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Many randomized trials evaluate an intervention effect on time-to-event out-

comes. Individual participant data (IPD) from such trials can be obtained and

combined in a so-called IPD meta-analysis (IPD-MA), to summarize the over-

all intervention effect. We performed a narrative literature review to provide

an overview of methods for conducting an IPD-MA of randomized interven-

tion studies with a time-to-event outcome. We focused on identifying good

methodological practice for modeling frailty of trial participants across trials,

modeling heterogeneity of intervention effects, choosing appropriate associa-

tion measures, dealing with (trial differences in) censoring and follow-up

times, and addressing time-varying intervention effects and effect modification

(interactions).We discuss how to achieve this using parametric and semi-

parametric methods, and describe how to implement these in a one-stage or

two-stage IPD-MA framework. We recommend exploring heterogeneity of the

effect(s) through interaction and non-linear effects. Random effects should be

applied to account for residual heterogeneity of the intervention effect. We

provide further recommendations, many of which specific to IPD-MA of time-

to-event data from randomized trials examining an intervention effect.We

illustrate several key methods in a real IPD-MA, where IPD of 1225 partici-

pants from 5 randomized clinical trials were combined to compare the effects

of Carbamazepine and Valproate on the incidence of epileptic seizures.
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1 | INTRODUCTION

Relative intervention effects (eg, hazard ratios) are most
reliably evaluated in randomized clinical trials (RCT). How-
ever, multiple RCTs of the same intervention may provide
inconclusive or conflicting evidence on efficacy or safety.
Discrepancies between evidence from different RCTs may
arise due to chance, or in particular due to heterogeneity in
the true intervention effect. This heterogeneity is commonly
caused by across-trial differences in, for example, study
design (eg, recruitment strategy, length of follow-up, or
analysis methods), case-mix of participants, definition of the
studied outcome(s), the implementation (eg, dosage or
intensity) of the intervention. This motivates the need to
systematically integrate and summarize evidence across tri-
als, to facilitate evidence-based-medicine.

This can be achieved using a systematic review with
meta-analysis (MA). Whereas most meta-analyses are
based on aggregated data (AD) from available literature,
individual participant (or patient) data meta-analyses
(IPD-MA) of multiple intervention studies are considered
the gold standard. 1-3 IPD-MA offers several advantages,
as the meta-analyst has full control of the data analysis
and uses the data at the individual participant level. 4

Key advantages are the standardisation of outcome and
follow-up definitions, checking of data and quality,
proper modelling of time-to-event outcomes, and the
exploration of intervention-covariate interactions at the
participant level. 4,5 It may thus come to no surprise that
IPD-MA are increasingly common. 6,7

Extensive guidance has previously been provided for
conducting an IPD-MA of intervention effects, for various
types of outcome data, such as binary, 7-9 continuous,
6,7,10,11 ordinal 7 and count outcomes. 7 Yet, IPD-MA are
especially useful when analyzing time-to-event outcomes
in intervention studies, as censored outcomes can be
reassessed for the meta-analysis, survival measures (eg,
hazard ratios, median survival) can be calculated directly
and independent to trial reporting, follow-up length can
often be increased, time-varying hazard ratios can be
examined, and effect modifiers (intervention-covariate
interactions) can be assessed. 12,13

Whereas a wealth of methods have been developed
for analyzing and predicting time-to-event outcomes in
single studies, 14-17 limited guidance exists on their appli-
cation in IPD-MA settings. In this article, we aim to pro-
vide readers with this guidance, by means of our
systematic search of databases, narrative review and
explanation, and an applied example. Although we focus
IPD-MA of trials, the methods we describe are also appli-
cable to multi-center trials.

In the next section, we provide the principles as well
as several major issues of time-to-event analyses, that are

common in not only IPD-MA but also in single studies.
In section 3 we provide details of our systematic literature
search of methodology for IPD-MA of time-to-event out-
comes, and then a narrative review thereof follows in
section 4 where we discuss the one- and two-stage
approaches to meta-analysis, and in section 5 where we
discuss issues in more detail. Then, in section 6 we apply
several key methods of the review to a real IPD meta-
analysis of clinical trials. Finally, we give provide a dis-
cussion in section 7 and concluding remarks in section 8.

2 | PRINCIPLES OF TIME-TO-
EVENT ANALYSIS

The analysis of trials with a survival outcome (eg, death)
typically involves statistical models that account for the
time Tsurv, i elapsed until subject i, i = 1, .., n developed
the event of interest. We here denote the probability for

Highlights
What is known?

• Time-to-event (survival) data can be analyzed
with Cox Proportional Hazards regression, but
proportionality of hazards should be tested.

• Individual participant data (IPD) from multiple
randomized trials can be summarized by meta-
analyzing the trial-specific estimates of the
individual trials (studies) or by analyzing the
pooled data with a mixed-effects model that
accounts for between-trial heterogeneity in
intervention effect and frailty of participants.

What is new?

• We summarize published guidance, statistical
methods and software for survival analysis using
IPD from multiple randomized clinical trials.

• We discuss how between-trial heterogeneity of
intervention effects may appear and how its
sources can be investigated.

• We illustrate the methods on real epilepsy data
and provide R code.

Potential impact for other fields

• Meta-analysis is not only relevant in medical
research, but also in other research areas.

• The methods naturally extend to meta-analysis of
non-randomized studies, where treatment effect
estimates need to be adjusted for confounding.
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subject i to remain event-free for at least t time by the
survival function S(t) = Pr(Tsurv, i > t). A key challenge in
time-to-event (TTE) data is that for many participants
Tsurv, i is censored to Tcens, i, for instance due to dropout
or the end of the study. This implies that for those partici-
pants Tsurv, i > Tcens, i. Hence, the outcome for subject i is
typically summarized by the observed event-free or sur-
vival time Ti = min(Tsurv, i, Tcens, i) and the event status
Di (where D = 0 when censored, and D = 1 when the
event of interest was observed to have occured). We can
compare the survival times of intervention groups and
control, while accounting for censoring, with a variety of
regression methods.

A commonly used method for analyzing right-censored
TTE data is the Cox proportional hazards (PH) model. 18 In
this semi-parametric model the effect of the covariates is
modeled parametrically, whereas the baseline is left
unspecified. It is typically assumed that the ratio of the haz-
ards for any two individuals is constant, irrespective of t.
The hazard h tjXð Þ for an individual with covariate vector
X0 = X1,…,Xkð Þ is given by Equation 1.1 (Table 1), where
T = β1,…,βkð Þ is a vector of regression parameters. The
function h0(t) represents the baseline hazard, which is
left unspecified. 14,15 The hazard ratio for two individuals
i = 1, 2 is then given by exp 0 X1−X2ð Þf g. For the analysis
of randomized trials, X typically just contains a single
covariate representing the intervention indicator (eg,
Xi = 0 for subjects in the control arm and Xi = 1 for sub-
jects in the intervention arm) such that exp(β) can
directly be interpreted as the relative intervention effect.

