussion about the benefits of borrowing of external or

historical information for decision-making in these trials. Several methods have been

proposed that dynamically discount the amount of information borrowed from histor-

ical data based on the conformity between historical and current data. Specifically,

Bayesian methods have been recommended and numerous investigations have been

performed to characterize the properties of the various borrowing mechanisms with

respect to the gain to be expected in the trials. However, there is common understand-

ing that the risk of type I error inflation exists when information is borrowed and many

simulation studies are carried out to quantify this effect. To add transparency to the

debate, we show that if prior information is conditioned upon and a uniformly most

powerful test exists, strict control of type I error implies that no power gain is possible

under any mechanism of incorporation of prior information, including dynamic bor-

rowing. The basis of the argument is to consider the test decision function as a func-

tion of the current data even when external information is included. We exemplify

this finding in the case of a pediatric arm appended to an adult trial and dichotomous

outcome for various methods of dynamic borrowing from adult information to the

pediatric arm. In conclusion, if use of relevant external data is desired, the require-

ment of strict type I error control has to be replaced by more appropriate metrics.

K E Y W O R D S
Bayesian dynamic borrowing of information, evidence synthesis, frequentist error control, historical infor-

mation, robust prior

1 INTRODUCTION

Borrowing of information from an external data source to inform inference in a current trial is gaining popularity in situa-

tions where only small samples are available for practical or ethical reasons. In this context, borrowing of information is often

also referred to as evidence synthesis or extrapolation, where external data could be historical data or any source of codata. The
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present work is motivated by a trial in precision medicine in which adults with a specific molecular tumor profile are treated with

targeted therapy and response to therapy is assessed. The population of children with this specific molecular profile is too small

to warrant a separate pediatric trial. This motivates the implementation of a pediatric stratum in the adult trial and the setting

suggests that information from the adult trial should be used for the pediatric stratum as external information. Several approaches

have been proposed that dynamically discount the amount of information borrowed from external data based on the discrepancy

between the external and current data (also known as prior-data conflict). These include Bayesian dynamic borrowing methods

such as hierarchical models, adaptive power priors, and robust mixture priors, and frequentist approaches such as test-then-pool.

For comprehensive overviews, see, for example, Viele et al. (2014) and Wadsworth, Hampson, and Jaki (2018). The rationale for

using such dynamic borrowing mechanisms is often given by the desire to take into account external information only when it

improves inference. However, it seems to be hidden knowledge in the Bayesian community that no power gain is possible when

type I error needs to be controlled, which has been stated before by, for example, Psioda and Ibrahim (2018): “If one wishes to

control the type I error rate in the traditional frequentist sense, all prior information must be disregarded in the analysis.” These

authors also give a formal proof in case of the one-sample one-sided test of a normal endpoint in the context of power priors

with fixed power parameter, that is, a situation where the same amount of prior information is incorporated independent of the

data. Similarly, Grieve (2016), again in the context of constant borrowing of information, acknowledges, referring to FDA and

CDRH (2010): “[...] requiring strict control of the type I error results in 100% discounting of the prior information. [...] This [...]

is important in the context of the remark in the FDA’s Bayesian guidance that ‘it may be appropriate to control the type I error

at a less stringent level than when no prior information is used’. I would argue that the FDA’s remark is recognition of this phe-

nomenon and an endorsement of a less strict control of type I error [...],” see also Pennello and Thompson (2007) for additional

insight. Interest in comparison of operating characteristics of dynamic borrowing approaches has led to several recent compre-

hensive simulation studies on possible gains with respect to power (see, e.g., Cuffe, 2011; Dejardin et al., 2018; Gamalo-Siebers

et al., 2017; van Rosmalen, Dejardin, van Norden, Löwenberg, & Lesaffre, 2018), but there appears to be no definite answer.

The aim of our study is to clarify why borrowing of information cannot lead to an increased power while strictly controlling

type I error. This can be, maybe even somewhat trivially, proven by resorting to the framework of uniformly most powerful

(UMP) testing. The calibration of Bayesian procedures, that is, the reliability of Bayesian probability statements under repeated

sampling, has been previously investigated: we refer, for example, to Rubin (1984) for a discussion on posterior intervals cover-

age; moreover, for example, Lehmann (1986) and Berger (1985) provide a decision-theoretic view on the relationship between

frequentist and Bayesian test decisions. However, an easily accessible reference addressing the incorporation of historical infor-

mation in the context of UMP testing seems to be missing. In case of borrowing of information by a constant amount, the finding

may be not very surprising. However, it may feel counterintuitive in case of dynamic borrowing of information. Inclusion of prior

information may always be understood as adding additional samples, for example, from a historical trial. Dynamic borrowing of

information aims at adapting the number of added external samples depending on the discrepancy between external and current

data. Thus, intuition may suggest that power may be increased (where prior information and the true parameter value generating

the current data are close), while still controlling type I error (where prior and current true parameter are disparate). However,

as it will be shown, the apparent advantage vanishes when accounting for the sampling variability of the current data (while

external data have been obtained in the past and hence is fixed). The result primarily follows from clarifying that the decision

criterion of any decision rule that borrows external information can be viewed in terms of a decision rule that only depends on

the current data, whereas the external information is fixed upfront.

We state our finding in very general terms in Section 2. To describe it in the Bayesian context, we show a general reformulation

in Subsection 2.2. In Section 3, we show that our argument holds for typical situations encountered in clinical trials settings.

In Section 4, we use as a very simple situation a one-sided comparison in a one-arm trial evaluating a dichotomous endpoint

and investigate a number of Bayesian and also a frequentist method for borrowing information to illustrate the general proof. To

conclude, we discuss in Section 5 the implications and justifications under which circumstances borrowing of information can

be beneficial.

