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Abstract Marine organisms have been extensively explored
for the last several decades as potential sources of novel bio-
logically active compounds, and extensive research has been
conducted on lectins. Lectins derived from marine organisms
are structurally diverse and also differ from those identified
from terrestrial organisms. Marine lectins appear to be partic-
ularly useful in some biological applications. They seem to
induce negligible immunogenicity because they have a rela-
tively small size, are more stable due to extensive disulfide
bridge formation, and have high specificity for complex
glyco-conjugates and carbohydrates instead of simple sugars.
It is clear that many of them have not yet been extensively
studied when compared with their terrestrial counterparts.
Marine lectins can be used to design and develop new poten-
tially useful therapeutic agents. This review encompasses re-
cent research on the isolation and identification of marine
lectins with potential value in medicinal applications.
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Introduction

Lectins are proteins found in a diversity of species, from vi-
ruses to humans, though they have been isolated from many
higher plants. They are endowed with the ability to agglutinate

red blood cells with specific carbohydrate moiety as they have
a minimum of one noncatalytic domain that reversibly binds
that specific carbohydrate moiety. We have to investigate their
characteristics and structures in order to understand the di-
verse biological activities of lectins. However, when com-
pared with lectins from terrestrial higher plants, lectins from
marine species were purified and characterized at a much
slower pace. Lectins manifest an array of activities including
antitumor, antifungal, antibacterial, and antiviral activities and
other possiblemedicinal applications. Usually, lectins are clas-
sified according to their carbohydrate specificity, source, mo-
lecular structure, or amino acid sequence. Lectins frommarine
organisms are generally classified into C-type lectins, F-type
lectins, galectins, intelectins, and rhamnose-binding lectins
(for an excellent review on lectin classification, see Ogawa
et al. (2011)). Because of the considerable number of diversi-
fied lectins from marine resources, extra efforts are needed in
investigations of the structure–activity correlations and appli-
cation in medicinal uses from the marine lectins.

The oceans cover 70 % of the Earth’s surface and corre-
spond to 90 % of the biosphere. Marine species make up
around one half of the total global biodiversity; thus, the
oceans furnish a gigantic supply of novel compounds
(Aneiros and Garateix 2004). Not only do the seas contain
representative species of nearly all the main taxa, but they also
have a vast number of microbes and viruses. The microbial
and viral loads in natural marine habitats can attain 106 bac-
teria and 109 virus/ml of seawater, many of which are patho-
genic (Ammerman et al. 1984). The marine species have
evolved some kinds of tolerance or defense mechanisms that
enable them to combat the hostile environments. Accordingly,
over the history of evolution, marine organisms have devel-
oped a plethora of anti-infective molecules and strategies by
which they protect themselves against microbial and viral at-
tack.Marine organisms represent a rich hunting ground for the
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discovery of novel natural anti-infective agents. It is no sur-
prise, therefore, that much effort has been expended in identi-
fying and characterizing antimicrobial and antiviral factors
from these organisms. Of the many reports that have been
published so far, the majority have been concerned with small
molecules such as terpenoids, polyethers, polyketides, lipo-
proteins, and small antimicrobial peptides. However, macro-
molecules such as proteins, glycoproteins, and polysaccha-
rides also display potent antimicrobial and antiviral activities.
They are often not regarded as a part in the defense system of
the marine organisms but serve other biological roles, such as
cell surface receptors (Vasta and Ahmed 1996), participating
in intercellular interactions during the course of cell develop-
ment and differentiation (Kilpatrick 2002) and fulfilling a pro-
tective function as participants of the innate immunity (Sharon
and Lis 2004). These probably represent very ancient defense
principles that have been redeployed in new ways during evo-
lution (Smith et al. 2010).