An important consideration is whether to include
other (prognostic) covariates in the Cox PH model along-
side treatment. In many time-to-event models, including
the Cox PH model, the observed unadjusted intervention
effect of a protective intervention may change over time
due to covariates (ie, frailty), even if these covariates are
perfectly balanced between the intervention groups. 19,20

Frail participants will have a higher incidence rate than
less frail participants. If the intervention is protective,
frail participants in the intervention group will have a
lower incidence rate than frail participants in a control
(or an ineffective intervention) group and participants
that are not frail. Over time, the proportion in the control
group that is still at risk will increasingly consist of par-
ticipants that are not frail, whereas this will take longer
for the intervention group, thereby resulting in an imbal-
ance in frailty. For trials with a high event rate and most
frailty distributions, the unadjusted intervention effect
will attenuate towards the null (hazard ratio of 1) as time
progresses, which violates the proportional hazards
assumption. 21 The unadjusted intervention effect is then
the marginal intervention effect, 22 i.e. the average inter-
vention effect for the population as a whole, averaged
across all time-points. Hence, it is dependent on the
length of the follow-up.

If the intention is to measure a conditional intervention
effect, that is, the intervention effect for a participant with
given covariate values, the observed unadjusted interven-
tion effect is often not valid. Instead, covariates should be
included in the model, to obtain a conditional intervention
effect. 23,24 Further, the adjustment for a prognostic covari-
ate often increases the power for finding an intervention
effect. 25 Alternatively, an AFT model could be used (sec-
tions 5.1 and 5.2), for which the effect of missing covariates
is absorbed into the baseline parameters, leaving the
unadjusted intervention effect unaffected. 21

The Cox PH model has numerous appealing proper-
ties, in particular allowing the estimation of hazard ratios
for included covariates without requiring the shape of the
baseline hazard to be specified. However, its implementa-
tion is not always justified. For instance, difficulties may
arise when hazards are non-proportional. Although
effects to model non-PH can be included (eg, with
splines, interactions or time-varying effects) in a Cox PH

TABLE 1 Models for two-stage time-to-event meta-analysis

Type Model Hazard function Survival function Ref. No.

Proportional Hazards General modela h0 tð Þexp 0Xð Þ S tjXð Þ= S0 tð Þexp 0Xð Þ 12,14,162 1.1

Exponential λexp 0Xð Þ S tjXð Þ=exp −λtexp 0Xð Þð Þ 14,16,162 1.2

Weibullb λνtν−1exp 0Xð Þ S tjXð Þ=exp −λtνexp 0Xð Þð Þ 14,16,162,163 1.3

Gompertzc λexp ψ tð Þexp 0Xð Þ S tjXð Þ=exp − λ
ψ exp ψ tð Þ−1ð Þ exp 0Xð Þ

� �
14,16,164 1.4

Accelerated Failure Time General model h0 texp 0Xf gð Þexp 0Xð Þ S tjXð Þ= S0 texp 0Xð Þð Þ 14,16,89 1.5

Weibull λνtν−1 exp 0Xð Þð Þν S tjXð Þ=exp −λtνexp ν0Xð Þð Þ 14,16 1.6

Log-logisticd φ
t 1+ t−φexp − 0Xð Þf g log1−S tjXð Þ

S tjXð Þ =φlog tð Þ+ 0X 89,98,99 1.7

aIn the Cox Proportional Hazards model, the baseline hazard h0(t) is left unspecified.
bν is a shape parameter, λ is a scale parameter.
cThe Gompertz distribution can be generalized to the Gompertz-Makeham distribution by adding a constant to the hazard function. 165.
dThe log-logistic model is a proportional odds model, where the β parameters can be interpreted as log-odds ratios.
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model, this usually complicates the interpretation of the
estimated intervention effect. For these reasons it is often
recommended to adopt a model where proportionality
occurs on another scale when proportionality of hazards
is violated, which is discussed in section 5.2. When abso-
lute survival probabilities for individual participants are
of primary interest, it can be useful to define a parametric
function for h0(t), and thus to abandon Cox PH models
altogether, 26,27 which is discussed in section 5.1.
Indeed, even when the focus is mainly on an interven-
tion effect, translation of its hazard ratio to the abso-
lute risk scale is important, which requires the
baseline survival to be modelled, either parametrically
or non-parametrically. For a full overview of R pack-
ages on time-to-event analysis, see cran.r-project.org/
web/views/Survival.html.

3 | IPD META-ANALYSIS
METHODS: REVIEW

Increasingly often, IPD from multiple studies are avail-
able for analysis. This introduces new challenges and
allows for different approaches for analysis, which we set
out to identify. We conducted a literature review to iden-
tify scientific articles concerning statistical methods for
IPD-MA of time-to-event data.

3.1 | Methods

We systematically searched through Pubmed and Web of
Science using the search filters supplied in Supporting
Information 1, from conception until December 31st,
2018. In addition, we added suggestions and performed
cross-reference checks of the obtained articles. Articles
were considered eligible for inclusion if they described

statistical methods for analyzing multiple or clustered
individual participant data sets with a time-to-event out-
come. Publications that met at least one of the following
criteria were excluded from our review:

• Full text of the manuscript not available,
• Not published in English,
• Not a peer reviewed article,
• Application of methods without methodological focus,
• No focus on at least one of the following topics:

� time-to-event outcomes,
� IPD,
� estimation of intervention effects,
� meta-analysis or analysis of clustered data.

3.2 | Results

A total of 1887 unique records were identified through our
search strategy, and were deemed eligible for title and
abstract screening (Figure 1). Of these, 1713 were removed
during screening because the titles did not have a methodo-
logical focus. The remaining 174 records were assessed on
the full-text, of which 58 met the inclusion criteria and
116 did not. Further, a total of 159 unique records were
assessed after being suggested or found through cross-
referencing. Of these, 16 suggestions and 54 cross-references
met the inclusion criteria and were included in the review.
A total of 128 articles were included in the review, of which
a complete list can be found in Supporting Information 3.

The core methods for analyzing TTE outcomes in IPD-
MA are described in section 4. The structure of this
section was defined independent of the review, yet the
description of methods therein has resulted from the
review. Further, extensions to these methods, such as
relaxing the proportionality of hazards assumption, model-
ing multiple interventions or outcomes, and methods for

FIGURE 1 Flowchart of inclusion and exclusion of papers for review
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missing data are described in section 5.1, which was
grouped according to the topics identified in the review.
The review has resulted in ten key recommendations
backed by references, which are summarized in Table 2.

4 | DESCRIPTION OF METHODS

4.1 | Time-to-event analysis in
individual participant data meta-analysis

When IPD from multiple trials are available, summary
estimates for relative intervention effects can be obtained
using the so-called one-stage or two-stage approaches. 28

In the conceptually simpler two-stage approach
(section 4.2), the IPD from each trial is analyzed sepa-
rately to produce trial-specific estimates of relative inter-
vention effect (eg, hazard ratios), using the same
methodology in each trial (eg, Cox regression). In the sec-
ond stage, estimates of intervention effect are combined

into a weighted average using traditional meta-analysis
methods that ideally account for possible between-trial
heterogeneity. In the one-stage approach (section 4.3),
data from all studies are analyzed in one analysis, and a
variety of methods can be used to account for clustering
of participants within studies. 7,14,16,29,30 In both the one-
and two-stage approaches, methods to account for
heterogeneity in intervention effects across studies are
available (Table 3). 1,7,30 In the one-stage approach, one
must also decide how to model or account for heteroge-
neity in other parameters (such as adjustment factors or
terms defining the baseline hazard). For a discussion on
the choice between the one-stage and two-stage
approaches see section 8.