2 BORROWING OF INFORMATION WHEN A UNIFORMLY MOST
POWERFUL TEST EXISTS

2.1 General framework
We first consider the general scenario in which a trial is performed to evaluate an endpoint and a UMP test exists. Assume that

the endpoint has probability density function 𝑓𝜃(𝑥) and the hypotheses investigated in the trial is one-sided, without loss of

generality,

𝐻0 ∶ 𝜃 ≤ 𝜃0 versus 𝐻1 ∶ 𝜃 > 𝜃0.
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Let 𝐷1 = {𝑋1,… , 𝑋𝑛1
} be the random variables from which the observations of the current trial, 𝑑1 = {𝑥1,… , 𝑥𝑛1

}, are

obtained. Note that capital letters indicate random variables, whereas small letters indicate the observations from these ran-

dom variables. If the trial is evaluated, the test decision will be performed by the UMP test

𝜑UMP(𝑑1) =
⎧⎪⎨⎪⎩
1 if 𝑇 (𝑑1) > 𝑡0,

𝛾 if 𝑇 (𝑑1) = 𝑡0,

0 if 𝑇 (𝑑1) < 𝑡0,

where 𝑇 (𝑥1,… , 𝑥𝑛1
) = 𝑇 (𝑑1) is a sufficient test statistic for 𝑓𝜃(𝑥) and 𝑡0 is chosen such that E𝜃0

[𝜑UMP(𝑇 (𝐷1))] = 𝛼, that is,

the test controls (frequentist) type I error, where 𝛼 denotes the significance level of the test. For a given 𝑑1, the value of the test

function 𝜑UMP(𝑑1) corresponds to the probability to reject 𝐻0 given 𝑑1 is observed. On the boundary 𝑇 (𝑑1) = 𝑡0, the decision

is randomized with probability 𝛾 . For continuous distributions, this has no practical implication, but for discrete distributions,

randomization is unacceptable in practice. Hence, we will adopt the convention to set 𝛾 to 0, which implies that the level of the

test may not fully attain the nominal significance level, that is, E𝜃0
[𝜑UMP(𝑇 (𝐷1))] ≤ 𝛼. Thus, the UMP test can be written as

𝜑UMP(𝑑1) =

{
1 if 𝑇 (𝑑1) ∈ 

0 if 𝑇 (𝑑1) ∉ 
(1)

with the set  = (𝑡0,∞) in this one-sided test.

Now assume that external information 𝑑0 is available, which is independent of 𝑑1, and should be used to inform the test

decision for the current trial. This external information 𝑑0 is not random but fixed, and a decision rule is formulated based on the

observed results of the current trial, 𝑑1, that will again depend on the result of the sufficient test statistic 𝑇 (𝑑1). Incorporation

of the external information, 𝑑0, is achieved by modifying the critical region of the decision rule, 𝑑0
, according to 𝑑0. Hence, a

test function 𝜑B is identified such that

𝜑B(𝑑1; 𝑑0) =

{
1 if 𝑇 (𝑑1) ∈ 𝑑0

0 if 𝑇 (𝑑1) ∉ 𝑑0
.

(2)

As the external information 𝑑0 is fixed, 𝜑B(., 𝑑0) is, in fact, a function only of the current data 𝑑1.

If strict type I error control is required, then 𝑑0
will be selected as the largest set 𝑑0

such that E𝜃0
[𝜑B(𝐷1; 𝑑0)] =

E𝜃0
[𝜑B(𝐷1;𝐷0)|𝐷0 = 𝑑0] ≤ 𝛼. Note that for continuous distributions, 𝑑0

is selected such that 𝛼 will be reached, but for dis-

crete distributions, the significance level may not be attained. As the UMP test for 𝑑1, 𝜑UMP, exists, the power of 𝜑B cannot

exceed that of the UMP test, that is, E𝜃[𝜑B(𝐷1; 𝑑0)] ≤ E𝜃[𝜑UMP(𝐷1)] for all 𝜃 > 𝜃0. This shows that no power gain can be

expected from borrowing of external information when strict control of type I error rate is required. This argument is true for

any borrowing mechanism, even when borrowing from external information is discounted in case of conflict between external

and current data.

Note that the key point of the argument is the difference between the conditional expectation E𝜃[𝜑B(𝐷1;𝐷0)|𝐷0 = 𝑑0] and

the unconditional expectation E𝜃[𝜑B(𝐷1;𝐷0)]. If the external information was random as well and if it was generated from the

same distribution as the current data, then a power gain can be achieved even when strict control of type I error rate is required.

However, this is not a situation that generally occurs in practice because it would mean that 𝐷1 and 𝐷0 are evaluated in a pooled

analysis as coming from the same trial.

2.2 Bayesian borrowing of information
The formulation of the test function 𝜑B in (2), and specifically of the critical region 𝑑0

is very general. If borrowing of external

information is achieved by Bayesian methods, the decision function 𝜑B(𝐷1; 𝑑0) for the one-sided test is given by

𝜑B(𝑑1; 𝑑0) =

{
1 if P(𝜃 > 𝜃0|𝑑1; 𝑑0) > 𝑐𝑑0

0 if P(𝜃 > 𝜃0|𝑑1; 𝑑0) ≤ 𝑐𝑑0
,

(3)

where the posterior is induced by a prior that incorporates the external information 𝑑0 (this is indicated here by “P(.|.; 𝑑0)”),

and 𝑐𝑑0
∈ [0, 1). The posterior can be viewed as a function of the sufficient statistics, P(𝜃 > 𝜃0|𝑑1; 𝑑0) = 𝑔𝑑0

(𝑇 (𝑑1)) (see, e.g.,

Sahu & Smith, 2006). If the function 𝑔𝑑0
is strictly monotone, 𝑐𝑑0

can be determined such that 𝑔−1
𝑑0
(𝑐𝑑0

) = 𝑡0 in (1). Hence,
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𝑔𝑑0
(𝑇 (𝑑1)) > 𝑐𝑑0

corresponds to the condition 𝑇 (𝑑1) ∈ 𝑑0
in (2), and therefore, 𝜑B and 𝜑UMP coincide. Strict monotonicity

can, however, often not been shown in general. If 𝑔𝑑0
is not strictly monotone, then it may occur that no 𝑐𝑑0

can be determined

such that 𝜑B = 𝜑UMP. In this case, either 𝜑B does not control type I error, that is, there is 𝜃 ≤ 𝜃0 with E𝜃[𝜑B(𝑇 (𝐷1))] > 𝛼, or

it does control type I error but there exists 𝜃 > 𝜃0 with E𝜃[𝜑B(𝐷1; 𝑑0)] < E𝜃[𝜑UMP(𝐷1)]. In Section 4, the selection of 𝑑0
will

be illustrated for different methods of borrowing of external information. For Bayesian borrowing methods, monotonicity of 𝑔𝑑0
will be discussed and, where appropriate, 𝑐𝑑0

will be determined such that 𝜑B and 𝜑UMP coincide.

