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Abstract

Evaluating the joint significance of covariates is of fundamental importance in a wide range

of applications. To this end, p-values are frequently employed and produced by algorithms that

are powered by classical large-sample asymptotic theory. It is well known that the conventional

p-values in Gaussian linear model are valid even when the dimensionality is a non-vanishing

fraction of the sample size, but can break down when the design matrix becomes singular in

higher dimensions or when the error distribution deviates from Gaussianity. A natural question

is when the conventional p-values in generalized linear models become invalid in diverging

dimensions. We establish that such a breakdown can occur early in nonlinear models. Our

theoretical characterizations are confirmed by simulation studies.
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1. Introduction

In many applications it is often desirable to evaluate the significance of covariates in a

predictive model for some response of interest. Identifying a set of significant covariates

can facilitate domain experts to further probe their causal relationships with the response.

Ruling out insignificant covariates can also help reduce the fraction of false discoveries and

narrow down the scope of follow-up experimental studies by scientists. These tasks certainly
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require an accurate measure of feature significance in finite samples. The tool of p-values

has provided a powerful framework for such investigations.

As p-values are routinely produced by algorithms, practitioners should perhaps be aware

that those p-values are usually based on classical large-sample asymptotic theory. For

example, marginal p-values have been employed frequently in large-scale applications

when the number of covariates p greatly exceeds the number of observations n. Those

p-values are based on marginal regression models linking each individual covariate to the

response separately. In these marginal regression models, the ratio of sample size to model

dimensionality is equal to n, which results in justified p-values as sample size increases. Yet

due to the correlations among the covariates, we often would like to investigate the joint

significance of a covariate in a regression model conditional on all other covariates, which

is the main focus of this paper. A natural question is whether conventional joint p-values

continue to be valid in the regime of diverging dimensionality p.

It is well known that fitting the linear regression model with p > n using the ordinary

least squares can lead to perfect fit giving rise to zero residual vector, which renders the

p-values undefined. When p ≥ n and the design matrix is nonsingular, the p-values in the

linear regression model are well defined and valid thanks to the exact normality of the least-

squares estimator when the random error is Gaussian and the design matrix is deterministic.

When the error is non-Gaussian, Huber (1973) showed that the least-squares estimator can

still be asymptotically normal under the assumption of p = o(n), but is generally no longer

normal when p = o(n) fails to hold, making the conventional p-values inaccurate in higher

dimensions. For the asymptotic properties of M-estimators for robust regression, see, for

example, Huber (1973); Portnoy (1984, 1985) for the case of diverging dimensionality p =

o(n) and Karoui et al. (2013); Bean et al. (2013) for the scenario when the dimensionality p
grows proportionally to sample size n.

We have seen that the conventional p-values for the least-squares estimator in linear

regression model can start behaving wildly and become invalid when the dimensionality

p is of the same order as sample size n and the error distribution deviates from Gaussianity.

A natural question is whether similar phenomenon holds for the conventional p-values for

the maximum likelihood estimator (MLE) in the setting of diverging-dimensional nonlinear

models. More specifically, we aim to answer the question of whether p ~ n is still the

breakdown point of the conventional p-values when we move away from the regime of

linear regression model, where ~ stands for asymptotic order. To simplify the technical

presentation, in this paper we adopt the generalized linear model (GLM) as a specific

family of nonlinear models (McCullagh and Nelder, 1989). The GLM with a canonical link

assumes that the conditional distribution of y given X belongs to the canonical exponential

family, having the following density function with respect to some fixed measure

fn(y; X, β) ≡ ∏
i = 1

n
f0 yi; θi = ∏

i = 1

n
c yi exp yiθi − b θi

ϕ , (1)

where X = (x1, ⋯ , xp) is an n × p design matrix with xj = (x1j, ⋯ , xnj)T, j = 1,

⋯ , p, y = (y1, ⋯ , yn)T is an n-dimensional response vector, β = (β1, ⋯ , βp)T is a
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p-dimensional regression coefficient vector, f0(y; θ) : θ ∈ ℝ  is a family of distributions in

the regular exponential family with dispersion parameter ϕ ∈ (0, ∞), and θ = (θ1, ⋯ ,

θn)T = Xβ. As is common in GLM, the function b(θ) in (1) is implicitly assumed to be

twice continuously differentiable with b″ (θ) always positive. Popularly used GLMs include

the linear regression model, logistic regression model, and Poisson regression model for

continuous, binary, and count data of responses, respectively.

The key innovation of our paper is the formal justification that the conventional p-values

in nonlinear models of GLMs can become invalid in diverging dimensions and such a

breakdown can occur much earlier than in linear models, which spells out a fundamental

difference between linear models and nonlinear models. To begin investigating p-values in

diverging-dimensional GLMs, let us gain some insights into this problem by looking at the

specific case of logistic regression. Recently, Candès (2016) established an interesting phase

transition phenomenon of perfect hyperplane separation for high-dimensional classification

with an elegant probabilistic argument. Suppose we are given a random design matrix X
~ N(0, In ⊗ Ip) and arbitrary binary yi’s that are not all the same. The phase transition

of perfect hyperplane separation happens at the point p/n = 1/2. With such a separating

hyperplane, there exist some β* ∈ ℝp and t ∈ ℝ such that xiTβ* > t for all cases yi = 1 and

xiTβ* < t for all controls yi = 0. Let us fit a logistic regression model with an intercept. It is

easy to show that multiplying the vector (−t, (β*)T)T by a divergence sequence of positive

numbers c, we can obtain a sequence of logistic regression fits with the fitted response

vector approaching y = (y1, ⋯ , yn)T as c → ∞. As a consequence, the MLE algorithm can

return a pretty wild estimate that is close to infinity in topology when the algorithm is set to

stop. Clearly, in such a case the p-value of the MLE is no longer justified and meaningful.

The results in Candès (2016) have two important implications. First, such results reveal that

unlike in linear models, p-values in nonlinear models can break down and behave wildly

when p/n is of order 1/2; see Karoui et al. (2013); Bean et al. (2013) and discussions

below. Second, these results motivate us to characterize the breakdown point of p-values in

nonlinear GLMs with p nα0 in the regime of α0 ∈ [0, 1/2). In fact, our results show that the

breakdown point can be even much earlier than n/2.

It is worth mentioning that our work is different in goals from the limited but growing

literature on p-values for high-dimensional nonlinear models, and makes novel contributions

to such a problem. The key distinction is that existing work has focused primarily on

identifying the scenarios in which conventional p-values or their modifications continue to

be valid with some sparsity assumption limiting the growth of intrinsic dimensions. For

example, Fan and Peng (2004) established the oracle property including the asymptotic

normality for nonconcave penalized likelihood estimators in the scenario of p = o(n1/5),

while Fan and Lv (2011) extended their results to the GLM setting of non-polynomial (NP)

dimensionality. In the latter work, the p-values were proved to be valid under the assumption

that the intrinsic dimensionality s = o(n1/3). More recent work on high-dimensional

inference in nonlinear model settings includes van de Geer et al. (2014); Athey et al.

(2016) under sparsity assumptions. In addition, two tests were introduced in Guo and Chen

(2016) for high-dimensional GLMs without or with nuisance regression parameters, but the
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p-values were obtained for testing the global hypothesis for a given set of covariates, which

is different from our goal of testing the significance of individual covariates simultaneously.

Portnoy (1988) studied the asymptotic behavior of the MLE for exponential families under

the classical i.i.d. non-regression setting, but with diverging dimensionality. In contrast, our

work under the GLM assumes the regression setting in which the design matrix X plays

an important role in the asymptotic behavior of the MLE β. The validity of the asymptotic

normality of the MLE was established in Portnoy (1988) under the condition of p = o(n1/2),

but the precise breakdown point in diverging dimensionality was not investigated therein.

Another line of work is focused on generating asymptotically valid p-values when p/n
converges to a fixed positive constant. For instance, Karoui et al. (2013) and Bean et al.

(2013) considered M-estimators in the linear model and showed that their variance is greater

than classically predicted. Based on this result, it is possible to produce p-values by making

adjustments for the inflated variance in high dimensions. Recently, Sur and Candès (2018)

showed that similar adjustment is possible for the likelihood ratio test (LRT) for logistic

regression. Our work differs from this line of work in two important aspects. First, our focus

is on the classical p-values and their validity. Second, their results concern dimensionality

that is comparable to sample size, while we aim to analyze the problem for a lower range of

dimensionality and pinpoint the exact breakdown point of p-values.

The rest of the paper is organized as follows. Section 2 provides characterizations of

p-values in low dimensions. We establish the nonuniformity of GLM p-values in diverging

dimensions in Section 3. Section 4 presents several simulation examples verifying the

theoretical phenomenon. We discuss some implications of our results in Section 5. The

proofs of all the results are relegated to the Appendix.

2. Characterizations of P-values in Low Dimensions

To pinpoint the breakdown point of GLM p-values in diverging dimensions, we start with

characterizing p-values in low dimensions. In contrast to existing work on the asymptotic

distribution of the penalized MLE, our results in this section focus on the asymptotic

normality of the unpenalized MLE in diverging-dimensional GLMs, which justifies the

validity of conventional p-values. Although Theorems 1 and 4 to be presented in Sections

2.2 and A are in the conventional sense of relatively small p, to the best of our knowledge

such results are not available in the literature before in terms of the maximum range of

dimensionality p without any sparsity assumption.

2.1. Maximum likelihood estimation

For the GLM (1), the log-likelihood log fn(y; X, β) of the sample is given, up to an affine

transformation, by

ln(β) = n−1 yTXβ − 1Tb(Xβ) , (2)

where b(θ) = (b(θ1), ⋯ , b(θn))T for θ = θ1, ⋯, θn
T ∈ ℝn. Denote by

β = β1, ⋯, β p
T ∈ ℝp the MLE which is the maximizer of (2), and
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μ(θ) = b′ θ1 , ⋯, b′ θn
T and Σ(θ) = diag b′′ θ1 , ⋯, b′′ θn . (3)

A well-known fact is that the n-dimensional response vector y in GLM (1) has mean vector

μ(θ) and covariance matrix ϕΣ(θ). Clearly, the MLE β is given by the unique solution to the

score equation

XT[y − μ(Xβ)] = 0 (4)

when the design matrix X is of full column rank p.