4.2 | Two-stage approach

The two-stage approach is often considered the most conve-
nient approach for IPD meta-analysis, as it does not neces-
sarily require IPD to be exchanged. For instance, each trial
can be analyzed separately, and only their summary statis-
tics are combined. The approach is particularly appealing
when not all trials provide IPD, as it allows reported inter-
vention effects and their respective standard errors from
non-IPD trials to be analyzed in the second stage, together
with the estimates from the IPD trials.

In the first stage, common methods for TTE analysis
can be used to obtain estimates of relative intervention
effect for each trial (so-called aggregate data). For
instance, when applying Cox regression (Equation 1.1),
this yields the log hazard ratio estimates β̂j and their
corresponding error variance V β̂j

� �
, for trial j = 1, …, J.

Afterwards, the estimated intervention effects can be

TABLE 2 Ten Recommendations for the IPD-MA of TTE data

from Randomized Trials Examining an Intervention Effect

Recommendation Reference

The Cox model may be the default model of
choice, but proportionality of hazards

46,166

should be tested, for example, with
interaction or time-varying effects for the
intervention.

Consider non-PH models. 89,92,121,167,168

Account for clustering in one-stage models,
preferably by stratification of the baseline.

19,29,65,67,73,74

Adjust for covariates measured before
randomization.

25,163,169

Apply one-stage models if trials are very
small or the outcome very rare.

16,28

In one-stage models, center covariates
within trials.

88

Model participant-level interactions on the
participant-level.

45

For the intervention effect (& its interaction
effects), apply random effects & investigate
heterogeneity.

5,12,44,78

If competing risks are present & absolute
risks are of interest, apply competing risks
models.

105,108,109,111,170

Multiple imputation of missing covariates
must account for clustering & time-to-
event,

136-138,140,143

using the event indicator and the Nelson-
Aalen cumulative hazard.

TABLE 3 Methods for Modeling Heterogeneity

Baseline Coefficients
Modeled difference between
trials

Common Common No difference, same for every trial

Frailty Random
Effects

Proportional differences,
difference between trials follows
distribution

Fixeda Fixedb Proportional differences, estimated
per trial. Same shape between
trials.

Stratified Non-proportional differences.
Estimated per trial, with
different shapes.

aBy adding trial indicators to the model.
bBy adding trial indicators * variable interaction to the model.
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summarized by calculating a weighted average.
For instance, in a so-called common (or fixed) effect
meta-analysis it is assumed that all trials share a common
intervention effect βIV, which can be derived as follows:

βIV =

PJ
j=1

β̂j

V β̂j

� �

PJ
j=1

1

V β̂jÞ
V βIVð Þ= 1

PJ
j=1

1

V β̂j

� �

ð1Þ

where V is the variance. Hereby, it is assumed that the
within-trial variances V β̂j

� �
are known (ie, estimated

without uncertainty). The common effect meta-analysis
model can also be formulated as follows:

β̂j
~N βIV,V β̂j

� �� �
ð2Þ

If certain trials provide no IPD, but the intervention
effect and its variance are available in the literature, these
can be included in the second stage of the two-stage
framework, 31 provided that the models in the first stage
are specified the same. If a trial has a small sample size,
the Maximum Likelihood estimator of the intervention
effect can be affected by small sample bias. 32 Worse still,
if considerable censoring is present, the likelihood may
be monotone and the Maximum Likelihood may be ines-
timable, depending on the intervention and covariate dis-
tributions. 33 This can be resolved by applying Firth’s
correction to the likelihood in the first stage, 32,33 or by
opting for a one-stage model instead.

The assumption that an intervention effect is com-
mon across trials is often unrealistic, as trials are often
affected by between-trial heterogeneity. 34,35 This hetero-
geneity may, for instance, appear when participant-level
covariates interact with the intervention effect (ie, effect
modification), when small sample bias is present in some
estimates of the intervention effect, or when aggregate
data are based on invalid modeling assumptions (eg, in
the presence of non-proportional hazards, non-PH). For
time-to-event analysis, between-trial heterogeneity may
also arise due to selection effects. In particular, partici-
pants who are more frail and therefore more susceptible
to the outcome, are no longer at risk after having an
event. Therefore, over time, the most frail participants
are removed from the risk set, whereas the less frail par-
ticipants remain at risk (see section 2). 14,19,23,36 This, in
turn, may lead to different intervention effects across

trials if the follow-up length differs across trials. For these
reasons, in the two-stage approach it is generally rec-
ommended to adopt a random effects meta-analysis
model, which is typically specified as:

β̂j
~N βj,V β̂j

� �� �

βj
~N βRE,τ

2
� � ð3Þ

In contrast to common effect models, random effects
models allow for differences in β̂j due to sampling error
within studies (reflected by V β̂j

� �
) and due to heteroge-

neity in the true intervention effects βj across studies
(reflected by τ2). Estimates for βRE can thus be inter-
preted as the average intervention effect across studies. A
confidence interval for β̂RE is traditionally constructed as
β̂RE� z1−α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V β̂RE
� �q

, where z1− α/2 is the upper α/2 qua-
ntile of the standard normal distribution. 37 To account
for the uncertainty in τ2 and thereby improve the cover-
age of the interval, the Hartung-Knapp approach to confi-
dence intervals is given by β̂RE� tJ−1,1−α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VHK β̂RE

� �q
,

where tJ− 1, 1−α/2 is the upper α/2 quantile of a t-
distribution with J - 1� of freedom, and VHK β̂RE

� �
is a

modified variance estimate. 38-42

4.2.1 | Heterogeneity of the intervention
effect in the two-stage approach

Statistical heterogeneity in the intervention effect can be
recognized by τ̂>0 . The influence of heterogeneity on
intervention effects may be explored by constructing a
prediction interval, which estimates the interval of the
likely intervention effect in a (new) individual trial and
can be calculated approximately as follows 43,44:

β̂RE� tJ−k,1−α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ̂2 +V β̂RE

� �q
, ð4Þ

where β̂RE is an estimate of βRE and V β̂RE
� �

its variance.
Typically the tJ− 2, 1− α/2 quantile is used here, although
similar to the confidence interval there is no consensus
on the distribution and its degrees of freedom. 43,44 When
random effects models indicate the presence of important
statistical heterogeneity (ie, τ̂>0 , or a wide prediction
interval) of the intervention effect, the interpretation of
the overall summary estimate, β̂RE , may become difficult
or meaningless. Therefore, it is often helpful to identify
sources of heterogeneity in intervention effect (see
Table 4). 12 This can, for instance, be achieved by
assessing the relation between relevant trial-level
covariates (eg, level of blinding, or dosage) and the trial
effect estimates, also known as meta-regression. 45
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When patient-level associations with treatment effect
are of interest, it is better to model interactions between
participant-level characteristics (eg, participant age) on
the participant level. In the two-stage approach, the sta-
tistical interaction between the relevant covariate and
intervention are first estimated separately in each trial,
and then the resulting coefficients are meta-analyzed
using traditional meta-analysis models. 34,46 When the
intervention effect changes over time, differences in
follow-up time between trials will lead to heterogeneous
estimates of intervention effect across trials, if unac-
counted for. This heterogeneity of intervention effects
can be quantified with random-effects meta-analysis, but
would preferably be modeled directly (section 5.2).