3 EXAMPLES OF SITUATIONS IN WHICH UMP TESTS EXISTS

For extensive and comprehensive discussions about testing problems for which UMP tests exist, see Lehmann (1986). Here, we

report a few situations in which UMP tests exist that we consider most relevant for the application in clinical trials. A general

requirement is that the endpoint has probability density function 𝑓𝜃(𝑥) with monotone likelihood ratio in the sufficient statistics

𝑇 (𝑥). This is valid if the endpoint belongs to a one-parameter exponential family, that is, its probability density function has the

form

𝑓𝜃(𝑥) = 𝑔(𝜃)ℎ(𝑥) exp(𝜂(𝜃)𝑇 (𝑥)),

and if 𝜂(𝜃) is strictly monotone. The most common distributions such as normal with known variance and binomial with fixed

number of trials are one-parameter exponential families, but so do also the exponential, Poisson, as well as various much less

common clinical trial outcomes.

For one-group one-sided hypotheses, but also for certain two-sided hypotheses of the form 𝐻0 ∶ 𝜃 ≤ 𝜃1 or 𝜃 ≥ 𝜃2 with

𝜃1 < 𝜃2 versus 𝐻1 ∶ 𝜃1 < 𝜃 < 𝜃2, Lehmann (1986) shows that UMP tests exist. Such two-sided hypotheses are important to

show the equivalence of treatments in the context of clinical trials, that is, to show that two treatments are not too different in

characteristics. The UMP tests for these two-sided hypotheses can be formulated in the same general formula (1) with criti-

cal region  appropriately adjusted. For certain two-group one-sided comparisons, UMP tests exist as well, for example, for

comparison of two means of normal distributions with identical and known variance, that is, the two-sample normal test.

For two-sided hypotheses of the type 𝐻0 ∶ 𝜃1 ≤ 𝜃 ≤ 𝜃2 versus 𝐻1 ∶ 𝜃 ≤ 𝜃1 or 𝜃 ≥ 𝜃2 or the hypothesis 𝐻0 ∶ 𝜃 = 𝜃0 versus

𝐻1 ∶ 𝜃 ≠ 𝜃0, UMP tests do not exist in general. In these situations, however, often UMP-unbiased tests exist and have the form

(1) with appropriately adjusted rejection region , that is, this test is UMP among unbiased tests. Unbiasedness requires that

E𝜃[𝜑B(𝐷1; 𝑑0)] ≥ 𝛼 for 𝜃 from the alternative and that type I error is controlled, that is, E𝜃0
[𝜑B(𝐷1; 𝑑0)] ≤ 𝛼 for 𝜃 from the

null hypothesis. Requiring that the null hypothesis is more easily rejected when it is false than when it is true seems, however, a

reasonable condition and should be fulfilled in practice. The argument given in Section 2 therefore can be extended to situations

in which UMP do not, but UMP-unbiased tests exist. Important situations for which UMP unbiased tests exist also include the

(one-sided or two-sided) comparison of two groups of Poisson and binomial variables (again see Lehmann, 1986).

4 EXAMPLE: ONE-ARM TRIAL WITH DICHOTOMOUS ENDPOINT

An intuitive exemplification of the general result shown in Section 2 is provided in the following. We consider the design of

a pediatric single-arm phase II trial with binary outcome, for example, response to treatment. The response rate considered as

uninteresting is the response rate observed in earlier trials, 𝑝0 (= 𝜃0 in the notation of Section 2). The aim of the trial is to reach

or exceed a target level of response larger than 𝑝0. Assume that information about the effect of the identical treatment is available

from a trial performed in adults. Literature suggests that external information can be used to increase power, particularly if the

amount of borrowing is adapted to the conformity of current and external information.

4.1 Planning the pediatric arm with stand-alone evaluation
The number of responders 𝑅ped in the pediatric trial of size 𝑛ped follows a binomial distribution with response rate 𝑝ped:

𝑅ped|𝑝ped ∼ Bin(𝑛ped, 𝑝ped).

As a stand-alone trial, the pediatric trial is designed to test 𝐻0 ∶ 𝑝ped ≤ 𝑝0 against the alternative 𝐻1 ∶ 𝑝ped > 𝑝0, controlling

the significance level by 𝛼, for example, 𝛼 = .05. We consider here a simple single-stage design and present it in a frequentist
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and in a Bayesian approach. For illustration purposes, the number of pediatric patients in the trial is assumed to be 𝑛ped = 40
and the null hypothesis value is assumed to be 𝑝0 = .2.

4.1.1 Frequentist design of the stand-alone pediatric trial
As the binomial distribution with fixed number of trials is a one-parametric exponential family, a UMP level 𝛼 test exists. For

𝑛ped = 40 and 𝛼 = .05 the test decision is given by

𝜑UMP(𝑟ped) =

{
1 if 𝑟ped > 12, or, equivalently, 𝑟ped ≥ 13
0 if 𝑟ped ≤ 12.

(4)

Due to the discreteness of the distribution, the significance level of .05 is not attained, and the actual type I error rate is 𝛼 = .043.

4.1.2 Bayesian design of the stand-alone pediatric trial
In the Bayesian framework, we assume a beta distribution as prior of the response rate 𝑝ped:

𝜋(𝑝ped) = Be(𝑠1, 𝑠2) with 𝑠1, 𝑠2 > 0,

choosing, for example, Jeffrey’s prior with 𝑠1 = 𝑠2 = .5.