It is worth mentioning that for the linear model, the score equation (4) becomes the well-

known normal equation XTy = XTXβ which admits a closed form solution. On the other

hand, equation (4) does not admit a closed form solution in general nonlinear models. This

fact due to the nonlinearity of the mean function μ(·) causes the key diffierence between

the linear and nonlinear models. In future presentations, we will occasionally use the term

nonlinear GLMs to exclude the linear model from the family of GLMs when necessary.

We will present in the next two sections some sufficient conditions under which the

asymptotic normality of MLE holds. In particular, Section 2.2 concerns the case of fixed

design and Section A deals with the case of random design. In addition, Section 2.2 allows

for general regression coefficient vector β0 and the results extend some existing ones in

the literature, while Section A assumes the global null β0 = 0 and Gaussian random design

which enable us to pinpoint the exact breakdown point of the asymptotic normality for the

MLE.

2.2. Conventional p-values in low dimensions under fixed design

Recall that we condition on the design matrix X in this section. We first introduce a

deviation probability bound that facilitates our technical analysis. Consider both cases of

bounded responses and unbounded responses. In the latter case, assume that there exist some

constants M, υ0 > 0 such that

max
1 ≤ i ≤ n

E exp yi − b′ θ0, i
M − 1 − yi − b′ θ0, i

M M2 ≤ v0
2 (5)

with (θ0,1, ⋯ , θ0,n)T = θ0 = Xβ0, where β0 = (β0,1, ⋯ , β0,p)T denotes the true regression

coefficient vector in model (1). Then by Fan and Lv (2011, 2013), it holds that for any

a ∈ ℝn,

P |aTY − aTμ θ0 | > ‖a‖2ε ≤ φ(ε), (6)

where φ(ε) = 2e−c1ε2
 with c1 > 0 some constant, and ε ∈ (0, ∞) if the responses are

bounded and ε ∈ (0, ‖a‖2/‖a‖∞] if the responses are unbounded.

For nonlinear GLMs, the MLE β solves the nonlinear score equation (4) whose solution

generally does not admit an explicit form. To address such a challenge, we construct a
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solution to equation (4) in an asymptotically shrinking neighborhood of β0 that meets the

MLE β thanks to the uniqueness of the solution. Specifically, define a neighborhood of β0 as

N0 = β ∈ ℝp: β − β0 ∞ ≤ n−γ logn (7)

for some constant γ ∈ (0, 1/2]. Assume that p = O nα0  for some α0 ∈ (0, γ) and

let bn = o min(n1/2 − γ logn, sn−1n2γ − α0 − 1/2/(logn)2  be a diverging sequence of positive

numbers, where sn is a sequence of positive numbers that will be specified in heorem 1

below. We need some basic regularity conditions to establish the asymptotic normality of the

MLE β.

Condition 1—The design matrix X satisfies

XTΣ θ0 X −1
∞ = O bnn−1 , (8)

max
β ∈ N0

maxj = 1
p λmax XTdiag xj ∘ μ′′(Xβ) X = O(n) (9)

with ∘ denoting the Hadamard product and derivatives understood componentwise. Assume

that maxj = 1
p xj ∞ < c1

1/2 n/(logn) 1/2 if the responses are unbounded.

Condition 2—The eigenvalues of n−1An are bounded away from 0 and ∞,

∑i = 1
n ziTAn

−1zi
3/2 = o 1 , and maxi = 1

n E yi − b′ θ0, i
3 = O(1), where An = XTΣ(θ0)X and (z1,

⋯ , zn)T = X.

Conditions 1 and 2 put some basic restrictions on the design matrix X and a moment

condition on the responses. For the case of linear model, bound (8) becomes ‖(XTX)−1‖∞ =

O(bn/n) and bound (9) holds automatically since b′′′ (θ) ≡ 0. Condition 2 is related to the

Lyapunov condition.

Theorem 1 (Asymptotic normality)—Assume that Conditions 1–2 and probability

bound (6) hold. Then

a. there exists a unique solution β to score equation (4) in N0 with asymptotic

probability one;

b. the MLE β satisfies that for each vector u ∈ ℝp with ‖u‖2 = 1 and ‖u‖1 = O(sn),

uTAn
−1u −1/2 uTβ − uTβ0

D N(0, ϕ) (10)

and specifically for each 1 ≤ j ≤ p,

An
−1

jj
−1/2 β j − β0, j

D N(0, ϕ), (11)
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where An = XTΣ(θ0)X and An
−1

jj denotes the jth diagonal entry of matrix An
−1.

Theorem 1 establishes the asymptotic normality of the MLE and consequently justifies the

validity of the conventional p-values in low dimensions. Note that for simplicity, we present

here only the marginal asymptotic normality, and the joint asymptotic normality also holds

for the projection of the MLE onto any fixed-dimensional subspace. This result can also be

extended to the case of misspecified models; see, for example, Lv and Liu (2014).

As mentioned in the Introduction, the asymptotic normality was shown in Fan and Lv (2011)

for nonconcave penalized MLE having intrinsic dimensionality s = o(n1/3). In contrast, our

result in Theorem 1 allows for the scenario of p = o(n1/2) with no sparsity assumption in

view of our technical conditions. In particular, we see that the conventional p-values in

GLMs generally remain valid in the regime of slowly diverging dimensionality p = o(n1/2).

3. Nonuniformity of GLM P-values in Diverging Dimensions

So far we have seen that for nonlinear GLMs, the p-values can be valid when p = o(n1/2)

as shown in Section 2, and can become meaningless when p ≥ n/2 as discussed in the

Introduction. Apparently, there is a big gap between these two regimes of growth of

dimensionality p. To provide some guidance on the practical use of p-values in nonlinear

GLMs, it is of crucial importance to characterize their breakdown point. To highlight the

main message with simplified technical presentation, hereafter we content ourselves with

the specific case of logistic regression model for binary response. Moreover, we investigate

the distributional property in (11) for the scenario of true regression coefficient vector β0

= 0, that is, under the global null. We argue that this specific model is sufficient for our

purpose because if the conventional p-values derived from MLEs fail (i.e., (11) fails) for at

least one β0 (in particular β0 = 0), then conventional p-values are not justified. Therefore, the

breakdown point for logistic regression is at least the breakdown point for general nonlinear

GLMs. This argument is fundamentally different from that of proving the overall validity of

conventional p-values, where one needs to prove the asymptotic normality of MLEs under

general GLMs rather than any specific model.

3.1. The wild side of nonlinear regime

For the logistic regression model (1), we have b(θ) = log(1 + eθ), θ ∈ ℝ and ϕ = 1. The mean

vector μ(θ) and covariance matrix ϕΣ(θ) of the n-dimensional response vector y given by (3)

now take the familiar form of μ(θ) = eθ1

1 + eθ1
, ⋯, eθn

1 + eθn

T
 and

Σ(θ) = diag eθ1

1 + eθ1 2, ⋯, eθn

1 + eθn 2

with θ = (θ1, ⋯ , θn)T = Xβ. In many real applications, one would like to interpret the

significance of each individual covariate produced by algorithms based on the conventional

asymptotic normality of the MLE as established in Theorem 1. As argued at the beginning
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of this section, in order to justify the validity of p-values in GLMs, the underlying theory

should at least ensure that the distributional property (11) holds for logistic regression under

the global null. As we will see empirically in Section 4, as the dimensionality increases,

p-values from logistic regression under the global null have a distribution that is skewed

more and more toward zero. Consequently, classical hypothesis testing methods which reject

the null hypothesis when p-value is less than the pre-specified level α would result in more

false discoveries than the desired level of α. As a result, practitioners may simply lose the

theoretical backup and the resulting decisions based on the p-values can become ineffective

or even misleading. For this reason, it is important and helpful to identify the breakdown

point of p-values in diverging-dimensional logistic regression model under the global null.

Characterizing the breakdown point of p-values in nonlinear GLMs is highly nontrivial

and challenging. First, the nonlinearity generally causes the MLE to take no analytical

form, which makes it di cult to analyze its behavior in diverging dimensions. Second,

conventional probabilistic arguments for establishing the central limit theorem of MLE only

enable us to see when the distributional property holds, but not exactly at what point it

fails. To address these important challenges, we introduce novel geometric and probabilistic

arguments presented later in the proofs of Theorems 2–3 that provide a rather delicate

analysis of the MLE. In particular, our arguments unveil that the early breakdown point of

p-values in nonlinear GLMs is essentially due to the nonlinearity of the mean function μ(·).

This shows that p-values can behave wildly much early on in diverging dimensions when we

move away from linear regression model to nonlinear regression models such as the widely

applied logistic regression; see the Introduction for detailed discussions on the p-values in

diverging-dimensional linear models.

Before presenting the main results, let us look at the specific case of logistic regression

model under the global null. In such a scenario, it holds that θ0 = Xβ0 = 0 and thus Σ(θ0) =

4−1In, which results in

An = XTΣ θ0 X = 4−1XTX .

In particular, we see that when n−1XTX is close to the identity matrix Ip, the asymptotic

standard deviation of the jth component β j of the MLE β is close 2n−1/2 when the asymptotic

theory in (11) holds. As mentioned in the Introduction, when p ≥ n/2 the MLE can blow up

with excessively large variance, a strong evidence against the distributional property in (11).

In fact, one can also observe inflated variance of the MLE relative to what is predicted by

the asymptotic theory in (11) even when the dimensionality p grows at a slower rate with

sample size n. As a consequence, the conventional p-values given by algorithms according to

property (11) can be much biased toward zero and thus produce more significant discoveries

than the truth. Such a breakdown of conventional p-values is delineated clearly in the

simulation examples presented in Section 4.