4.2.2 | Estimation

A commonly used approach to estimate the heterogeneity
from the random effects model (Equation 3), is to use the
method of moments by DerSimonian and Laird (DL). 47

This estimator is biased downwards when the true het-
erogeneity is moderate or high and sample sizes are low,
as the variance estimates are assumed to be known and
fixed, 48 leading many researchers to suggest alternatives,
the most important of which are mentioned here. The
two-step Paule-Mandel method is similar to DL, but itera-
tively estimates the study weights, and has reduced bias
for high values of τ. Another alternative is the Maximum
Likelihood (ML) estimator. Although the MSE of the ML

estimator for τ is small, it is very biased when τ is large
and the included studies are small. 49 The Restricted
Maximum Likelihood (REML) estimator yields less
biased estimates of τ and has relatively low MSE. 50-52

Therefore, REML and the two-step Paule-Mandel method
are the recommended estimators for τ. 48,52

As there may be considerable uncertainty in the het-
erogeneity estimate regardless of which estimator is used,
52 it is recommended to report a confidence interval for
the heterogeneity as well. 53 This may be estimated with
the Q-profile method 41,54 or the generalised Cochran
between-study variance method. 49 Further, it should be
noted that when fewer than 10 trials are included in the
meta-analysis, or when trials are small or the outcome
rare, no currently available method can reliably estimate
the heterogeneity. 52

Even though estimates for heterogeneity in meta-
analysis tend to be biased in many situations, this barely
biases the summary effect estimate, unless there are very
few events. 52 The confidence intervals of the summary
effect can be constructed by applying the Hartung-Knapp-
Sidik-Jonkman HKSJ method for confidence intervals, 55,56

which had good coverage in simulations for a minimum of
two studies, unless the number of events was very low. 52,57

This may be corrected by applying a modification that
ensures that the confidence intervals are at least as wide as
a fixed-effects meta-analysis confidence interval. 52 Hence,
it is currently recommended to apply a random effects
model estimated with REML or two-step Paule-Mandel,
and to use the HKSJ method for confidence intervals. 52

Alternatively, Bayesian random-effects models may be used.
However, in the simulation studies discussed here either
aggregate data or non time-to-event IPD were generated,
which is a concern considering that it has been suggested
that the performance of the estimators may be related to
the type of outcome. 49 For a comprehensive overview of
meta-analysis estimators see 49,58,59, for a comparison of
their performance see 48,52, for an overview of software see
49 as well as the two recent packages admetan and
ipdmetan, 60 and for an up-to-date overview of R packages
see cran.r-project.org/web/views/MetaAnalysis.html.

4.3 | One-stage approach

4.3.1 | Accounting for clustering

When applying the one-stage approach, within-trial and
between-trial relationships are estimated simultaneously,
which can give a more complete understanding of the data. 13

As is the case for two-stage meta-analysis, a one-stage
meta-analysis must account for clustering (Table 3). 29,30

Participants in different studies may differ on unmeasured

TABLE 4 Potential sources of Heterogeneity in Time-to-event

Meta-Analysis

Source Solutions Reference

Non PH
+ Differences in
follow-up time

Interaction terms
Model effect(s) as time-
varying, use splines

Use a different model
(eg, AFT)

45,88,171

83,91

27,83,92,103,167,168

Difference in case-
mix

Include covariates/
prognostic factors

AFT model

36,163

92,163,168

Selective dropout or
competing risk

Model dropout or
competing risk

108,111,170,172

Small sample bias in
some studies

Bias correction
One-stage MA
Arcsine transform
(for two-stage MA)

32

7,28,172,173

172

PH: Proportional Hazards; AFT: Accelerated Failure Time; MA: Meta-

Analysis. Heterogeneity can be diagnosed by applying frailty and/or random
effects terms. 13,29,78 If heterogeneity remains, for example, due to
differences in study protocols, stratification of baseline hazard/frailty and/or
random effects terms must be applied. 24,36.
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covariates, which will lead to a biased estimate of the
conditional (ie, for a participant with given covariate
values) intervention effect regardless of balance of these
covariates between intervention groups, if not adjusted
for (section 2). 20 Whereas the two-stage approach natu-
rally deals with this by estimating separate baseline haz-
ards for the different studies, in the one-stage approach
we can use stratification (section 4.3.2), frailty models
(section 4.3.3) or marginal models (section 4.3.4).

4.3.2 | Stratified models

A commonly used approach is to apply a Cox model with
stratified baseline hazards but a common intervention effect
(Equation 5.1, Table 5). 12,16,61,62 This allows the shapes of
the baseline hazards to vary between trials, whereas the
hazards of the different intervention groups are assumed to
be proportional within trials, and gives a single estimate of
overall intervention effect. When the sample sizes per trial
are very small and many trials are included, the stratifica-
tion of baselines is less efficient than the use of frailty terms,
16 though it also requires fewer assumptions as it fully
accounts for any differences in baselines between trials. For
the meta-analysis of trials that are each powered to detect a
clinically significant intervention effect this should not be
an issue, thereby making the stratification of the baseline
the preferred model specification.

4.3.3 | Frailty models

Rather than stratifying the baseline hazard across the tri-
als, it is possible to model their distribution through
frailty terms. A frailty term is a random parameter (ie,
random intercept) within the baseline hazard function
that is assumed to follow a specified distribution and
thereby allows for differences in baseline rate between
(groups of) participants that are a result of unmeasured
covariates. Shared frailty models (Equation 5.2, Table 5)
are designed to account for these differences in
unmeasured covariates between trials. Therefore, the
assumption in a frailty model is that the baseline hazards
in each study have the same shape but a different magni-
tude. The estimated intervention effect is then to be inter-
preted relative to other participants in the same trial with
the same frailty and covariates. If the baseline hazard of
this model is left unspecified, this leads to the Cox PH
model with random trial intercept. 12,14 When data from
multiple multi-center studies are combined, nested frailty
models can be applied. 63

It is common to assume a gamma distribution for
the frailty, for mathematical or computational reasons, T
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14,16,24,81,83,168 or a normal distribution for the log-
frailty, as this bears similarity to the generalized linear
mixed effects model, 14,64 though many other distribu-
tions including the inverse Gaussian, positive stable,
and compound Poisson are possible. 14,16,17 Previous
studies have demonstrated that the gamma frailty
model appears to be fairly robust against mis-
specification of the frailty distribution, 65,66 that it
describes the frailty of survivors for a large class of haz-
ard models, 24 and that it can have more power than a
stratified model. 16,66,67 Therefore, frailty models are
generally recommended when the number of partici-
pants per trial is very low. Yet, when the number of
participants per trial is large, as is often the case in
meta-analysis when individual trials are designed to
have sufficient power to test for an intervention effect,
the frailty and stratification approaches will usually
yield similar results, given that the assumptions
are met.