Several options exist for the evaluation of treatment efficacy and we consider here a decision rule based on the posterior

distribution of response probability: 𝐻0 will be rejected if

P(𝑝ped > 𝑝0|𝑟ped, 𝑛ped) ≥ 𝑐. (5)

The critical boundary 𝑐 is chosen such that the desired type I error rate is controlled. In this specific situation, selection of 𝑐 = .95
ensures that type I error is controlled by 𝛼 = 5% (see, e.g., Kopp-Schneider et al., 2019).

The decision rule on the basis of posterior probability (5) can be converted to a decision rule on the basis of number of

responders 𝑟ped among 𝑛ped treated children by use of what was called a “boundary function” in Kopp-Schneider et al. (2019).

This is achieved by checking for every potential outcome 𝑟ped whether P(𝑝ped > 𝑝0|𝑟ped, 𝑛ped) exceeds 𝑐. The smallest integer

for which this is the case is the critical number 𝑏 and 𝐻0 will be rejected if

𝑟ped ≥ 𝑏. (6)

In case of 𝑛ped = 40 and 𝑐 = .95, the critical number of responders to reject 𝐻0 is 𝑏 = 13. Hence, the Bayesian decision rule

based on (5) is identical to the frequentist decision rule for the UMP test given in (4). The correspondence between the decision

rule in terms of posterior probability and in terms of number of responders is illustrated by showing the posterior probability

P(𝑝ped > 𝑝0|𝑟ped, 𝑛ped) as a function of the number of responders 𝑟ped in Figure 1.

The posterior probability is a monotonically increasing function of the number of responders (see Kopp-Schneider et al.,

2019), irrespective of the specific beta prior distribution. For this reason, the correspondence of the decision rule in terms of

posterior probability and the decision rule in terms of number of responders holds in general for reasonable 𝑐 that can be reached

for the specific prior distribution (note that P(𝑝ped > 𝑝0|𝑟ped = 𝑛ped) may be smaller than 1 for an informative prior with large

mass below 𝑝0). This correspondence is given by:

For every critical boundary 𝑐 ∈ [0, P(𝑝ped > 𝑝0|𝑟ped = 𝑛ped)], there exists a unique critical number 𝑏 ∈ {0, 1,… , 𝑛ped} with

P(𝑝ped > 𝑝0|𝑟ped, 𝑛ped) ≥ 𝑐 ⇐⇒ 𝑟ped ≥ 𝑏. (7)

Figure 1 shows that the rejection region can be either read from the 𝑥- or the 𝑦-axis. The power function for the test decision

can hence be written in two equivalent ways:

Power = 𝑓 (𝑝true) = E𝑝true
[𝜑UMP(𝑟ped)]

=
𝑛ped∑

𝑟ped=0
P(𝑅ped = 𝑟ped|𝑝true)𝟏{𝑟ped≥𝑏}

=
𝑛ped∑

𝑟ped=0
P(𝑅ped = 𝑟ped|𝑝true)𝟏{P(𝑝ped>𝑝0|𝑟ped,𝑛ped)≥𝑐}. (8)
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F I G U R E 1 Posterior probability

P(𝑝ped > 𝑝0|𝑟ped, 𝑛ped) as a function of the number of

responders 𝑟ped

F I G U R E 2 All possible power functions for

UMP-tests in the situation 𝑛ped = 40, varying the

threshold 𝑏 for the observed number of responders,

or equivalently the threshold 𝑐 for the posterior

probability. The values of 𝑝true = .2 and 𝛼 = .05 are

indicated as vertical and horizontal gray lines and the

power curve for 𝑏 = 13, corresponding to the 5%
level UMP test, is indicated in dashed red

For every threshold in terms of number of responders, 𝑏, there exists one power function. All possible power functions for UMP

tests in 𝑛ped = 40 with varying type I error rate 𝛼, and correspondingly varying threshold 𝑏 or 𝑐, are shown in Figure 2, with the

power function for 𝑏 = 13 highlighted as dashed red line.

4.2 Planning the pediatric arm with borrowing from external information
Let us assume that information is available from a trial in 𝑛adu adults in a very similar clinical situation, that is, with patients

with the same disease and the same treatment, and assume that 𝑟adu responders were observed in this trial. Thus, 𝑅adu|𝑝adu ∼
Bin(𝑛adu, 𝑝adu) and in terminology of Section 2, 𝑑0 = {𝑥1,… , 𝑥𝑛adu

} with 𝑇 (𝑑0) = 𝑟adu. Note, however, that realizations 𝑟adu of

𝑅adu are observed and fixed before the pediatric trial. For simplicity, abbreviate 𝑑0 = {𝑟adu; 𝑛adu}. Information from the adult

trial is borrowed with the hope to increase the power of the pediatric trial. Many approaches are available for including the

external (adult) information; for reviews, see, for example, Viele et al. (2014) and Rosmalen et al. (2018). A natural way to

include the external information is to use a Bayesian design for the pediatric trial and replace the weakly informative prior
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T A B L E 1 Posterior probability P(𝑝ped > 𝑝0|Data) without borrowing and with different borrowing methods for the relevant range of 𝑟ped

values. For the power prior, for the robust mixture prior approach and for the hierarchical model, external information was 𝑑0 = {12; 40}. For

extreme borrowing, external information was 𝑑′
0 = {30; 100}

𝒓ped 9 10 11 12 13 14 15 16
Without borrowing 0.6657 0.7898 0.8799 0.9377 0.9707 0.9875 0.9951 0.9983

Fixed power parameter, 𝛿 = .5 0.8344 0.8987 0.9421 0.9690 0.9845 0.9928 0.9968 0.9987

EB power parameter 0.9156 0.9490 0.9708 0.9841 0.9918 0.9960 0.9981 0.9992

Robust mixture prior, 𝑤 = 0.5 0.8678 0.9225 0.9568 0.9772 0.9886 0.9946 0.9976 0.9990

Hierarchical model 0.7748 0.8624 0.9225 0.9585 0.9795 0.9910 0.9961 0.9986

Extreme borrowing 0.6657 0.7898 0.8799 0.9977 0.9707 0.9875 0.9951 0.9983

𝜋(𝑝ped) by an informative prior obtained as posterior distribution from the adult trial, that is, 𝜋(𝑝ped) = 𝜋(𝑝ped|𝑑0) and hence

use P(𝑝ped > 𝑝0|𝑟ped, 𝑛ped; 𝑟adu, 𝑛adu) for decision. Note that P(𝑝ped > 𝑝0|𝑟ped, 𝑛ped; 𝑟adu, 𝑛adu) equals 𝑔𝑑0
(𝑇 (𝑑1)) as introduced in

Section 2.2. For the rest of this section, we assume that the adult trial was performed with 40 patients of which 12 responded to

treatment, that is, 𝑑0 = {12; 40}, corresponding to an observed response rate of 𝑝̂adu = .3 and a posterior mean of 12.5∕41 = .305
induced by Jeffrey’s prior.