3.2. Main results

We now present the formal results on the invalidity of GLM p-values in diverging

dimensions.
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Theorem 2 (Uniform orthonormal design)1—Assume that n−1/2X is uniformly

distributed on the Stiefel manifold V p ℝn  consisting of all n × p orthonormal matrices.

Then for the logistic regression model under the global null, the asymptotic normality of the

MLE established in (11) fails to hold when p ~ n2/3, where ~ stands for asymptotic order.

Theorem 3 (Correlated Gaussian design)—Assume that X ~ N(0, In ⊗ Σ) with

covariance matrix Σ nonsingular. Then for the logistic regression model under the global

null, the same conclusion as in Theorem 2 holds.

Theorem 4 in Appendix A states that under the global null in GLM with Gaussian design,

the p-value based on the MLE remains valid as long as the dimensionality p diverges with

n at a slower rate than n2/3. This together with Theorems 2 and 3 shows that under the

global null, the exact breakdown point for the uniformity of p-value is n2/3. We acknowledge

that these results are mainly for theoretical interests because in practice one cannot check

precisely whether the global null assumption holds or not. However, these results clearly

suggest that in GLM with diverging dimensionality, one needs to be very cautious when

using p-values based on the MLE.

The key ingredients of our new geometric and probabilistic arguments are demonstrated in

the proof of Theorem 2 in Section B.3. The assumption that the rescaled random design

matrix n−1/2X has the Haar measure on the Stiefel manifold V p ℝn  greatly facilitates our

technical analysis. The major theoretical finding is that the nonlinearity of the mean function

μ(·) can be negligible in determining the asymptotic distribution of MLE as given in (11)

when the dimensionality p grows at a slower rate than n2/3, but such nonlinearity can

become dominant and deform the conventional asymptotic normality when p grows at rate

n2/3 or faster. See the last paragraph of Section B.3 for more detailed in-depth discussions

on such an interesting phenomenon. Furthermore, the global null assumption is a crucial

component of our geometric and probabilistic argument. The global null assumption along

with the distributional assumption on the design matrix ensures the symmetry property of

the MLE and the useful fact that the MLE can be asymptotically independent of the random

design matrix. In the absence of such an assumption, we may suspect that p-values of

the noise variables can be affected by the signal variables due to asymmetry. Indeed, our

simulation study in Section 4 reveals that as the number of signal variables increases, the

breakdown point of the p-values occurs even earlier.

Theorem 3 further establishes that the invalidity of GLM p-values in high dimensions

beyond the scenario of orthonormal design matrices considered in Theorem 2. The

breakdown of the conventional p-values occurs regardless of the correlation structure of

the covariates.

Our theoretical derivations detailed in the Appendix also suggest that the conventional

p-values in nonlinear GLMs can generally fail to be valid when p nα0 with α0 ranging

between 1/2 and 2/3, which differs significantly from the phenomenon for linear models

1.For completeness, we present Theorem 4 in Appendix A which provides a random design version of Theorem 1 under global null
and a partial converse of Theorems 2 and 3.
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as discussed in the Introduction. The special feature of logistic regression model that the

variance function b″ (θ) takes the maximum value 1/4 at natural parameter θ = 0 leads to a

higher transition point of p nα0 with α0 = 2/3 for the case of global null β0 = 0.

4. Numerical Studies

We now investigate the breakdown point of p-values for nonlinear GLMs in diverging

dimensions as predicted by our major theoretical results in Section 3 with several simulation

examples. Indeed, these theoretical results are well supported by the numerical studies.

4.1. Simulation examples

Following Theorems 2–3 in Section 3, we consider three examples of the logistic regression

model (1). The response vector y = (y1, ⋯ , yn)T has independent components and each

yi has Bernoulli distribution with parameter eθi/ 1 + eθi , where θ = (θ1, ⋯ ,θn)T = Xβ0.

In example 1, we generate the n × p design matrix X = (x1, ⋯ , xp) such that n−1/2X is

uniformly distributed on the Stiefel manifold V p ℝn  as in Theorem 2, while examples 2 and

3 assume that X ~ N(0, In ⊗ Σ) with covariance matrix Σ as in Theorem 3. In particular,

we choose Σ = (ρ|j−k|)1≤j,k≤p with ρ = 0, 0.5, and 0.8 to reflect low, moderate, and high

correlation levels among the covariates. Moreover, examples 1 and 2 assume the global null

model with β0 = 0 following our theoretical results, whereas example 3 allows sparsity s =

‖β0‖0 to vary.

To examine the asymptotic results we set the sample size n = 1000. In each example, we

consider a spectrum of dimensionality p with varying rate of growth with sample size n. As

mentioned in the Introduction, the phase transition of perfect hyperplane separation happens

at the point p/n = 1/2. Recall that Theorems 2–3 establish that the conventional GLM

p-values can become invalid when p ~ n2/3. We set p = nα0  with α0 in the grid {2/3 – 4δ,

⋯ , 2/3 – δ, 2/3, 2/3 + δ, ⋯ ,2/3 + 4δ, (log(n) – log(2))/log(n)} for δ = 0.05. For example 3,

we pick s signals uniformly at random among all but the first components, where a random

half of them are chosen as 3 and the other half are set as −3.

The goal of the simulation examples is to investigate empirically when the conventional

GLM p-values could break down in diverging dimensions. When the asymptotic theory for

the MLE in (11) holds, the conventional p-values would be valid and distributed uniformly

on the interval [0, 1] under the null hypothesis. Note that the first covariate x1 is a null

variable in each simulation example. Thus in each replication, we calculate the conventional

p-value for testing the null hypothesis H0 : β0,1 = 0. To check the validity of these p-values,

we further test their uniformity.

For each simulation example, we first calculate the p-values for a total of 1, 000 replications

as described above and then test the uniformity of these 1, 000 p-values using, for example,

the Kolmogorov–Smirnov (KS) test (Kolmogorov, 1933; Smirnov, 1948) and the Anderson–

Darling (AD) test (Anderson and Darling, 1952, 1954). We repeat this procedure 100

times to obtain a final set of 100 new p-values from each of these two uniformity tests.

Specifically, the KS and AD test statistics for testing the uniformity on [0, 1] are defined as
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KS = sup
x ∈ [0, 1]

Fm(x) − x and AD = m∫0
1 Fm(x) − x 2

x(1 − x) dx,

respectively, where Fm(x) = m−1∑i = 1
m I( − ∞, x] xi  is the empirical distribution function for

a given sample xi i = 1
m .

4.2. Testing results

For each simulation example, we apply both KS and AD tests to verify the asymptotic

theory for the MLE in (11) by testing the uniformity of conventional p-values at significance

level 0.05. As mentioned in Section 4.1, we end up with two sets of 100 new p-values

from the KS and AD tests. Figures 1–3 depict the boxplots of the p-values obtained

from both KS and AD tests for simulation examples 1–3, respectively. In particular, we

observe that the numerical results shown in Figures 1–2 for examples 1–2 are in line with

our theoretical results established in Theorems 2–3, respectively, for diverging-dimensional

logistic regression model under global null that the conventional p-values break down when

p nα0 with α0 = 2/3. Figure 3 for example 3 examines the breakdown point of p-values with

varying sparsity s. It is interesting to see that the breakdown point shifts even earlier when

s increases as suggested in the discussions in Section 3.2. The results from the AD test are

similar so we present only the results from the KS test for simplicity.

To gain further insights into the nonuniformity of the null p-values, we next provide an

additional figure in the setting of simulation example 1. Specifically, in Figure 4 we present

the histograms of the 1,000 null p-values from the first simulation repetition (out of 100)

for each value of α0. It is seen that as the dimensionality increases (i.e., α0 increases), the

null p-values have a distribution that is skewed more and more toward zero, which is prone

to produce more false discoveries if these p-values are used naively in classical hypothesis

testing methods.

To further demonstrate the severity of the problem, we estimate the probability of making

type I error at significance level a, as the fraction of p-values below a. The means and

standard deviations of the estimated probabilities are reported in Table 1 for a = 0.05 and

0.1. When the null p-values are distributed uniformly, the probabilities of making type I

error should all be close to the target level a. However, Table 1 shows that when the growth

rate of dimensionality α0 approaches or exceeds 2/3, these probabilities can be much larger

than a, which again supports our theoretical findings. Also it is seen that when α0 is close

to but still smaller than 2/3, the averages of estimated probabilities exceed slightly a, which

could be the effect of finite sample size.

5. Discussions

In this paper we have provided characterizations of p-values in nonlinear GLMs with

diverging dimensionality. The major findings are that the conventional p-values can remain

valid when p = o(n1/2), but can become invalid much earlier in nonlinear models than in

linear models, where the latter case can allow for p = o(n). In particular, our theoretical
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results pinpoint the breakdown point of p ~ n2/3 for p-values in diverging-dimensional

logistic regression model under global null with uniform orthonormal design and correlated

Gaussian design, as evidenced in the numerical results. It would be interesting to investigate

such a phenomenon for more general class of random design matrices.

The problem of identifying the breakdown point of p-values becomes even more

complicated and challenging when we move away from the setting of global null. Our

technical analysis suggests that the breakdown point p nα0 can shift even earlier with α0

ranging between 1/2 and 2/3. But the exact breakdown point can depend upon the number

of signals s, the signal magnitude, and the correlation structure among the covariates in a

rather complicated fashion. Thus more delicate mathematical analysis is needed to obtain

the exact relationship. We leave such a problem for future investigation. Moving beyond the

GLM setting will further complicate the theoretical analysis.