When a frailty is applied to the baseline hazard, the
median hazard ratio (MHR) can be used to evaluate the
meaning of this frailty in the context of the different studies.
68-70 The MHR is the median relative difference in the haz-
ard of the occurrence of the outcome when comparing
identical participants from two randomly selected studies
ordered by hazard. When a log-normal distribution is
assumed for the frailty, the Median Hazard Ratio (MHR)
can be computed as exp

ffiffiffiffiffiffiffi
2σ2

p
Φ−1 0:75ð Þ

n o
, where Φ−1 is

the inverse of the standard normal distribution. 69,70

4.3.4 | Marginal models

In the analysis of clustered data, such as IPD from differ-
ent studies, where the interest lies in the average inter-
vention effect for the target population as a whole, we
may use marginal models. In such models the depen-
dence between participants from the same trial is not
modeled explicitly but standard errors are adjusted for
it. 71,72 Intervention effects are interpreted as relative to
participants drawn randomly from the entire target popu-
lation from which the participants are considered to be
sampled. 73 When the interest lies in the intervention
effect of participants in the individual studies or in the
causes of heterogeneity of intervention effects across
studies or subgroups, as in an IPD-MA often is the case,
conditional models are needed. 74

4.3.5 | Estimation

Maximum Likelihood (ML) estimates of the mixed effects
Cox model may be obtained with a Newton–Raphson

procedure, 75 with penalization methods by constraining the
frailty terms with a penalty, 76-78 by expectation-
maximisation, 79 or by expectation-maximisation and penal-
ization. 80

Further, residual maximum likelihood (REML) esti-
mates of the mixed effects Cox model can be obtained with
a Newton–Raphson procedure, 12,13,75 or with penalization
methods by constraining the frailty terms with a penalty.
76,77 As the penalized method does not take uncertainty of
τ2 into account, it has been suggested that it produces less
precise estimates of the intervention effect. 62 However,
comparative evidence is currently lacking.

Alternatively, the mixed effects Cox model can be
estimated with a poisson model, 81 where the time-scale
is split into intervals defined by event times. 82 Mixed
effects parametric models can be estimated with Maxi-
mum Likelihood by adaptive Gauss-Hermite quadrature.
83 Mixed effects Weibull models can also be estimated
with REML. 81

The Bayesian framework allows for the estimation of
a wide range of time-to-event models. For instance, the
Cox random effects model can be estimated using Bayes-
ian methods. 16,84,85 A random trial effect and an inter-
vention by trial interaction may be evaluated
simultaneously in a Bayesian Cox PH model. 86 For a dis-
cussion of commensurate priors for incorporating
between-trial variability in a Bayesian meta-analysis, see
87. Finally, an overview of software for the estimation of
one-stage time-to-event models is given in Table 6.

4.3.6 | Heterogeneity of the intervention
effect in the one-stage approach

Similar to the two-stage approach, we may expect hetero-
geneity of the intervention effect in the one-stage
approach, which makes the common effects assumption
untenable. As such, it is also recommended for one-stage
models to assume random effects (Equation 5.3, Table 5),
79 and to investigate the causes of this heterogeneity, if
present. 12 One possible cause of heterogeneity of the
intervention effect is effect modification (ie, interaction)
at the individual level, which can be investigated by
adding an interaction term in the one-stage model. 29

Crucially, when including such an interaction term (eg,
an intervention-covariate interaction) in the one-stage
approach, special care must be taken to avoid the amal-
gamation of within- and across-trial information, as this
may lead to ecological bias. This can be achieved by center-
ing the covariates by their mean values within trials, such
that the interaction estimate is then only based on within-
trial information. 88 To improve the estimation of between-
study variance and the coverage of confidence intervals, the
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TABLE 6 Software for One-stage Time-to-event Models

Program Package/methodDescription Code in Mentioned in

R, S-Plus - Random effects Cox model 80

survival Cox and parametric time-to-event models. 66, 77, 175, 176

Stratified, frailty and marginal specifications

coxme Mixed effects Cox models

frailtypack Cox and parametric random effects and stratified
models.

63, 78, 111

Correlated random effects. Competing events. Joint
nested frailty models.

SemiCompRisks Bayesian and frequentist random effects parametric and 111

semi-parametric models for competing events.

parfm Parametric frailty models

PenCoxFrail Regularized Cox frailty models

mexhaz Flexible (excess) hazard regression models,

non-proportional effects, and random effects

dynfrail Semiparametric dynamic frailty models

frailtyEM Frailty models with semi-parametric baseline hazard,
recurrent events

joineR Joint random effects models of repeated
measurements & time-to-event

joint.Cox Joint frailty-copula models with smoothing splines

JointModel Joint model for longitudinal and time-to-event outcomes

joineRML Joint time-to-event and multiple continuous longitudinal
outcomes

rstanarm Joint model for hierarchical longitudinal and time-to-
event data

131

surrosurv Time-to-event surrogate endpoints models 177

SAS PHREG Cox models, including stratification or frailty 66, 175 178

NLMIXED Mixed effects parametric survival models 179

Joint model for recurrent events and semi-competing
risk

112

GENMOD Poisson regression, marginal models 178

Stata stcox Cox model, stratified and frailty specifications.

stmixed Flexible parametric time-to-event models with mixed
effects

7,83

xtmepoisson Mixed effects Poisson regression 82

WinBUGS, OpenBUGS, JAGS - Bayesian mixed effects models, 67, 82, 175

- IPD network meta-analysis 118, 121

MLwiN - Mixed effects time-to-event models 7, 180

The Survival Kit - Bayesian mixed effect time-to-event models 86
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intervention variable can be centered within studies as well.
To further prevent the borrowing of information across
studies that may affect the estimate of the intervention
effect in the one-stage approach, a covariate by trial indica-
tor interaction can be included. This stratifies the covariates
effects as it allows covariate effects to be estimated sepa-
rately for each study (see Table 3).

When there are differences in follow-up time between
trials and the intervention effect changes over time, the
estimated intervention effects (as quantified by random
effects) will be different per trial. If this is unaccounted
for, this will lead to heterogeneity of the intervention
effect. This can then be investigated by modeling the
effect as time-dependent (section 5.2).

In the two-stage approach the influence of trial-level
characteristics on the intervention effect can be estimated
with meta-regression in the second stage. In the one-
stage approach it is possible to simultaneously estimate
the heterogeneity of baseline rate of the participants
within different studies, the heterogeneity of intervention
effects and their correlation. 78

5 | EXTENSIONS

5.1 | Modeling the baseline hazard
function

Whereas the Cox PH model leaves the baseline hazard
unspecified, we may apply a parametric model by specify-
ing a baseline hazard (Table 1), either in the first stage of
the two-stage approach, or within the one-stage
approach. To allow for flexible shapes of the baseline
hazard, we can apply spline functions. Particularly the
approach of Royston and Parmar is useful, where the
baseline cumulative hazard is modelled using restricted
cubic splines, 89 and which has been extended to allow
for random effects. 83

Parametric models are especially suitable when abso-
lute (rather than relative) risks for individual subjects
(rather than for subpopulations) are of primary interest.
It leads to smooth predicted survival curves and is well
suited to deal with non-proportionality of hazards. For
instance, researchers increasingly often aim to develop
prediction models that can assess individual intervention
benefits (or harms). 90 Most simply, one can specify an
exponential (Equation 1.2) or a Weibull (Equation 1.3)
distribution within the proportional hazards framework.
The exponential distribution assumes a constant rate over
time, whereas the Weibull distribution (a generalization
of the exponential distribution) allows for accelerated
failure times (AFT). 14 Other (but less common) general-
izations of the exponential distribution that can be used

for modeling the baseline hazard are the Gompertz,
gamma, and piecewise constant distributions. 14,83 Fur-
ther, the log-logistic, log-normal and generalized gamma
distributions may be used. 83,89 Unlike PH models, the
estimate of an intervention effect in AFT models is unaf-
fected by unmeasured prognostic covariates. 21 Also in
one-stage models a wide range of distributions for para-
metric PH and AFT models is available. 83