4.2.1 Borrowing from the adult trial using the power prior approach
In the power prior approach, the prior for the pediatric trial is proportional to the likelihood of the external data 𝐿(𝑝; 𝑑0) raised

to the power of a weight parameter 𝛿 ∈ [0, 1], multiplied by the initial prior

𝜋(𝑝|𝑑0, 𝛿) ∝ 𝐿(𝑝; 𝑑0)𝛿𝜋(𝑝).

The weight parameter determines how much of the external information is incorporated. Extreme cases are 𝛿 = 0, when infor-

mation from 𝑑0 is discarded and 𝛿 = 1, when 𝑑0 is completely taken into account. For developments of the power prior approach,

see, for example, Duan, Ye, and Smith (2006); Gravestock and Held (2017); Ibrahim and Chen (2000); Ibrahim, Chen, Gwon,

and Chen (2015); Neuenschwander, Branson, and Spiegelhalter (2009) and Nikolakopoulos, Tweel, and Roes (2017).

Fixed power parameter
Incorporating the adult data 𝑑0 with a fixed power parameter 𝛿 is equivalent to using an updated (beta) prior for the response rate

in the pediatric arm. The prior is hence 𝜋(𝑝ped|𝑑0, 𝛿) = Be(𝑎 + 𝛿𝑟adu, 𝑏 + 𝛿(𝑛adu − 𝑟adu)). With a choice of, for example, 𝛿 = .5
the posterior probability P(𝑝ped > 𝑝0|𝑟ped, 𝑛ped; 𝑟adu, 𝑛adu) is shown in Figure 4 as a function of the number of pediatric responders

𝑟ped. Since 𝑝̂adu = .3 > 𝑝0 = .2, the posterior probability with borrowing from adults is larger than the posterior probability

without borrowing from adults for all 𝑟ped. In this situation, P(𝑝ped > 𝑝0|𝑟ped, 𝑛ped; 𝑟adu, 𝑛adu) > 𝑐 = .95 is reached for 𝑟ped ≥

12, see Table 1. As shown in Kopp-Schneider et al. (2019), P(𝑝ped > 𝑝0|Data) is monotonically increasing for any beta prior

distribution, that is, 𝑔𝑑0
(𝑇 (𝑑1)) = P(𝑝ped > 𝑝0|𝑟ped, 𝑛ped; 𝑟adu, 𝑛adu) is monotonically increasing in 𝑟ped and the threshold can be

adjusted to control type I error: Selecting 𝑐𝑑0
= .97 in the terminology of Section 2.2 leads to P(𝑝ped > 𝑝0|𝑟ped, 𝑛ped; 𝑟adu, 𝑛adu) >

𝑐𝑑0
= .97 whenever 𝑟ped ≥ 13. Hence, if strict type I error control is required, the test function 𝜑B is given by

𝜑B(𝑑1; 𝑑0) =

{
1 if 𝑇 (𝑑1) = 𝑟ped ∈ 𝑑0

= {13,… , 40}
0 if 𝑟ped ∉ {13,… , 40},

(9)

and is obviously identical to 𝜑UMP in (4).

Adaptive power parameter
In the adaptive power prior approach, the power prior parameter 𝛿 depends on the similarity of the current and the external data,

such that 𝛿 is large when the adult and pediatric data are similar and small if they are conflicting. We follow Gravestock and

Held (2017) who propose to use an empirical Bayes (EB) approach for estimation of 𝛿(𝑟ped, 𝑛ped; 𝑟adu, 𝑛adu) that maximizes the

marginal likelihood of 𝛿. Figure 3 shows the resulting values of 𝛿(𝑟ped, 𝑛ped = 40; 𝑟adu = 12, 𝑛adu = 40) for varying 𝑟ped. Full

borrowing of the adult information is achieved when the observed pediatric response rate is close to the adult response rate of

.3, that is, for 9 to 16 pediatric responders.
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F I G U R E 3 Adaptive power parameter 𝛿

determined by empirical Bayes and posterior weight

of the robust mixture prior. Results are given for

𝑛ped = 40, adult information

𝑑0 = {𝑟adu = 12; 𝑛adu = 40}, and prior weight

𝑤 = 0.5 for the robust mixture prior approach

F I G U R E 4 Posterior probability

P(𝑝ped > 𝑝0|Data) as a function of the number of

responders 𝑟ped without external information, and

with adult information 𝑑0 = {𝑟adu = 12, 𝑛adu = 40},

using a fixed power parameter (𝛿 = .5), the EB

power parameter, a mixture prior approach with

𝑤 = 0.5, and a hierarchical model. The posterior

probability for extreme borrowing follows the one

without external information, except for 𝑟ped = 12,

where it jumps to 0.9977

The plot of the posterior probability in Figure 4 nicely reflects the discounting of external information for conflicting current

and external data. The threshold P(𝑝ped > 𝑝0|𝑟ped, 𝑛ped; 𝑟adu, 𝑛adu) > 𝑐 = .95 is reached for 𝑟ped ≥ 11, see Table 1. In case of

dynamic borrowing, the posterior probability P(𝑝ped > 𝑝0|𝑟ped, 𝑛ped; 𝑟adu, 𝑛adu) is not necessarily a monotonically increasing

function of 𝑟ped. However, in the case considered here, Table 1 and Figure 4 show that it is monotonically increasing in the

relevant range of 𝑟ped. Adjustment of the threshold to, for example, 𝑐𝑑0
= .99 leads to the rejection region 𝑟ped ≥ 13, that is,

𝑑0
= {13,… , 40}, and 𝜑B and 𝜑UMP coincide.