As we routinely produce p-values using algorithms, the phenomenon of nonuniformity of

p-values occurring early in diverging dimensions unveiled in the paper poses useful cautions

to researchers and practitioners when making decisions in real applications using results

from p-value based methods. For instance, when testing the joint significance of covariates

in diverging-dimensional nonlinear models, the effective sample size requirement should be

checked before interpreting the testing results. Indeed, statistical inference in general high-

dimensional nonlinear models is particularly challenging since obtaining accurate p-values

is generally not easy. One possible route is to bypass the use of p-values in certain tasks

including the false discovery rate (FDR) control; see, for example, Barber and Candès

(2015); Candès et al. (2018); Fan et al. (2018) for some initial efforts made along this line.
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Appendix A.: Conventional P-values in Low Dimensions under Random

Design

Under the specific assumption of Gaussian design and global null β0 = 0, we can show that

the asymptotic normality of MLE continues to hold without previous Conditions 1–2.

Theorem 4

Assume that β0 = 0, the rows of X are i.i.d. from N(0, Σ), b(5)(·) is uniformly bounded in its

domain, and y − μ0 has uniformly sub-Gaussian components. Then if p = O(nα) with some

α ∈ [0, 2/3), we have the componentwise asymptotic normality

An−1
jj
−1/2βj

D N(0, ϕ),

where all the notation is the same as in (11).
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Theorem 4 shows that the conclusions of Theorem 1 continue to hold for the case of random

design and global null with the major difference that the dimensionality can be pushed as

far as p ~ n2/3. The main reasons for presenting Theorem 4 under Gausssian design are

twofold. First, Gaussian design is a widely used assumption in the literature. Second, our

results on the nonuniformity of GLM p-values in diverging dimensions use geometric and

probabilistic arguments which require random design setting; see Section 3 for more details.

To contrast more accurately the two regimes and maintain self-contained theory, we have

chosen to present Theorem 4 under Gaussian design. On the other hand, we would like to

point out that Theorem 4 is not for practitioners who want to justify the usage of classical

p-values. The global null assumption of β0 = 0 restricts the validity of Theorem 4 in many

practical scenarios.

Appendix B.: Proofs of Main Results

We provide the detailed proofs of Theorems 1–3 in this Appendix.

B.1. Proof of Theorem 1

To ease the presentation, we split the proof into two parts, where the first part locates the

MLE β in an asymptotically shrinking neighborhood N0 of the true regression coefficient

vector β0 with significant probability and the second part further establishes its asymptotic

normality.

Part 1: Existence of a unique solution to score equation (4) in N0 under Condition 1

and probability bound (6). For simplicity, assume that the design matrix X is rescaled

columnwise such that xj 2 = n for each 1 ≤ j ≤ p. Consider an event

ℰ = ξ ∞ ≤ c1
−1/2 n logn , (12)

where ξ = (ξ1, ⋯ , ξp)T = XT [y − μ(θ0)]. Note that for unbounded responses,

the assumption of maxj = 1
p xj ∞ < c1

1/2 n/(logn) 1/2 in Condition 1 entails that

c1
−1/2 logn < minj = 1

p xj 2/ xj ∞ . Thus by xj 2 = n, probability bound (6), and

Bonferroni’s inequality, we deduce

P (ℰ) ≥ 1 − ∑
j = 1

p
P ξj > c1

−1/2 n logn

≥ 1 − 2pn−1 = 1 − O n− 1 − α0 ,
(13)

since p = O nα0  for some α0 ∈ (0,γ) with γ ∈ (0, 1/2] by assumption. Hereafter we

condition on the event ℰ defined in (12) which holds with significant probability.

We will show that for sufficiently large n, the score equation (4) has a solution in the

neighborhood N0 which is a hypercube. Define two vector-valued functions
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γ(β) = γ1(β), ⋯, γp(β) T = XTμ(Xβ)

and

Ψ(β) = γ(β) − γ β0 − ξ, β ∈ ℝp .

Then equation (4) is equivalent to Ψ(β) = 0. We need to show that the latter has a solution

inside the hypercube N0. To this end, applying a second order Taylor expansion of γ(β)

around β0 with the Lagrange remainder term componentwise leads to

γ(β) = γ β0 + XTΣ θ0 X β − β0 + r, (14)

where r = (r1, ⋯ , rp)T and for each 1 ≤ j ≤ p,

rj = 1
2 β − β0

T ∇2γj βj β − β0

with βj some p-dimensional vector lying on the line segment joining β and β0. It follows

from (9) in Condition 1 that

r ∞ ≤ max
δ ∈ N0

max
j = 1

p 1
2λmax XTdiag xj ∘ μ″(Xδ) X β − β0 2

2

= O pn1 − 2γ(logn)2 .
(15)

Let us define another vector-valued function

Ψ(β) ≡ XTΣ θ0 X −1Ψ(β) = β − β0 + u, (16)

where u = −[XTΣ(θ0)X]−1(ξ − r). It follows from (12), (15), and (8) in Condition 1 that for

any β ∈ N0,

u ∞ ≤ XTΣ θ0 X −1
∞ ξ ∞ + r ∞

= O bnn−1/2 logn + bnpn−2γ(logn)2 .
(17)

By the assumptions of p = O nα0  with constant α0 ∈ (0, γ) and

bn = o min(n1/2 − γ logn, n2γ − α0 − 1/2/(logn)2 , We have

u ∞ = o n−γ logn .

Thus in light of (16), it holds for large enough n that when β − β0 j = n−γ logn,
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Ψj β ≥ n−γ logn − u ∞ ≥ 0, (18)

and when β − β0 j = − n−γ logn,

Ψj β ≤ − n−γ logn + u ∞ ≤ 0, (19)

where Ψ(β) = Ψ1(β), ⋯, Ψp(β) T .

By the continuity of the vector-valued function Ψ(β), (18), and (19), Miranda’s existence

theorem Vrahatis (1989) ensures that equation Ψ(β) = 0 has a solution β in N0. Clearly, β
also solves equation Ψ(β) = 0 in view of (16). Therefore, we have shown that score equation

(4) indeed has a solution β in N0. The strict concavity of the log-likelihood function (2) by

assumptions for model (1) entails that β is the MLE.

Part 2: Conventional asymptotic normality of the MLE β. Fix any 1 ≤ j ≤ p. In light of (16),

we have β − β0 = An
−1(ξ − r), which results in

An
−1

jj
−1/2 β j − β0, j = An

−1
jj
−1/2ejTAn

−1ξ − An
−1

jj
−1/2ejTAn

−1r (20)

with ej ∈ ℝp having one for the jth component and zero otherwise. Note that since the

smallest and largest eigenvalues of n−1An are bounded away from 0 and ∞ by Condition 2,

it is easy to show that An
−1

jj
−1/2

 is of exact order n1/2. In view of (17), it holds on the event

ℰ defined in (12) that

An−1r ∞ ≤ XTΣ θ0 X −1
∞ r ∞

= O bnpn−2γ(logn)2 = o n−1/2 ,

since bn = o n2γ − α0 − 1/2/(logn)2  by assumption. This leads to

An
−1

jj
−1/2ejTAn

−1r = O n1/2 ⋅ oP n−1/2 = oP(1) . (21)

It remains to consider the term An
−1

jj
−1/2ejTAn

−1ξ = ∑i = 1
n ηi, where

ηi = An
−1

jj
−1/2ejTAn

−1zi yi − b′ θ0, i . Clearly, the n random variables ηi’s are independent

with mean 0 and

∑
i = 1

n
var ηi = An−1

jj
−1ejTAn−1 ϕAn An−1ej = ϕ .

It follows from Condition 2 and the Cauchy–Schwarz inequality that
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∑
i = 1

n
E ηi

3 = ∑
i = 1

n
An−1

jj
−1/2ejTAn−1zi

3
E yi − b′ θ0, i

3

= O(1) ∑
i = 1

n
An−1

jj
−1/2ejTAn−1zi

3

≤ O(1) ∑
i = 1

n
An−1

jj
−1/2ejTAn−1/2

2
3

An−1/2zi 2
3

= O(1) ∑
i = 1

n
ziTAn−1zi

3/2 = o(1) .

Thus an application of Lyapunov’s theorem yields

An
−1

jj
−1/2ejTAn

−1ξ = ∑
i = 1

n
ηi

D N(0, ϕ) . (22)

By Slutsky’s lemma, we see from (20)–(22) that

An−1
jj
−1/2 βj − β0, j

D N(0, ϕ),

showing the asymptotic normality of each component β j of the MLE β.

We further establish the asymptotic normality for the one-dimensional projections of the

MLE β. Fix an arbitrary vector u ∈ ℝp with ‖u‖2 = 1 satisfying the L1 sparsity bound ‖u‖1 =

O(sn). In light of (16), we have β − β0 = An
−1 ξ − r , which results in

uTAn
−1u −1/2 uTβ − uTβ0 = uTAn

−1u −1/2uTAn
−1ξ − uTAn

−1u −1/2uTAn
−1r . (23)

Note that since the smallest and largest eigenvalues of n−1An are bounded away from 0 and

∞ by Condition 2, it is easy to show that uTAn
−1u −1/2

 is of exact order n1/2. In view of

(17), it holds on the event ℰ defined in (12) that

An−1r ∞ ≤ XTΣ θ0 X −1
∞ r ∞

= O bnpn−2γ(logn)2 = o sn−1n−1/2

since bn = o sn−1n2γ − α0 − 1/2/ logn 2  by assumption. This leads to

uTAn
−1u −1/2uTAn

−1r = O n1/2 ⋅ u 1 ⋅ An
−1r ∞ = oP(1) (24)

since ‖u‖1 = O(sn) by assumption.
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It remains to consider the term uTAn
−1u −1/2uTAn

−1ξ = ∑i = 1
n ηi with

ηi = uTAn
−1u −1/2uTAn

−1zi yi − b′ θ0, i . Clearly, the n random variables ηi’s are independent

with mean 0 and

∑
i = 1

n
var ηi = uTAn−1u −1uTAn−1 ϕAn An−1u = ϕ .

It follows from Condition 2 and the Cauchy–Schwarz inequality that

∑
i = 1

n
E ηi

3 = ∑
i = 1

n
uTAn−1u −1/2uTAn−1zi

3
E yi − b′ θ0, i

3

= O(1) ∑
i = 1

n
uTAn−1u −1/2uTAn−1zi

3

≤ O(1) ∑
i = 1

n
uTAn−1u −1/2uTAn−1/2

2
3

An−1/2zi 2
3

= O(1) ∑
i = 1

n
ziTAn−1zi

3/2 = o(1) .