5.2 | Modeling non-proportional hazards

For short trials with a low event rate the proportionality
of hazards across time may be reasonable (ie, the hazard
ratio for the intervention effect may be assumed constant
over time), but as the number of events in different inter-
vention groups diverges a selection of participants
remains in the trial for whom proportionality in the
unadjusted intervention effect is not realistic. 91,92 If an
intervention is protective, frail participants in the inter-
vention group will be better protected against the out-
come than frail participants in the control group. Hence,
the proportion of frail participants at risk will decrease
more quickly in the control group than in the interven-
tion group. To account for this issue within studies we
can include covariates in the model, whereas we can use
a frailty model to account for this issue between studies.

Non-proportionality of hazards may also be present due
to the intervention effect truly being dependent on time.
For instance, an intervention (such as surgery or chemo-
therapy) may cause an increased risk of a negative outcome
at first, but have a protective effect in the long run. This can
be modeled by an interaction effect between the interven-
tion (or a covariate) and time 18 in the one-stage approach
or in the first stage of the two-stage approach. To allow for
flexible shapes of this time-dependent effect, fractional poly-
nomials or splines can be applied. 93-95

Two methods have been developed for combining
fractional polynomials or splines in the two-stage
approach. The meta curve method directly meta-analyzes
the curves estimated in the first stage. Though, this
requires setting a reference level which may have an
impact on the results. Alternatively, by using multivariate
meta-analysis (section 5.3) the coefficients can be com-
bined. This method only works when the same polyno-
mials or splines have been fitted in each study, but that is
not an issue when IPD are available. 96

Alternatively, non-PH can sometimes be handled more
naturally with models that assume proportionality on
another scale. 89,92 For instance, an intervention might tem-
porarily reduce the hazards, but as time progresses and the
effect wears off, hazards converge and thereby violate the
proportional hazards assumption. This can be modeled with
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a proportional odds regression model such as the log-logistic
(Equation 1.7, Table 1), which assumes that covariates have
a constant additive effect on the log odds of survival. 27,97-99

In this model, the modeled hazard ratio naturally approaches
1 over time, whereas the odds remain proportional. 98

As the implementation of TTE models with non-
proportional hazards (eg, with splines) may complicate the
interpretation of regression parameters, alternate effect
measures have been proposed to summarize intervention
effects (Table 7). For instance, the restricted mean survival
time (RMST, Equation 7.3) until time t* represents the
area under the survival curve until time t*. 100-102 The
RMST can thus be calculated for different intervention
groups, and subsequently be subtracted to assess the inter-
vention effect. This difference represents the expected gain
(or loss) in survival until time t* for the intervention
group, as compared to the control group. An advantage is
that it provides a clinically meaningful summary of the
survival differences between intervention groups.

The percentile ratio, an effect measure alternative to the
more common hazard ratio, was suggested by to make the
interpretation of survival models more straightforward. 103

Briefly, the percentile ratio for an intervention is defined as
the expected ratio for the time at which a certain fraction
(given as ‘k’) of the participants will have an event in the
intervention group as compared to the control group
(Equation 7.4). The percentile ratio is easiest to interpret for
AFT models, as the percentile ratio does not depend on the
percentile chosen in such models and always equals
the acceleration factor. Two-stage MA methods for the
percentile-ratio have also been developed. 104

5.3 | Modeling multiple outcomes

Throughout this manuscript, we have assumed that each
patient in each trail is at risk of having a single type of
event (ie, the outcome of interest, for example, all-cause
mortality), until censoring takes place. Alternatively,
patients may be at risk for different events, where one
event (eg, death) prevents the patient from having

another event (eg, liver failure or stroke). Unlike the sur-
vival function, relative intervention effects can then still
be assessed by modeling cause-specific hazards, which
involves the modeling of the time to each type of event in
a separate model, where all alternative types of event are
coded as censoring. 105,106 It is vital to do this for every
type of event, to gain a full understanding of the relative
intervention effect with respect to competing events. 105

Whereas for all-cause-mortality there is a direct relation
between the hazard and the survival curve, when model-
ing cause-specific hazards this is not the case, 107 mean-
ing that this approach does not have a direct
interpretation in terms of absolute survival probabilities
for the outcome of interest. 108 Only when independence
of the event of interest and the competing event can be
assumed, the survival function can be estimated by rec-
oding the competing outcome as censoring, though this
assumption is often not realistic. 109

Therefore, when prediction of the average time-to-
event per intervention group is wanted, competing events
must be modeled using more complex survival models
(for an introduction see 105,110). In the two-stage
approach, this can be analyzed with competing risk
models in the first stage, whereas Bayesian hierarchical
competing risk models have been developed for the one-
stage approach, 111 which may also model recurrent
events jointly with the competing risk. 112 Further, multi-
state models can be used to model transitions to interme-
diate events. 113

When multiple outcomes that do not compete are
available across trials, these can be assessed jointly in the
two-stage framework to improve the efficiency of the
analyses. 114,115 For instance, outcomes may have been
assessed at multiple follow-up times, or be defined for
multiple endpoints. In the first stage, estimates of the
intervention effects and variances are obtained for each
outcome in each trial. Bootstrapping is used to obtain the
covariance between intervention effects for each pair of
outcomes in the same trial. 115 In the second stage, the
vectors of estimates (and matrices of variances and
covariances) are synthesised using a multivariate meta-

TABLE 7 Effect Measures for

Time-to-Event Analysis
Measure Definition Ref. No.

Hazard ratio λ tjX1ð Þ
λ tjX0ð Þ , λ tjXkð Þ= −

dln S tjXkð Þð Þ
dt = f tjXkð Þ

S tjXkð Þ
14,15 7.1

Odds ratio O tjX1ð Þ
O tjX0ð Þ , O tjXkð Þ= 1−S tjXkð Þ

S tjXkð Þ
27 7.2

RMSTD(t*) RMST1(t
*) − RMST0(t

*), RMST t*ð Þ= Ð t*
0 Sk tð Þdt 100,102 7.3

Percentile Ratio qk =
kthpercentileofdistforgroupA
kthpercentileofdistforgroupB

103 7.4

RMST = Restricted Mean Survival Time, D = Difference.
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analysis model in the second stage. Hence, multivariate
meta-analysis is particularly relevant to address outcomes
or time-points in the IPD from some trials.