4.2.2 Borrowing from the adult trial using the robust mixture prior approach
Schmidli et al. (2014) among others propose the use of a robust mixture prior as convex combination of an uninformative prior

and a prior that incorporates the external information in the form

𝜋(𝑝|𝑑0, 𝑤) = 𝑤Be(𝑎𝐻, 𝑏𝐻 ) + (1 − 𝑤)Be(𝑎𝑈 , 𝑏𝑈 ),
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where 𝑎𝐻 = .5 + 𝑟adu and 𝑏𝐻 = .5 + 𝑛adu − 𝑟adu correspond to the posterior from the adult trial and 𝑎𝑈 = .5 and 𝑏𝑈 = .5 corre-

spond to Jeffrey’s prior. The posterior in this approach is a convex combination of two beta distributions with weight

𝑤̃ =
B(𝑎𝐻 + 𝑟ped, 𝑏𝐻 + 𝑛ped − 𝑟ped)

B(𝑎𝐻, 𝑏𝐻 )
𝑤

𝑐
,

where 𝑐 = 𝑤B(𝑎𝐻 + 𝑟ped, 𝑏𝐻 + 𝑛ped − 𝑟ped)∕B(𝑎𝐻, 𝑏𝐻 ) + (1 − 𝑤)B(𝑎𝑈 + 𝑟ped, 𝑏𝑈 + 𝑛ped − 𝑟ped)∕B(𝑎𝑈 , 𝑏𝑈 ) and B(., .) denotes

the beta function. The posterior weight depends on the similarity of the external and the current data, as shown in Figure 3.

The plot of the posterior probability in Figure 4 shows that borrowing achieved by the robust mixture prior approach is

between fixed and EB-adaptive power prior approach for a prior weight of 0.5. The implications for the decision P(𝑝ped >

𝑝0|𝑟ped, 𝑛ped; 𝑟adu, 𝑛adu) > 𝑐 = .95 are that the threshold is exceeded for 𝑟ped ≥ 12. Again, this can be remedied by adjusting the

threshold to, for example, 𝑐𝑑0
= .98 (see Table 1), which leads to the rejection region 𝑟ped ≥ 13, that is, 𝑑0

= {13,… , 40} and

the test function 𝜑B coincides with 𝜑UMP again.

4.2.3 Borrowing from the adult trial using a Bayesian hierarchical model
Dynamic borrowing of information from the adult trial can also be implemented using a hierarchical model. Although a hier-

archical model can be specified in the context of a beta-binomial model, we follow the more common approach and set up a

normal hierarchical model for the log-odds of response probabilities.

Thus, we assume

log

(
𝑝𝑗

1 − 𝑝𝑗

)|𝜇, 𝜏2 ∼ 𝑁(𝜇, 𝜏2), 𝑗 ∈ {adu, ped}. (10)

The heterogeneity parameter 𝜏2 controls the degree of borrowing: The model reduces to full borrowing (complete pooling) of

information from adults to children in case of 𝜏2 = 0, whereas independent inference with respect to external and current data

is given for 𝜏2 = ∞. To achieve dynamic borrowing (partial pooling), we assume a half-normal prior for 𝜏 with scale 1, which

is a common choice. Further, we assume an improper flat prior for 𝜇.

Note that equivalence of model (10) to Pocock’s bias model, commensurate priors, and power priors can be shown for situ-

ations with a single external source of information (Neuenschwander, Roychoudhury, & Schmidli, 2016) as well as to a model

that is termed a “reference model” by Röver and Friede (2018) when interest is restricted to shrinkage estimates in the pediatric

trial. In case of the latter, model (10) is rewritten such that information is only borrowed from adults to children in place of

viewing both sources as exchangeable.

The plot of the posterior probability in Figure 4 suggests that the hierarchical model performs unfavorably com-

pared to the other adaptive borrowing methods in the setting considered here. The implication for the decision P(𝑝ped >

𝑝0|𝑟ped, 𝑛ped; 𝑟adu, 𝑛adu) > 𝑐 = .95 is that the threshold is exceeded for 𝑟ped ≥ 12. Again, this can be remedied by adjusting the

threshold to, for example, 𝑐𝑑0
= .97 (see Table 1), which leads to the rejection region 𝑟ped ≥ 13, that is, 𝑑0

= {13,… , 40} and

the test function 𝜑B again coincides with 𝜑UMP.

4.2.4 Borrowing from the adult trial using test-then-pool
A frequentist approach to incorporate external information depending on commensurability of data sources is to perform a two-

stage analysis, see, for example, Viele et al. (2014). First, a hypothesis test of equal rates between the current and external data

is performed. In the second stage, current data are evaluated separately, that is, without including external data, if the hypothesis

in the first stage is rejected. If the hypothesis is not rejected, a pooled analysis is performed in the second stage.

In the current setting, for example, Fisher’s exact test is performed to test the first-stage hypothesis 𝐻𝑏
0 ∶ 𝑝ped =

𝑝adu versus 𝐻𝑏
1 ∶ 𝑝ped ≠ 𝑝adu. Since 𝑑0 is fixed, this corresponds to evaluating the 𝑝-value for every constellation of 𝑟ped and

𝑛ped − 𝑟ped. Depending on the significance level selected for testing 𝐻𝑏
0 , for example, 𝛼𝑏 = 20%, this leads to separate analysis

for 𝑟ped ∈ {0,… , 6} ∪ {19,… , 40} and pooled analysis for 𝑟ped ∈ {7,… , 18}.

In the second stage, the significance levels for separate and pooled frequentist analysis are selected. If, for example, 𝛼 = 5%
is selected in both cases and keeping in mind that 𝑏 = 13 is the decision boundary for the separate test (see (4)), 𝐻0 will be

accepted for 𝑟ped ∈ {0,… , 6} and rejected for 𝑟ped ∈ {19,… , 40}. In the pooled frequentist analysis, the decision boundary is

𝑏pooled = 23 responders of a total sample size of 𝑛ped + 𝑛adu = 80 patients. The number of adult responders contributing to this

number is fixed by 𝑟adu = 12, and hence, the second stage test only depends on 𝑟ped. Thus, 𝑟ped ≥ 23 − 𝑟adu = 11 would then
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lead to rejection of 𝐻0. Hence, with a choice of 𝛼 = 5% in the second stage, the overall procedure is associated with type I

error inflation.