Thus an application of Lyapunov’s theorem yields

uTAn
−1u −1/2uTAn

−1ξ = ∑
i = 1

n
ηi

D N(0, ϕ) . (25)

By Slutsky’s lemma, we see from (23)–(25) that

uTAn−1u −1/2 uTβ − uTβ0
D N(0, ϕ),

showing the asymptotic normality of any L1-sparse one-dimensional projection uTβ of the

MLE β. This completes the proof of Theorem 1.

B.2. Proof of Theorem 4

The proof is similar to that for Theorem 1. Without loss of generality, we assume that Σ
= Ip because under global null, a rotation of X yields standard normal rows. First let ξ =

(ξ1, ⋯ , ξp)T = (XTX)−1XT[y − μ0], where μ0 = b′ (0)1 with 1 = 1, ⋯, 1 T ∈ ℝn because

β0 = 0. Then y – μ0 has i.i.d. uniform sub-Gaussian components and is independent of

X = z1, ⋯, zp ∈ ℝn × p. Define event

ℰ = ξ ∞ ≤ c2 n−1logn .

By Lemma 5, it is seen that P (ℰ) ≥ 1 − o p−a . Furthermore, define the neighborhood
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N0 = β ∞ ≤ c3 n−1 logn (26)

for some c3 > c2(b″ (0))−1. We next show that the MLE must fall into the region N0 with

probability at least 1 − O(p−a) following the similar arguments in Theorem 1.

First, we define

γ(β) = γ1(β), ⋯, γp(β) T ≡ XTμ(Xβ)

and

Ψ(β) = γ(β) − γ β0 − XT y − μ0 , β ∈ ℝp .

Applying a forth order Taylor expansion of γ(β) around β0 = 0 with the Lagrange remainder

term componentwise leads to

γ(β) = γ β0 + b″(0)XTX β − β0 + r + s + t,

where r = (r1, ⋯ , rp)T, s = (s1, ⋯ , sp)T, t = (t1, ⋯ , tp)T and for each 1 ≤ j ≤ p,

rj = b‴(0)
2 ∑

i = 1

n
xij xiTβ 2

(27)

sj = b(4)(0)
6 ∑

i = 1

n
xij xiTβ 3

(28)

tj = 1
24 ∑

i = 1

n
b(5) xiTβj xij xiTβ 4 . (29)

With βj some p-dimensional vector lying on the line segment joining β and β0.

Let us define another vector-valued function

Ψ(β) ≡ b″(0)XTX −1Ψ(β) = β − β0 + u, (30)

where u = −(b″ (0))−1ξ + [b″ (0)XTX]−1(r + s + t). It follows from the above derivation that

for any β ∈ N0,

u ∞ ≤ b″(0) −1ξ ∞ + b″(0)XTX −1(r + s + t) ∞ .
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Now, we bound the terms on the right hand side.

First note that on event ℰ,

b″(0) −1ξ ∞ ≤ b″(0) −1c2 n logn . (31)

Then, we consider the next term: b″(0)XTX −1(r + s + t) ∞. We observe that

b″(0)XTX −1(r + s + t) ∞ ≤ b″(0) −1 n−1XTX −1
∞ n−1(r + s + t) ∞

≤ b″(0) −1 n−1XTX −1
∞

⋅ n−1r ∞ + n−1s ∞ + n−1t ∞ .

By Lemma 6, we have that n−1XTX −1
∞ ≤ 1 + O pn−1/2 . Lemmas 10, 11, 12 assert that

n−1r ∞ + n−1s ∞ + n−1t ∞
= nα − 5/6 logn + n3/2α − 5/4(logn)3/2 + nα − 1(logn)1/2 + n2α − 3/2(logn)3/2 n−1logn .

We combine last two bounds so that we have

b″(0)XTX −1(r + s + t) ∞ = o( n−1 logn) (32)

with probability at least 1 − o(p−c) when p = O(nα) with α < 2/3.

Combining equations (31) and (32), we obtain that if p = O(nα) with α ∈ [0, 2/3), then

u ∞ ≤ c3 n−1logn .

Thus, the MLE must fall into the region N0 following the similar arguments in Theorem 1.

Next, we show the componentwise asymptotic normality of the MLE β. By equation (30),

we have β = − u = b″(0) −1 XTX −1XT y − μ0 − b″(0)XTX −1(r + s + t). So, we can write

β j = b″(0) −1n−1ejTXT y − μ0 + b″(0) −1T − ejT b″(0)XTX −1(r + s + t) (33)

where T = ejT XTX −1XT y − μ0 − n−1ejTXT y − μ0 . By Lemma 13 and Equation (32),

both n1/2(b″ (0))−1T and n1/2ejT b″(0)XTX −1(r + s + t) converges to zero in probability.

So, it is enough to consider the first summand in (33). Now, we show that

n−1/2ejTXT y − μ0  is asymptotically normal. In fact, we can write ejTXT y − μ0 = ∑i = 1
n xijyi

where each summand xijyi is independent over i and has variance ϕb″ (0). Moreover,
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∑i = 1
n E xijyi

3 = O(n) since |xij|3 and |yi|3 are independent and finite mean. So, we apply

Lyapunov’s theorem to obtain b″ 0 −1/2n−1/2ejTXT y − μ0
D N 0, ϕ . Finally, we know that

b″(0)n An
−1

jj 1 in probability from the remark in Theorem 1. Thus, Slutsky’s lemma

yields

An
−1

jj
−1/2β j

D N(0, ϕ) . (34)

This completes the proof of the theorem.

Lemma 5

Assume that the components of y − μ0 are uniform sub-Gaussians. That is, there exist a

positive constant C such that P(|(y − μ0)i| > t) ≤ C exp {−Ct2} for all 1 ≤ i ≤ n. Then, it holds

that, for some positive constant c2,

XTX −1XT y − μ0 ∞ ≤ c2 n−1logn .

with asymptotic probability 1 − o(p−a).

Proof We prove the result by conditioning on X. Let E = n−1XTX − Ip. Then by matrix

inversion,

n−1XTX −1 = Ip + E −1 = Ip − ∑
k = 1

∞
−1 k + 1 E k

= Ip − E + ∑
k = 2

∞
−1 k E k = 2Ip − n−1XTX + ∑

k = 2

∞
−1 k E k .

Thus, it follows that

XTX −1XT y − μ0 ∞

≤ 2n−1XT y − μ0 ∞ + n−2XTXXT y − μ0 ∞ + n−1 ∑
k = 2

∞
( − 1)k(E)kXT y − μ0

∞
= η1 + η2 + η3 .

In the rest of the proof, we will bound η1, η2 and η3.

Part 1: Bound of η1.

First, it is easy to see that

η1 = 2n−1XT y − μ0 ∞

= 2 max
1 ≤ j ≤ p

n−1 ∑
i = 1

n
xij y − μ0 i .
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We observe that each summand xij(y − μ0)i is the product of two subgaussian random

variables, and so satisfies P(|xij(y − μ0)i| > t) ≤ C exp(−Ct) for some constant C > 0 by

Lemma 1 in Fan et al. (2016). Moreover, E[xij(y − μ0)i] = 0 since xij and (y − μ0)i are

independent and have zero mean. Thus, we can use Lemma 9 by setting Wij = xij(y − μ0)i

and α = 1. So, we get

η1 = 2 max
1 ≤ j ≤ p

n−1 ∑
i = 1

n
xij y − μ0 i ≤ c2 n−1 log p (35)

with probability 1 − O(p−c) for some positive constants c and c2.

Part 2: Bound of η2.

Now, we study η2 = ‖n−2XTXXT(y − μ0)‖∞. Let zk be the k-th column of X, that is zk = Xek.

Direct calculations yield

ek
TXTXXT y − μ0 = ∑

j = 1

p
zk
Tzj zjT y − μ0 = zk 2

2zk
T y − μ0 + ∑

j ≠ k

p
zk
Tzj zjT y − μ0 .

Thus, it follows that

XTXXT y − μ0 ∞ ≤ maxk zk 2
2zk

T y − μ0 + max
k

∑
j ≠ k

p
zk

Tzj zjT y − μ0 . (36)

First, we consier maxk zk 2
2zk

T y − μ0 . Lemma 14 shows that maxk zk 2
2 ≤ O(n) with

probability 1 − O(p−c). We also have maxk zk
T y − μ0 = n

2η1 ≤ O n log p  by equation (35). It

follows that

max
k

zk 2
2zk

T y − μ0 ≤ maxk zk
2

2maxk zk
T y − μ0 ≤ O(n n log p) . (37)

Next, let aj = zk
Tzj/ zk 2 and bj = zjT y − μ0 / y − μ0 2. Then it is easy to

see that conditional on zk and y, aj ~ N(0, 1), bj ~ N(0, 1) and

cov aj, bj |zk, y = zk
T y − μ0 / zk 2 y − μ0 2 . By (E.6) of Lemma 7 in Fan et al. (2016),

it can be shown that

P 1
p − 1 ∑

j ≠ k

p
zk
Tzj zjT y − μ0 − zk

T y − μ0 ≥ c zk 2 y − μ0 2 p−1log p zk, y

= P 1
p − 1 ∑

j ≠ k

p
ajbj −

zk
T y − μ0

zk 2 y − μ0 2
≥ c p−1log p zk, y ≤ cp−c1,

where c1 is some large positive constant independent of zk and y. Moreover, we can choose

c1 as large as we want by increasing c. Thus, it follows that
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P 1
p − 1 ∑

j ≠ k

p
zk
Tzj zjT y − μ0 − zk

T y − μ0 ≥ c zk 2 y − μ0 2 p−1log p ≤ cp−c1 .