5.4 | Modeling multiple interventions

The concepts of multivariate meta-analysis can also be
used to compare more than two interventions. In a so-
called network meta-analysis (NMA), direct and indirect
evidence about the difference in effect of two or more
treatments is combined across trials, to summarize the
relative effects of all available interventions. This may
improve precision of the intervention estimates and
allows for comparison of interventions that have not been
compared head-to-head. This method uses direct evi-
dence (intervention effects estimated within trials) and
indirect evidence (intervention effects estimated across
trials), by assuming that both sources of evidence are
exchangeable. 116,117. When direct and indirect evidence
disagree, the network is said to be inconsistent and may
be prone to bias or may cause heterogeneity of the esti-
mated intervention effects. Such inconsistency can be
caused by effect modification, which can be addressed by
modelling interactions between the intervention and
patient-level covariates. 118

In the two-stage approach, an appropriate (eg, Cox)
survival model is first estimated in each trial, possibly
adjusting for relevant prognostic factors and effect modi-
fiers. Corresponding effect estimates (eg, log hazard
ratios) can then be pooled using traditional NMA
methods. 116 In the one-stage approach, time-to-event
NMA models can be estimated using Bayesian hierarchi-
cal models. 119,120 Also, Bayesian one-stage IPD-NMA
Royston-Parmar models have been implemented. 121

5.5 | Surrogate endpoints

Trials for measuring intervention efficacy tend to be
expensive and require a lengthy follow-up to observe the
clinical outcome. The cost and duration of a trial may be
reduced if a more readily available outcome can be used.
Validated surrogate endpoints can be used instead when
the surrogate is well known or likely to predict clinical
outcome. 122 These surrogate endpoints are to be vali-
dated on the trial and the participant level, where IPD
form multiple trials are preferred. 123,124 When response
to intervention is used to predict survival, response must
be modeled as a time-dependent covariate or a
landmarking method must be used. 125 Alternatively, a
joint model with the survival outcome and a continuous
surrogate or a dichotomous surrogate can be used. 126,127

For an overview and comparison of the performance of
measures of surrogacy, see 128,129. When few trials are
available, the trial level surrogacy cannot reliably be
estimated using AD alone. However, surrogacy can some-
times be estimated on the center level by splitting multi-
center data by center. 124,130 This requires IPD when
center specific parameter estimates are not available. For
a recent overview of methods for estimating surrogacy,
see 130. To include a surrogate directly in the modeling of
the outcome, a joint model can be used. 126,127 For the
one-stage approach, joint models with up to three levels
have also been developed. 131

5.6 | Missing data

In a meta-analysis of survival data, several types of miss-
ing data may occur. It is possible, for instance, that not
all studies provide IPD and thus that only AD are avail-
able for some of the studies. In such cases, it is rec-
ommended to combine the available IPD and AD, as
otherwise estimated intervention effects may be prone to
(data availability) bias and overly large standard errors.
132 Including AD in a two-stage meta-analysis approach
is fairly straightforward, provided that the model used for
generating the AD is compatible with the models for ana-
lyzing the available IPD. It is also possible to directly
combine IPD and AD using a one-stage meta-analysis,
although this requires more advanced models, such as
Bayesian hierarchical regression. 133

Another common type of missing data occurs when
events of individual subjects are censored, for example,
due to loss of follow-up. Survival models such as the Cox
PH model and the AFT model readily account for this
censoring, provided that it is not related to the outcome,
conditional on any participant-level characteristics in the
model (ie, non-informative). When the assumption of
independent censoring is challenged, its implications
can be evaluated by adopting multiple imputation
methods. 134

Finally, it is possible that subject-level covariates are
missing for one or more studies. Although participant
covariates are not commonly used when estimating rela-
tive intervention effects from RCTs, they are crucial in
IPD-MA of time-to-event data because of selection differ-
ences across trials (see section 2). When relevant
participant-level covariates are missing for some trial par-
ticipants, it is generally recommended to apply multiple
imputation. 135 Hereby, researchers should adjust for the
event indicator and the Nelson-Aalen estimator of the
cumulative hazard, 136,137 and also account for the pres-
ence of clustering. The latter can be achieved by adopting
imputation models with mixed effects, which also
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facilitates imputation of covariates that have not been
measured in one or more studies. 138-142

Although the assumptions needed for multiple impu-
tation cannot always be tested or may not always be met,
several simulation studies have shown that its use is usu-
ally superior to complete-case analysis or the use of miss-
ing data indicators. 143 However, caution is still
warranted when analyzing imputed data sets from IPD-
MA, as in the presence of between-trial heterogeneity
these are inherently prone to some degree of incompati-
bility with the data generation mechanism. 141,144 Fur-
ther, because IPD-MA can only adjust for measured
covariates and may therefore still be affected by
unmeasured covariates, clustering of participants within
trials should still be accounted for (section 4.3.1). 14

6 | APPLIED EXAMPLE

The efficacy of carbamazepine (CBZ) and valproate
(VP) as interventions for epileptic seizures was compared
in a systematic review and IPD-MA of RCTs. 145 IPD
were obtained for a total of 1225 participants from five
trials. In all these trials, one of the outcomes of interest
was time to first epileptic seizure since randomization.
Also, measured covariates were age at randomization,
sex, type of epilepsy (partial-onset or generalized-onset),
and the number of epileptic seizures before randomiza-
tion. For illustrative purposes, we only consider the type
of epilepsy. We use the coxme package of the R software,
146,147 to fit the mixed effects Cox PH model. Our code is
given in Supporting Information 2.

As the two-stage method has been described exten-
sively (see 104,148) we shall restrict our analyses to illus-
trate some key one-stage methods. First, to evaluate the
relative effects of CBZ and VP, we adopted a Cox
model, as this leaves the baseline hazard unspecified.
We apply a one-stage model (Equation 5.2) with a log-
normal frailty and random effects for the intervention
estimated with penalized partial likelihood to account
for the clustering of participants within trials and to
allow for heterogeneous intervention effects across tri-
als, respectively. We find no evidence against the
hypothesis that the interventions are equally effective,
with a summary hazard ratio of 1.08 for valproate
(95 % Confidence Interval (CI) : 0.92 to 1.27, p = .37),
vs the referent, carbamazepine.

In the analysis of the effect of the intervention on the
time to first epileptic seizure, we observed some statistical
heterogeneity of the intervention effect. The SDs of the
random intercept (ie, frailty) and drug effect (ie, random
effect) equaled 0.139 and 0.099, respectively. In other
words, the log hazard ratio of valproate vs carbamazapine

varied with a SD of.099 between trials. This random
effect of the interventions translated to a Median Hazard
Ratio (MHR) of 1.10, meaning that the median relative
change in the effect on time-to first epileptic seizure
when comparing two identical participants from two ran-
domly selected different trials that were ordered by inter-
vention effect was 1.10, calculated as
exp

ffiffiffi
2

p
0:099Φ−1 0:75ð Þ� �

(see section 4.3.6). In order to
explain this heterogeneity in intervention effect, we
added covariates and intervention-covariate interactions
to the model (Figure 2). Partial epilepsy (vs generalized)
was associated with a higher hazard rate (β = 1.63, 95%
CI: 1.38 to 1.92, Table 8), meaning that we have found
evidence that epilepsy type is a prognostic factor of time
to first epileptic seizure. However, we were unable to find
evidence that epilepsy type interacted with the interven-
tion (β = 1.36, 95% CI: 0.97 to 1.89), though it should be
noted that the upper bound of the CI did not exclude
clinically significant effects. We note that we obtained
somewhat different results than the Cochrane review, 149

as we have used a different method for analysis. Further,
the low power for tests for interaction effects is a notori-
ous issue.