However, adjustment of the second-stage test significance level for the pooled analysis to, for example, 𝛼𝑑0
= 2% would

require a decision boundary of 𝑏pooled = 25, that is, 𝑟ped ≥ 13. For the separate analysis in the second stage, 𝛼𝑑0
= 2% requires

at least 𝑟ped ≥ 14 for rejecting 𝐻0. Taking everything together, selection of 𝛼𝑏 = 20% in the first stage and 𝛼𝑑0
= 2% in separate

and pooled analysis in the second stage leads to rejecting 𝐻0 for 𝑟ped ≥ 13, that is, 𝑑0
= {13,… , 40}, hence a procedure with

type I error control but again no power gain.

4.2.5 Borrowing from the adult trial using “extreme borrowing”
To show the effect of nonmonotonicity of 𝑔𝑑0

for our argument, an “extreme” Bayesian borrowing method is considered in

which the adult information is taken into account only if the observed current and external response rates coincide exactly, that

is, 𝑝̂ped = 𝑝̂adu. For the sake of argument, we assume a much larger adult trial resulting in external information of 𝑑′
0 = {30; 100}.

The response rates of external and pediatric trial coincide for 𝑝̂ped = .3, that is, for 𝑟ped = 12. The posterior probability with and

without borrowing coincide for 𝑟ped ≠ 12, whereas the value is considerably increased with borrowing for 𝑟ped = 12, see Table 1.

With extreme borrowing from adults, the threshold 𝑐 = .95 corresponds to a rejection region 𝑑0
= {12,… , 40} and type I error

of 8.8%. The threshold can, however, be selected as 𝑐′ = .9976. This leads to a rejection region 𝑑0
= {12} ∪ {16,… , 40}

with type I error 4.7% ≤ 5%. With this rejection region, however, the power of this test is much reduced. In the terminology

of Section 2.2, this is an example of a nonmonotone function 𝑔𝑑0
and a situation in which no 𝑐𝑑0

can be identified such that

𝜑B and 𝜑UMP coincide. Obviously, such a rejection region would be inacceptable in the clinical context, as a result of 𝑟ped =
12 would result in claiming efficacy of the treatment and more pediatric responders, for example, 𝑟ped = 13, would indicate

inefficacy.

5 CONCLUSIONS AND DISCUSSION

For scenarios in which a UMP- or UMP-unbiased test exists, we have shown in general that borrowing from external information

cannot improve power while controlling type I error, even when borrowing is adapted to prior-data conflict. For any general

setting, the reason for this is that when external information is available, it is not random but is used as fixed information. The

rejection region of the test decision rule is modified to adapt for the external information and the test is performed on basis

of the (random) current data 𝑑1. We have exemplified this general statement in a setting where a one-sample one-sided test

for a dichotomous endpoint is performed. Different borrowing approaches lead to an increase in type I error when the original

Bayesian decision rule P(𝑝 > 𝑝0|Data) > 𝑐 was applied. For “reasonable” Bayesian borrowing methods such as the power prior,

the robust mixture prior, and the hierarchical model approach, modification of the threshold 𝑐 remedied the type I error infla-

tion but converted the Bayesian decision rule to the UMP test and hence no power was gained. For the frequentist two-stage

test-then-pool approach, type I error was inflated as well and could be remedied by selecting a more stringent significance level

for the pooled analysis. In an artificial extreme borrowing method, it was shown that the threshold 𝑐 can be modified to control

type I error but that this leads to a power decrease. Note that our argument was based on converting the decision rule used

for borrowing external information to a decision rule in terms of rejection region for the current data. We argue that applica-

tion of this approach provides additional insights into the frequentist operating characteristics of the borrowing method under

investigation.

In the selected exemplary situation, the external adult information was chosen to be in the alternative but close to the null

hypothesis region to illustrate the effect of type I error inflation most strikingly. If the external adult information is more extreme,

that is, “far” in the null hypothesis or “far” in the alternative, the effect of type I error inflation will be less obvious, at least for

dynamic borrowing, but in these cases, it is evident that no power can be gained because current data carry enough information

by themselves and lead to acceptance or rejection of 𝐻0 without external borrowing.

Section 3 listed situations in which UMP- or UMP-unbiased tests exist. Hence, our finding not only holds for the situation

of one-arm trials, but it is also true for two-arm trials. In the case of two arms, borrowing of external information can be to

one or to both arms, and it can include external information from any source, including several historical trials, for example,

using a meta-analytic predictive (MAP) prior (Neuenschwander, Capkun-Niggli, Branson, & Spiegelhalter, 2010) or power prior

(Gravestock & Held, 2019). When a UMP-unbiased test but not a UMP test exists, for example, the two-sided test situations

mentioned in Section 3, borrowing of external information either leads to type I error inflation or to a biased test, as illustrated

in the Appendix.
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We believe that the present work provides a closure to the discussion, which has received increasing attention in the last few

years as documented by several simulation studies, on whether adaptive borrowing mechanisms can offer any advantages in

terms of error rates when UMP tests exist. We have proven that approaches adaptively discounting prior information do not

offer any advantage over a fixed amount of borrowing, or no borrowing at all. It can be argued that the shape of the power

curve is always the same, including the trade-off between type I and type II error: If there is little type I error inflation, there

is little power gain; for large power gain, we have to be comfortable with a possible large type I error inflation. In any case,

the maximal power gain is determined by the UMP test corresponding to the inflated type I error. There exists also a notion

by which prior information can be equated to a certain number of samples (the prior effective sample size), but, again, as

long as prior information is conditioned upon, such samples cannot contribute to a simultaneous improvement of type I error

and power.