It follows from probability union bound that

P 1
p − 1maxk

1
zk 2 y − μ0 2

∑
j ≠ k

p
zk
Tzj zjT y − μ0 − zk

T y − μ0 ≥ c p−1log p ≤ cp−c1 + 1 .

Taking c1 > 1 yields that with probability at least 1 − o(p−a) for some a > 0,

max
k

1
zk 2 y − μ0 2

1
p − 1 ∑

j ≠ k

p
zk
Tzj zjT y − μ0 − zk

T y − μ0 ≤ c p−1log p .

By Lemma 14, we have maxk zk 2 = maxk zk 2
2 ≤ Op n . Therefore, by using the fact that

y − μ0 2 ≤ Op n , we have

max
k

∑
j ≠ k

p
zk

Tzj zjT y − μ0

≤ max
k

∑
j ≠ k

p
zk

Tzj zjT y − μ0 − (p − 1)zk
T y − μ0 + (p − 1)max

k
zk

T y − μ0

≤ pmax
k

zk 2 y − μ0 2max
k

1
zk 2 y − μ0 2

1
p − 1 ∑

j ≠ k

p
zk

Tzj zjT y − μ0 − zk
T y − μ0 + pmax

k
zk

T y − μ0

≤ cpn log p p−1 log p + cp n log p .

(38)

Combining (36)–(38) yields

η2 = n−2XTXXT y − μ0 ∞ ≤ cp1/2n−1 log p = o( n−1 logn) . (39)

Part 3: Bound of η3.

Finally, we study η3. We observe that η3 ≤ ∑k = 2
∞ −1 k + 1 E k

∞ n−1XT y − μ0 ∞.

Lemma 7 proves that ∑k = 2
∞ −1 k + 1 E k

∞ ≤ O p3/2n−1  while equation (35) shows that

n−1XT y − μ0 ∞ = O n−1 log p  with probability 1 − O(p−c). Putting these facts together,

we obtain

η3 ≤ O p3/2n−1 n−1 log p = o( n−1 logn) (40)

where we use p = O nα0  with α0 ∈ [0, 2/3).
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Combining equations (35), (39), and (40), we obtain that with probability at least 1 − o(p−a),

XTX −1XT y − μ0 ∞ ≤ c n−1log n .

■

Lemma 6

Under the assumptions of Theorem 4, ‖(n−1XTX)−1‖∞ ≤ 1 + O(pn−1/2) with probability 1 −

O(p−c).

Proof Let E = n−1XTX − Ip. Then, ‖E‖2 ≤ C(p/n)1/2 for some constant C with probability 1 −

O(p−c) by Theorem 4.6.1 in Vershynin (2016). Furthermore, by matrix inversion, we get

n−1XTX −1 = Ip + E −1 = Ip − ∑
k = 1

∞
−1 k + 1 E k .

Now, we take the norm and use triangle inequalities to get

n−1XTX −1
∞ ≤ Ip ∞ + ∑

k = 1

∞
Ek ∞ ≤ 1 + p1/2 ∑

k = 1

∞
Ek 2

≤ 1 + p1/2 ∑
k = 1

∞
E 2

k ≤ 1 + Cp1/2 ∑
k = 1

∞
p/n 1/2 k

≤ 1 + Cp1/2 p/n 1/2

where we use the fact that p/n is bounded by a constant less than 1. ■

Lemma 7

In the same setting as Lemma 6, if E = n−1XTX−Ip then

∑k = 2
∞ −1 k + 1 E k

∞ ≤ Cp3/2n−1, with probability 1 − O(p−c).

Proof Again, we use that ‖E‖2 ≤ C(p/n)1/2 for some constant C with probability 1 − O(p−c).

By similar calculations as in Lemma 6, we deduce

∑
k = 2

∞
−1 k + 1 E k

∞
≤ ∑

k = 2

∞
−1 k + 1 E k ∞ ≤ ∑

k = 2

∞
p1/2 E k 2

= ∑
k = 2

∞
p1/2 E

2

k
≤ ∑

k = 2

∞
p1/2 p/n k/2 ≤ Cp3/2n−1 .

■

Lemma 8

Let Wj be nonnegative random variables for 1 ≤ j ≤ p that are not necessarily independent.

If P (Wj > t) ≤ C1 exp(−C2ant2) for some constants C1 and C2 and for some sequence an,
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then for any c > 0, max1 ≤ j ≤ pW j ≤ (c + 1)/C2
1/2an−1/2 log p 1/2 with probability at least 1

− O(p−c).

Proof Using union bound, we get

P max
1 ≤ j ≤ p

W j > t ≤ ∑
1 ≤ j ≤ p

P W j > t ≤ pC1exp −C2ant2 .

Taking t = an−1/2 log p 1/2 (c + 1)/C2
1/2 concludes the proof since then

P max
1 ≤ j ≤ p

W j > an−1/2 log p 1/2 (c + 1)/C2 1/2 ≤ C1p−c .

■

Lemma 9

Let Wij be random variables which are independent over the index i. Assume that there

are constants C1 and C2 such that P W ij > t ≤ C1exp −C2tα  with 0 < α ≤ 1. Then, with

probability 1 − O(p−c),

max
0 ≤ j ≤ p

n−1 ∑
i = 1

n
W ij − EW ij ≤ Cn−(1/2)α(log p)1/2,

for some positive constants c and C.

Proof We have P n−1∑i = 1
n W ij − EW ij > t ≤ C3exp −C4nαt2  by Lemma 6 of Fan et al.

(2016) where C3 and C4 are some positive constants which only depend on C1 and C2. This

probability bound shows that the assumption of Lemma 8 holds with an = nα. Thus, Lemma

8 finishes the proof. ■

Lemma 10

With probability 1 − O(p−c), the vector r defined in (27) satisfies the bound

n−1r ∞ = O nα − 5/6logn n−1logn .

Proof We begin by observing that both xij and xiTβ / β 2  are standard normal variables. So,

using Lemma 1 of Fan et al. (2016), we have P xij xiTβ / β 2
2 > t ≤ C exp −Ct2/3  for some

constant C which does not depend β. It is easy to see that xij xiTβ 2 are independent random

variables across i’s with mean 0. By Lemma 9, max1 ≤ j ≤ p n−1∑i = 1
n xij

xiTβ
β 2

2
 is of order

O(n−1/3(log p)1/2). Moreover, β 2 ≤ p1/2 β ∞ ≤ O p1/2 n−1 logn  when β ∈ N0. Therefore,
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n−1r ∞ = max
1 ≤ j ≤ p

b(3)(0)
2 ‖β‖2

2n−1 ∑
i = 1

n
xij xiTβ / β 2

2

≤ Cpn−1 logn n−1/3 log p 1/2 = Cnα − 4/3 logn 3/2

= O nα − 5/6 logn n−1logn ,

since p = O(nα). ■

Lemma 11

With probability 1 − O(p−c), the vector s defined in (28) satisfies the bound

n−1s ∞ = O n3/2α − 5/4 logn 3/2 + nα − 1 logn 1/2 n−1 logn .

Proof First, observe that for some constant C, n−1sj ≤ C‖β‖2
3n−1∑i = 1

n xij
xiTβ
β 2

3
.

Moreover, the summands xij
xiTβ
β 2

3
 are independent over i and they satisfy the probability

bound P xij
xiTβ
β 2

3
> t ≤ Cexp −Ct1/2  by Lemma 1 of Fan et al. (2016). Thus, by Lemma

9, we obtain

max
1 ≤ j ≤ p

n−1 ∑
i = 1

n
xij

xiTβ
β 2

3
− E xij

xiTβ
β 2

3
= O n−1/4 log p 1/2 .

Now, we calculate the expected value of the summand xij
XiTβ
β 2

3
. We decompose Xi

Tβ as

xijβj + xi, − jT β−j where xi,−j and β−j are the vectors xi and β whose jth entry is removed. We

use the independence of xi,−j and xij and get

E xij
xiTβ
β 2

3
= 1

β 2
3E xij xijβj + xi, − jT β−j

3

= 1
β 2

3E xij4 βj
3 + 3xij

3 βj2 xi, − jT β−j + 3xij2 βj xi, − jT β−j
2 + xij xi, − jT β−j

3

= 1
β 2

3 3βj
3 + 3βj β−j 2

2

=
3βj
β 2

.

Finally, we can combine the result of Lemma 9 and the expected value of xij
xiTβ
β 2

3
. we

bound ‖n−1s‖∞ as follows
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n−1s ∞ ≤ C‖β‖2
3 max
1 ≤ j ≤ p

n−1 ∑
i = 1

n
xij

xiTβ
β 2

3

≤ O ‖β‖2
3 n−1/4 log p 1/2 +

β ∞
β 2

≤ O β 2
3n−1/4 log p 1/2 + β ∞ β 2

2 .

Since β ∈ N0, we have ‖β‖2 = O(p1/2n−1/2(log p)1/2) and ‖β‖∞ = O(n−1/2(log p)1/2). Thus,

n−1s ∞ = O n3/2α − 5/4 logn 3/2 + nα − 1 logn 1/2 n−1logn  when p = O(nα). ■

Lemma 12

With probability 1 − O(p−c), the vector t defined in (29) satisfies the bound

n−1t ∞ = O n2α − 3/2 logn 3/2 n−1logn .

Proof The proof is similar to the proof of Lemma 11. Since b(5)(·) is uniformly bounded,

n−1tj ≤ C‖β‖2
4n−1∑i = 1

n xij
xiTβ
β 2

4
 for some constant C. We focus on the summands

xij
xiTβ
β 2

4
 which are independent across i. Moreover, repeated application of Lemma

1 of Fan et al. (2016) yields P xij xiTβ / β 2
2 > t ≤ Cexp −Ct2/5  for some constant C

independent of β. We can bound the expected value of the summand by Cauchy-Schwartz:

E xij
xiTβ
β 2

4
≤ Exij2 E

xiTβ
β 2

8 1/2
= 105. So, by Lemma 9, we get

n−1t ∞ ≤ C‖β‖2
4 105 + n−1/5(log p)1/2

= O β 2
4 = O p2n−2(logn)2 .