A recent investigation of the intervention-covariate
interaction on the time to remission of epilepsy demon-
strated that bias occurs when within-trial and across-trial
information is not separated. 88 Such separation can be
performed by centering the covariates, hence we have
centered the covariates in in our analysis (Table 8). The
possible bias that may occur when within-trial and
across-trial information are amalgamated can be
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quantified by including the trial-mean in the model, 88 as
we have done here (Table 8).

7 | DISCUSSION

Our search has identified a wide range of articles on
topics regarding TTE IPD-MA, and is the first compre-
hensive review on this topic to our knowledge. How-
ever, the basics of the methodology regarding TTE
data was excluded from our search as it did not con-
cern MA or clustered data. Covering all methodological
works regarding TTE data would have been an
immense task. As such, we were forced to include rel-
evant literature based on our own opinion to introduce
this topic, and restrict our systematic search through
Pubmed and Web of Science to works that simulta-
neously concerned IPD, meta-analysis and time-to-
event data. We did not cover every article that covers
these three topics, as this was not our aim. Instead,
we our purpose was to achieve theoretical saturation,
that is, that an extended search would be unlikely to
add important information.

The general consensus in the reviewed works was
that the Cox model should be the default model of choice
for TTE IPD-MA. Though, it is also criticized for not
yielding a valid estimate of intervention effect when not
all (un-)measured predictive covariates are accounted for,
mostly on theoretical grounds. The literature is currently
missing information on the impact of this issue in real
life data, leading us to suggest that further research
should focus thereon. As such, we have provided a com-
prehensive review of current methods for IPD-MA of
TTE data.

Although the statistical properties of the meta-
analysis estimators for the two-stage approach have been
well studied and simulation studies have investigated the
performance for meta-analysis of dichotomous and con-
tinuous outcome data, this is not the case for time-to-
event data. Further, although aggregate data (ie,

estimates from the literature) can readily be included in
the two-stage approach (provided that the models are
specified the same), as well as in Bayesian one-stage
models, there appears to be no method yet for doing so in
a Frequentist model.

Another issue is to what extend one should try to bor-
row information across trials in the one-approach. In the
two-stage approach, no information is borrowed (apart
from the intervention effect and its uncertainty), as all
parameters are naturally estimated per trial. To what
extend one should account for this in the one-stage
approach, by stratifying the baseline and covariate effects
or by applying random effects and a frailty, deserves extra
attention in the literature. For the meta-analysis of trials
with adequate sample sizes, the safest choice is to stratify
all included parameters as this accounts for all differ-
ences in baselines between trials. In a simulation study
where IPD from a total of 600 participants from 3-20 tri-
als were generated, both the frailty and the stratified
baseline method worked well, 29 though exactly what
sample sizes are necessary for this strategy, and especially
for the stratification of covariates as well, has apparently
not yet been identified.

8 | CONCLUDING REMARKS

We have discussed numerous models in this manuscript,
the choice between which is not always straightforward.
For this reason, we provide some recommendations
below. First, intervention effect conditional on covariates
and/or frailties have different interpretations from mar-
ginal ones (ie, averaged over the entire sample and
follow-up time), and yield different estimates. Before
embarking on an IPD-MA, researchers should decide
whether a conditional or a marginal effect is of interest.
As assumptions may be satisfied on one scale but not the
other, this may lead to a different choice of model.

Additionally, one can choose between one-stage and
two-stage models. In the two-stage method participants

TABLE 8 Intervention, Covariates and Intervention-Covariate Interactions in a Multivariable Mixed Effects Cox Model

Variable Variable Type HR 95% CI p

VP (vs CBZ) Intervention 1.05 0.86 to 1.28 0.65

Partial epilepsy (vs generalized), centereda Individual-level covariate 1.63 1.38 to 1.92 < .001

Partial epilepsy (vs generalized), trial meanb Trial-level covariate 1.47 0.99 to 2.19 0.06

Partial epilepsy (vs generalized), centereda * VP (vs CBZ) Intervention-covariate interaction 1.36 0.97 to 1.89 0.07

VP: Valproate, CBZ: Carbamazepine, HR: Hazard ratio, given by exp(β), CI: Confidence interval. Standard deviations of random intercept (ie, frailty) and
random effect of VP (vs CBZ) equal 0.126 and 0.164, respectively. P-values are for Wald type tests of the null hypothesis that the log HR equals zero.
aCovariates are centered within trials, to avoid ecological bias (see 88).
bTrial mean value for the covariate is entered in the analysis, to quantify the bias that would occur if centering of the covariate were not performed.
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within trials are compared, which inherently yields a
conditional intervention effect and stratified baselines.
The one-stage approach offers more possibilities as it
allows for conditional intervention effects as well as mar-
ginal ones, and frailties for the baseline. When the same
(or similar) model assumptions are made for these
models and the same estimation methods are used, these
two approaches generally lead to the same estimates of
intervention effect. 13,28 Though, the one-stage approach
can have better convergence properties when the
included studies are very small, 28,150 or at least one of
the studies has zero events.

Further, when a conditional effect is desired (in contrast
to a marginal one), we recommend to apply random effects
instead of common effects, as common effects models are
only valid when no heterogeneity is present, which is
unlikely in our experience. When a marginal effect is
desired, only a correction for the variance is necessary. As
described in section 2, when an intervention effect is pre-
sent the estimated intervention effect in PH models may be
time-dependent, depending on the distribution of prognos-
tic factors that are not accounted for (even if balanced
across intervention groups). This may lead to heterogeneity
in intervention effects across trials that have different
follow-up lengths. Further, differences in trial design and
methodology and clinical procedures may contribute to the
heterogeneity of the intervention effect. 12 Random effects
models can account for heterogeneity of the intervention
effect and lead to the same solution as common effect
models when no heterogeneity is present. However, if a for-
mal test of heterogeneity is desired, a variety of tests can be
used. For one-stage meta-analysis, the common effect
model (without trial effects) is nested in the frailty model,
and therefore a comparison of these models can be made
using the log-likelihood ratio test. 14 Alternatively, a score
test, 151-153 or a small sample test can be used. 154 A permu-
tation test for testing of the presence of heterogeneity in
time-to-event data was recently proposed, and a simulation
showed that the method is more powerful and has a better
type I error rate than likelihood ratio tests of a random
effect. 155

Finally, when comparing non-nested (eg, PH vs AFT)
models, more general methods are needed. In such cases,
one may select the model with lowest value for Akaike’s
Information Criterion (AIC) 156,157 or the Bayesian Infor-
mation Criterion (BIC) 156-158. Though, due to the corre-
lated nature of participants within trials a correction for
clustering should be made, which is not straightforward
in the frequentist estimation framework as quantification
of the number of degrees of freedom is difficult. For
subject-specific inferences, the conditional (cAIC) can be
used, whereas for inferences on the population level the
marginal AIC can be used. 64,74,159,160

Further, one should be cautious regarding model
selection. If one model is rejected, bias will appear in the
estimated intervention effect and significance in a second
model if the second model is not independent of the test
that was used to reject the first, such as when a non-PH
effect is included in the model after a statistical test indi-
cated non-proportionality. 161 This bias can be alleviated
by bootstrapping the model selection procedure. On the
other hand, this bias does not occur when the second
model is independent of the test used to reject the first
model. 161
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