Should then borrowing completely be discouraged? Certainly not. We just have to give up the desire for strict type I error

control. In the FDA’s recent draft guidance about the use of adaptive designs for clinical trials of drugs and biologics (see FDA,

2018), the concept of Bayesian adaptive designs is discussed. It is clarified that “any clinical trial whose design is governed by

type I error probability and power considerations is inherently a frequentist trial.” They acknowledge that “controlling type I

error at a conventional level in cases where formal borrowing is used generally limits or completely eliminates the benefits of

borrowing.” Still, the FDA does not prohibit designs that borrow information from external sources but encourages discussion

with its review division at an early stage, hence knowingly allowing for type I error inflation. Similar statements are given in

FDA and CDRH (2010), see also Campbell (2013) for an insightful paper on FDA’s regulatory view on Bayesian designs of

clinical trials. Examples exist where use of external data for confirmatory trials is explicitly accepted by FDA, even though type

I error rate can increase to 100%. French, Wang, Warnock, and Temkin (2017) report an analysis of epilepsy therapy studies.

The specific setting in this medical area necessitates the use of data as historical control for monotherapy approval studies, and

FDA accepted the concept of historical controls in this setting. Another example is the FDA guideline for noninferiority (NI)

trials (see FDA, 2016), where they state that “In the absence of a placebo arm, knowing whether the trial had assay sensitivity

relies heavily on external (not within-study) information, giving NI studies some of the characteristics of a historically controlled

trial.” While the European Medicines Agency (EMA), for example, EMA CHMP (2018), shows openness to Bayesian methods,

it does not explicitly give guidance on how to deal with type I error inflation.

Type I error inflation can indeed be motivated by recognizing that type I and type II errors may have different implicit costs

in different situations. Due to their intrinsic trade-off, approaches have been proposed to define an optimal type I error value

based on the relative importance of each (see Grieve, 2015, and references therein). The discussion is naturally linked to the

fully Bayesian approach, where the parameter generating the data is considered, in turn, a random variable to which a prior

distribution is assigned. In this framework, decision-theoretic approaches can be adopted to define an optimal threshold 𝑐 for

rejection, which is associated both with the relative costs of each error, and the prior distribution that is assumed to generate the

data. Note that the latter may or may not coincide with the prior distribution adopted to fit the data (see, e.g., O’Hagan, Stevens,

& Campbell, 2005; Psioda & Ibrahim, 2018; Sahu & Smith, 2006; Wang & Gelfand, 2002). The prior distribution generating the

data can, for example, convey the external information, and may be truncated to provide a prior distribution under the null and

alternative hypothesis, as proposed in, for example, Psioda and Ibrahim (2018) for a specific borrowing situation. Integration

of type I error and power with respect to a prior under the null and under the alternative hypothesis leads to the definition of

a Bayesian expected type I error and power. Averaging across a set of values that include the frequentist “worst-case” scenario

leads to an average type I error that can be lower or equal to the conditional counterpart; at the same time, averaging across a set

of values that include the most likely effect will generally lead to a power lower than the conditional counterpart. The authors

show how such information can also be used to inform the choice of an optimal sample size. Note that Bayesian expected power

or “assurance” is often regarded as a more realistic estimation of the probability of trial success Crisp, Miller, Thompson, and

Best (2018); Spiegelhalter, Abrams, and Myles (2004).

Finally, an additional advantage of borrowing can be related to the fact that, although the design of a trial explores a wide

range of possible outcomes, data are in reality generated by only one “true” parameter value, or prior distribution if we adopt

the fully Bayesian point of view. If prior information is reliable and consistent with the new data generating process, the final

trial decision will be associated with a lower error. We could argue that the key question should rather be if prior information is

to be trusted, rather than if borrowing is beneficial for any possible true parameter value.

To summarize, we want to emphasize that borrowing is an extremely useful concept when it allows to move closer to

the “true” data-generating process. It can provide significant gains by reducing the chance of an incorrect final decision

once data have been observed, and it can guide in the selection of designs that rely less on pessimistic or somewhat arbi-

trary (i.e., lacking to account for uncertainty) choices, such as the values at which maximum type I error and power are

evaluated.
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APPENDIX: BORROWING OF EXTERNAL INFORMATION IN THE TWO-SIDED TEST
SITUATION
We again consider a one-arm trial with dichotomous endpoint and test 𝐻0 ∶ 𝑝ped = 𝑝0 against the alternative 𝐻1 ∶ 𝑝ped ≠ 𝑝0,

controlling the significance level by 𝛼 = .05. We consider a slightly different scenario, assuming 𝑛ped = 100 and 𝑝0 = .5. For

simplicity, we focus in the two-sided setting on the acceptance region ̄ rather than the critical region as in the main text.

In the stand-alone design, the acceptance region of the UMP-unbiased test is given by ̄ = {40,… , 60}. In a Bayesian

approach, this is obtained by accepting 𝐻0 whenever P(𝑝ped > 𝑝0|𝑟ped, 𝑛ped) ∈ [ 𝑐1, 𝑐2], with 𝑐1 = .022 and 𝑐2 = 1 − 𝑐1. The

resulting power function is given in Figure A1.

F I G U R E A 1 Power functions for the

two-sided test 𝐻0 ∶ 𝑝ped = .5 against the alternative

𝐻1 ∶ 𝑝ped ≠ .5 without adult information, and with

𝑟adu = 57 responders among 𝑛adu = 100 adults in a

fixed power parameter and an EB power parameter

approach
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Assume that the adult trial had size 𝑛adu = 100 with 𝑟adu = 57 responders. If adult data are incorporated by a Bayesian

approach with 𝑐1 and 𝑐2 as above for the test decision, use of a fixed power parameter 𝛿 = .5 leads to a shifted acceptance region

̄ = {35,… , 58}. The respective power function in Figure A1 shows that type I error is controlled and power is increased for

𝑝true > .5. However, incorporation of the external data results in a biased test and power is decreased for 𝑝true < .5. Using an

EB power prior approach leads to the acceptance region ̄ = {40,… , 58} such that type I error rate is inflated and power is

increased for 𝑝true > .5 as well as for 𝑝true smaller but close to .5, as shown in Figure A1.