Finally, we can deduce that n−1t ∞ = O n2α − 3/2 logn 3/2 n−1logn  when p = O(nα). ■

Lemma 13

Let T = ejT XTX −1XT y − μ0 − n−1ejTXT y − μ0 . Under the assumptions of Theorem 4, we

have

ejT XTX −1XT y − μ0 − n−1ejTXT y − μ0 = op n−1/2 . (41)

Proof Since X and y are independent, expectation of T is clearly zero. Then, we consider the

variance of T. To this end, we condition on X. We can calculate the conditional variance of T
as follows
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var[T |X] = var ejT XTX −1 − n−1Ip XT y − μ0 |X

= ϕb″(0)ejT XTX −1 − n−1Ip XTX XTX −1 − n−1Ip ej

where we use var[y] = ϕb″ (0)In. When we define E = n−1XTX − Ip, simple calculations

show that

Var[T |X] = ϕb″(0)n−1ejT n−1XTX −1 − Ip + n−1XTX − Ip ej

= ϕb″(0)n−1ejT ∑
k = 2

∞
−1 kEk ej .

Now, we can obtain the unconditional variance using the law of total variance.

var[T ] = E[var[T |X]] + var[E[T |X]]

= ϕb″(0)n−1ejTE ∑
k = 2

∞
−1 kEk ej .

Thus, using Lemma 7, we can show that var[T] = o(n−1). Finally, we use Chebyshev’s

inequality P(|T| > n−1/2) ≤ nvar[T] = o(1). So, we conclude that T = o (n−1/2) ■

Lemma 14

Let xij be standard normal random variables for 1 ≤ i ≤ n and 1 ≤ j ≤ p. Then,

max1 ≤ j ≤ p∑i = 1
n xij2 ≤ n + O n1/2 logp 1/2  with probability 1 − O(p−c) for some positive

constant c. Consequently, when log p = O(nα) for some 0 < α ≤ 1, we have

max1 ≤ j ≤ p∑i = 1
n xij2 = O(n), for large enough n with probability 1 – O(p−c).

Proof Since xij is a standard normal variable, xij2  is subexponential random variable whose

mean is 1. So, Lemma 9 entails that

max
1 ≤ j ≤ p

n−1 ∑
i = 1

n
xij2 − 1 = O n−1/2(logp)1/2

with probability 1 − O(p−c). Thus, simple calculations yields

max
1 ≤ j ≤ p

∑
i = 1

n
xij2 = max

1 ≤ j ≤ p
n + ∑

i = 1

n
xij2 − 1 ≤ n + O n1/2 logp 1/2

with probability 1 − O(p−c). ■
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B.3. Proof of Theorem 2

To prove the conclusion in Theorem 2, we use the proof by contradiction. Let us make an

assumption (A) that the asymptotic normality (11) in Theorem 1 which has been proved to

hold when p = o(n1/2) continues to hold when p ~ nα0 for some constant 1/2 < α0 ≤ 1, where

~ stands for asymptotic order. As shown in Section 3.1, in the case of logistic regression

under global null (that is, β0 = 0) with deterministic rescaled orthonormal design matrix X
(in the sense of n−1XTX = Ip) the limiting distribution in (11) by assumption (A) becomes

2−1n1/2β j
D N(0, 1), (42)

where β = β1, ⋯, β p
T  is the MLE.

Let us now assume that the rescaled random design matrix n−1/2X is uniformly distributed

on the Stiefel manifold V p ℝn  which can be thought of as the space of all n × p orthonormal

matrices. Then it follows from (42) that

2−1n1/2β j
D N(0, 1)conditionalonX . (43)

Based on the limiting distribution in (43), we can make two observations. First, it holds that

2−1n1/2β j
D N 0, 1 (44)

unconditional on the design matrix X. Second, β j is asymptotically independent of the

design matrix X, and so is the MLE β.

Since the distribution of n−1/2X is assumed to be the Haar measure on the Stiefel manifold

V p ℝn , we have

n−1/2XQ =d n−1/2X, (45)

where Q is any fixed p × p orthogonal matrix and =d  stands for equal in distribution. Recall

that the MLE β solves the score equation (4), which is in turn equivalent to equation

QTXT[y − μ(Xβ)] = 0 (46)

since Q is orthogonal. We now use the fact that the model is under global null which entails

that the response vector y is independent of the design matrix X. Combining this fact with

(45)–(46) yields

QTβ =d β (47)

by noting that Xβ = (XQ)(QT β). Since the distributional identity (47) holds for any fixed p

× p orthogonal matrix Q, we conclude that the MLE β has a spherical distribution on ℝp. It
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is a well-known fact that all the marginal characteristic functions of a spherical distribution

have the same generator. Such a fact along with (44) entails that

2−1n1/2β isasymptoticallyclosetoN 0, Ip . (48)

To simplify the exposition, let us now make the asymptotic limit exact and assume that

β N 0, 4n−1Ip andis independentof X . (49)

The remaining analysis focuses on the score equation (4) which is solved exactly by the

MLE β, that is,

XT[y − μ(Xβ)] = 0, (50)

which leads to

ξ ≡ n−1/2XT[y − μ(0)] = n−1/2XT[μ(Xβ) − μ(0)] ≡ η . (51)

Let us first consider the random variable ξ defined in (51). Note that 2[y − μ(0)] has

independent and identically distributed (i.i.d.) components each taking value 1 or −1 with

equal probability 1/2, and is independent of X. Thus since n−1/2X is uniformly distributed on

the Stiefel manifold V p ℝn , it is easy to see that

ξ = n−1/2XT[y − μ(0)] =
d

2−1n−1/2XT1, (52)

where 1 ∈ ℝn is a vector with all components being one. Using similar arguments as before,

we can show that ξ has a spherical distribution on ℝp. Thus the joint distribution of ξ is

determined completely by the marginal distribution of ξ. For each 1 ≤ j ≤ p, denote by ξj

the jth component of ξ = 2−1n−1/2XT1 using the distributional representation in (52). Let X =

(x1, ⋯ , xp) with each xj ∈ ℝn. Then we have

ξj = 2−1n−1/2xjT1 =d 2−1 n1/2/ xj 2 n−1/2xj
T1, (53)

where xj N 0, 4−1In . It follows from (53) and the concentration phenomenon of Gaussian

measures that each ξj is asymptotically close to N(0, 4−1) and thus consequently ξ is

asymptotically close to N(0, 4−1 Ip). A key fact (i) for the finite-sample distribution of ξ is
that the standard deviation of each component ξj converges to 1/2 at rate Op(n−1/2) that does
not depend upon the dimensionality p at all.

We now turn our attention to the second term η defined in (51). In view of (49) and the fact

that n−1/2X is uniformly distributed on the Stiefel manifold V p ℝn , we can show that with

significant probability,
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Xβ ∞ ≤ o(1) (54)

for p nα0 with α0 < 1. The uniform bound in (54) enables us to apply the mean value

theorem for the vector-valued function η around β0 = 0, which results in

η = n−1/2XT[μ(Xβ) − μ(0)] = 4−1n−1/2XTXβ + r
= 4−1n1/2β + r

(55)

since n−1/2X is assumed to be orthonormal, where

r = n−1/2XT ∫
0

1
Σ(tXβ) − 4−1In dt Xβ . (56)

Here, the remainder term r = r1, ⋯, rp
T ∈ ℝp is stochastic and each component rj is

generally of order Op{p1/2n−1/2} in light of (49) when the true model may deviate from

the global null case of β0 = 0.

Since our focus in this theorem is the logistic regression model under the global null, we can

in fact claim that each component rj is generally of order Op{pn−1}, which is a better rate of

convergence than the one mentioned above thanks to the assumption of β0 = 0. To prove this

claim, note that the variance function b″(·) is symmetric in θ ∈ ℝ and takes the maximum

value 1/4 at θ = 0. Thus in view of (54), we can show that with significant probability,

4−1In − Σ(tXβ) ≥ cdiag (tXβ) ∘ (tXβ) = ct2diag (Xβ) ∘ (Xβ) (57)

for all t ∈ [0, 1], where c > 0 is some constant and ≥ stands for the inequality for

positive semidefinite matrices. Moreover, it follows from (49) and the fact that n−1/2X is

uniformly distributed on the Stiefel manifold V p ℝn  that with significant probability, all the

n components of Xβ are concentrated in the order of p1/2n−1/2. This result along with (57)

and the fact that n−1XTX = Ip entails that with significant probability,

n−1/2XT ∫
0

1
4−1In − Σ(tXβ) dt X

≥ n−1/2XT ∫
0

1
c*t2pn−1dt X

= 3−1c*pn−3/2XTX = 3−1c*pn−1/2Ip,

(58)

where c* > 0 is some constant. Thus combining (56), (58), and (49) proves the above claim.

We make two important observations about the remainder term r in (55). First, r has a

spherical distribution on ℝp. This is because by (55) and (51) it holds that

r = η − 4−1n1/2β = ξ − 4−1n1/2β,
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which has a spherical distribution on ℝp. Thus the joint distribution of r is determined

completely by the marginal distribution of r. Second, for the nonlinear setting of logistic

regression model, the appearance of the remainder term r in (55) is due solely to the
nonlinearity of the mean function μ(·), and we have shown that each component rj can

indeed achieve the worst-case order pn−1 in probability. For each 1 ≤ j ≤ p, denote by ηj

the jth component of η. Then in view of (49) and (55), a key fact (ii) for the finite-sample
distribution of η is that the standard deviation of each component ηj converges to 1/2 at rate
OP{pn−1} that generally does depend upon the dimensionality p.

Finally, we are ready to compare the two random variables ξ and η on the two sides

of equation (51). Since equation (51) is a distributional identity in ℝp, naturally the

square root of the sum of varξj’s and the square root of the sum of varηj’s are expected

to converge to the common value 2−1p1/2 at rates that are asymptotically negligible.

However, the former has rate p1/2OP(n−1/2) = Op{p1/2n−1/2}, whereas the latter has rate

p1/2OP{pn−1} = OP{p3/2n−1}. A key consequence is that when p nα0 for some constant the

former rate is OP n− 1 − α0 /2 = oP(1), while the latter rate becomes OP n3α0/2 − 1  which

is now asymptotically diverging or nonvanishing. Such an intrinsic asymptotic difference is,

however, prohibited by the distributional identity (51) in ℝp, which results in a contradiction.

Therefore, we have now argued that assumption (A) we started with for 2/3 ≤ α0 < 1 must be

false, that is, the asymptotic normality (11) which has been proved to hold when p = o(n1/2)

generally would not continue to hold when p nα0 with constant 2/3 ≤ α0 ≤ 1. In other words,

we have proved the invalidity of the conventional GLM p-values in this regime of diverging

dimensionality, which concludes the proof of Theorem 2.

B.4. Proof of Theorem 3

By assumption, X ~ N(0, In ⊗ Σ) with covariance matrix Σ nonsingular. Let us first

make a useful observation. For the general case of nonsingular covariance matrix Σ, we

can introduce a change of variable by letting β = Σ1/2β and correspondingly X = XΣ−1/2.

Clearly, X N 0, In ⊗ Ip  and the MLE for the transformed parameter vector β is exactly

Σ1/2β, where β denotes the MLE under the original design matrix X. Thus to show the

breakdown point of the conventional asymptotic normality of the MLE, it suffices to focus

on the specific case of X ~ N(0, In ⊗ Ip).

Hereafter we assume that X ~ N(0, In ⊗ Ip) with p = o(n). The rest of the arguments are

similar to those in the proof of Theorem 2 in Section B.3 except for some modifications

needed for the case of Gaussian design. Specifically, for the case of logistic regression

model under global null (that is, β0 = 0), the limiting distribution in (11) becomes

2−1n1/2β j
D N(0, 1), (59)

since n−1XTX → Ip almost surely in spectrum and thus 4−1n An
−1

jj 1 in probability as n

→ ∞. Here, we have used a claim that both the largest and smallest eigenvalues of n−1XTX
converge to 1 almost surely as n → ∞ for the case of p = o(n), which can be shown by using
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the classical results from random matrix theory (RMT) Geman (1980); Silverstein (1985);

Bai (1999).

Note that since X ~ N(0, In ⊗ Ip), it holds that

n−1/2XQ =d n−1/2X, (60)

where Q is any fixed p × p orthogonal matrix and =d  stands for equal in distribution. By X ~

N(0, In ⊗ Ip), it is also easy to see that

ξ = n−1/2XT[y − μ(0)] =d 2−1n−1/2XT1, (61)

where 1 ∈ ℝn is a vector with all components being one. In view of (49) and the assumption

of X ~ N(0, In ⊗ Ip), we can show that with significant probability,

‖Xβ‖∞ ≤ o 1 (62)

for p nα0 with constant α0 < 1. It holds further that with significant probability, all the n

components of Xβ are concentrated in the order of p1/2n−1/2. This result along with (57) and

the fact that n−1XTX → Ip almost surely in spectrum entails that with asymptotic probability

one,

n−1/2XT ∫
0

1
4−1In − Σ(tXβ) dt X

≥ n−1/2XT ∫
0

1
c*t2pn−1dt X

= 3−1c*pn−3/2XTX 3−1c*pn−1/2Ip,

(63)

where c* > 0 is some constant. This completes the proof of Theorem 3.

References

Anderson TW and Darling DA. Asymptotic theory of certain “goodness-of-fit” criteria based on
stochastic processes. Annals of Mathematical Statistics, 23:193–212, 1952.

Anderson TW and Darling DA. A test of goodness-of-fit. Journal of the American Statistical
Association, 49:765–769, 1954.

Athey Susan, Imbens Guido W., and Wager Stefan. Efficient inference of average treatment effects in
high dimensions via approximate residual balancing. arXiv preprint arXiv:1604.07125, 2016.

Bai ZD. Methodologies in spectral analysis of large dimensional random matrices, a review. Statist.
Sin, 9:611–677, 1999.

Barber Rina Foygel and Candès Emmanuel J.. Controlling the false discovery rate via knockoffs. Ann.
Statist, 43:2055–2085, 2015.

Bean Derek, Bickel Peter J., Karoui Noureddine E., and Yu Bin. Optimal M-estimation in high-
dimensional regression. Proceedings of the National Academy of Sciences of the United States of
America, 110:14563–14568, 2013. [PubMed: 23954907]

Candès EJ. Private communication. 2016.

Candès Emmanuel, Fan Yingying, Janson Lucas, and Lv Jinchi. Panning for gold: ‘model-X’
knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society
Series B, 80:551–577, 2018.

Fan et al. Page 32

J Mach Learn Res. Author manuscript; available in PMC 2020 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fan J and Peng H. Nonconcave penalized likelihood with diverging number of parameters. Ann.
Statist, 32:928–961, 2004.

Fan Jianqing and Lv Jinchi. Nonconcave penalized likelihood with NP-dimensionality. IEEE
Transactions on Information Theory, 57:5467–5484, 2011. [PubMed: 22287795]

Fan Y and Lv J. Asymptotic equivalence of regularization methods in thresholded parameter space.
Journal of the American Statistical Association, 108:1044–1061, 2013.

Fan Yingying, Kong Yinfei, Li Daoji, and Lv Jinchi. Interaction pursuit with feature screening and
selection. arXiv preprint arXiv:1605.08933, 2016.

Fan Yingying, Demirkaya Emre, Li Gaorong, and Lv Jinchi. RANK: large-scale inference with
graphical nonlinear knockoffs. Journal of the American Statistical Association, to appear, 2018.

Geman S. A limit theorem for the norm of random matrices. Ann. Probab, 8:252–261, 1980.

Guo Bin and Chen Song Xi. Tests for high dimensional generalized linear models. J. R. Statist. Soc. B,
78:1079–1102, 2016.

Huber PJ. Robust regression: Asymptotics, conjectures and Monte Carlo. The Annals of Statistics,
1:799–821, 1973.

Karoui Noureddine E., Bean Derek, Bickel Peter J., Lim Chinghway, and Yu Bin. On robust regression
with high-dimensional predictors. Proceedings of the National Academy of Sciences of the United
States of America, 110:14557–14562, 2013. [PubMed: 23954908]

Kolmogorov A. Sulla determinazione empirica di una legge di distribuzione. G. Ist. Ital. Attuari, 4:83–
91, 1933.

Lv J and Liu JS. Model selection principles in misspecified models. Journal of the Royal Statistical
Society Series B, 76:141–167, 2014.

McCullagh P and Nelder JA. Generalized Linear Models. Chapman and Hall, London, 1989.

Portnoy S. Asymptotic behavior of M-estimators of p regression parameters when p2/n is large. i.
consistency. The Annals of Statistics, 12:1298–1309, 1984.

Portnoy S. Asymptotic behavior of M-estimators of p regression parameters when p2/n is large; ii.
normal approximation. The Annals of Statistics, 13:1403–1417, 1985.

Portnoy S. Asymptotic behavior of likelihood methods for exponential families when the number of
parameters tends to infinity. The Annals of Statistics, 16:356–366, 1988.

Silverstein JW. The smallest eigenvalue of a large dimensional wishart matrix. Ann. Probab, 13:1364–
1368, 1985.

Smirnov N. Table for estimating the goodness of fit of empirical distributions. Annals of Mathematical
Statistics, 19:279–281, 1948.

Sur Pragya and Candès Emmanuel J. A modern maximum-likelihood theory for high-dimensional
logistic regression. arXiv preprint arXiv:1803.06964, 2018.

van de Geer Sara, Bühlmann Peter, Ritov Ya’acov, and Dezeure Ruben. On asymptotically optimal
confidence regions and tests for high-dimensional models. Ann. Statist, 42:1166–1202, 2014.

Vershynin Roman. High-dimensional probability. An Introduction with Applications, 2016.

Vrahatis Michael N. A short proof and a generalization of Miranda’s existence theorem. Proceedings
of the American Mathematical Society, 107:701–703, 1989.

Fan et al. Page 33

J Mach Learn Res. Author manuscript; available in PMC 2020 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1:
Results of KS and AD tests for testing the uniformity of GLM p-values in simulation

example 1 for diverging-dimensional logistic regression model with uniform orthonormal

design under global null. The vertical axis represents the p-value from the KS and AD tests,

and the horizontal axis stands for the growth rate α0 of dimensionality p = [nα0].
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Figure 2:
Results of KS and AD tests for testing the uniformity of GLM p-values in simulation

example 2 for diverging-dimensional logistic regression model with correlated Gaussian

design under global null for varying correlation level ρ. The vertical axis represents the

p-value from the KS and AD tests, and the horizontal axis stands for the growth rate α0 of

dimensionality p = [nα0].
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Figure 3:
Results of KS test for testing the uniformity of GLM p-values in simulation example 3 for

diverging-dimensional logistic regression model with uncorrelated Gaussian design under

global null for varying sparsity s. The vertical axis represents the p-value from the KS test,

and the horizontal axis stands for the growth rate α0 of dimensionality p = [nα0].
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Figure 4:
Histograms of null p-values in simulation example 1 from the first simulation repetition for

different growth rates α0 of dimensionality p = [nα0].
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Table 1:

Means and standard deviations (SD) for estimated probabilities of making type I error in simulation example 1

with α0 the growth rate of dimensionality p = [nα0]. Two significance levels a = 0.05 and 0.1 are considered.

α 0 0.10 0.47 0.57 0.67 0.77 0.87

a = 0.05 Mean 0.050 0.052 0.055 0.063 0.082 0.166

SD 0.006 0.007 0.007 0.007 0.001 0.011

a = 0.1 Mean 0.098 0.104 0.107 0.118 0.144 0.247

SD 0.008 0.010 0.009 0.011 0.012 0.013
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