Marine organisms are in direct contact with their environ-
ment, surrounded by high concentrations of pathogenic fungi,
bacteria, and viruses. Innate protective mechanisms are the
first line of defense against diseases (Ellis 2001). Lectins,
which agglutinate a number of pathogens, play an essential
role in host innate immunity. Lectins of various origins, in-
cluding marine lectins, can bind to the carbohydrate moieties
on the pathogen surfaces which are involved in attachment to
the integumental cells. Ottinger et al. (1999) purified a
mannose-binding lectin from Atlantic salmon serum which
displayed opsonizing activity for a virulent strain of
Aeromonas salmonicida. The macrophages were triggered
by these opsonized bacteria to produce an enhanced respira-
tory burst and kill these vulnerable bacteria. Fock et al. (2000)
purified an N-acetylgalactosamine-binding lectin from the
blue gourami serum. It exhibited opsonizing activity for an
Aeromonas hydrophila virulent strain. The opsonized bacteria
were killed in the presence of complement. Furthermore, su-
pernatants obtained from lectin-stimulated macrophage cul-
tures demonstrated significant bacterial-killing activities
(Fock et al. 2001).

Today, much attention is drawn to marine lectins, especial-
ly algae and cyanobacterial lectins, due to their manifestation
of antiviral activity. They are usually high mannose-binding
lectins and are promising compounds as potential drugs for
the prevention of transmission of various enveloped viruses.
The action of traditional antiviral therapeutics is based on
suppressing the virus life cycle, while lectins aim at preven-
tion of viral entry to the host cells and further viral propaga-
tion. The N-linked glycans on viral envelopes play a crucial
role in tertiary structure folding, invasion into susceptible host
cells, and escape from the host immune response. They bind
to the carbohydrate moieties on glycoprotein molecules on the
viral envelopes and block the association of virions with re-
ceptors on the host cell membrane (Balzarini et al. 2007).

High mannose N-glycans are mostly present on glycoproteins
such as glycoprotein 120 (gp120) in some enveloped viruses
which are involved in interaction with host cells. The gp120 is
a glycoprotein found on the HIV surface which is highly gly-
cosylated with high mannose glycans. It mediates viral infec-
tion through binding to the CD4 receptor directly (Li et al.
2008). Hepatitis C virus expresses a high level of mannose
oligosaccharides on its envelope glycoproteins (Duvet et al.
1998). The N-glycans of the SARS-CoV spike glycoprotein
are composed of high mannose glycans (Ritchie et al. 2010).
These high mannose glycans situated close to the receptor-
binding sites are attractive and promising targets for high
mannose-specific antiviral lectins. These high mannose-
specific lectins, which display a broad spectrum of antiviral
activities, can inhibit the initial steps of virus entry into the
host cells and prevent further infection (Huskens et al. 2010;
O’Keefe et al. 2010; Sato et al. 2011a, b).

Lectins modulate the premalignant and malignant cells in
their growth, proliferation, and apoptosis in vitro and in vivo.
Besides, they act as surface markers as well for apoptosis, cell
adhesion, mitogenicity, cytotoxicity, signal transduction
across membrane, and tumor cell recognition. Hence, lectins
can probably be used in diagnosis and treatment of cancer
(Ghazarian et al. 2011). It is well documented that lectins from
terrestrial plants have an antitumor effect. For example,
European mistletoe lectin has been studied for decades for
direct and indirect antitumor activity. Immunomodulatory ac-
tivity and cytotoxic activity toward tumor cells were found in
recombinant mistletoe lectin in in vitro and in vivo tests.
Positive results on tumor stabilization in clinical phase I stud-
ies have been reported (Zwierzina et al. 2011).

The interactions between proteins and carbohydrates
occupy an important part in the host defense system. Many
studies have demonstrated that some known immunological
processes involve glycobiological interactions. Lectins are
among the different types of compounds that acquire this
interaction with carbohydrates. Further investigations can
disclose more information about the biological functions of
lectins and provide more hints for design of therapeutics.
Studies conducted by investigators such as Monteiro Abreu
et al. (2012) disclosed that lectins from some marine algal
species like Solieria filiformis, Pterocladiella capillacea, and
Caulerpa cupressoides exhibited conspicuous anti-
inflammatory activity, and Viana et al. (2002) reported that
lectins from Bryothamnion seaforthii and Bryothamnion
triquetrum expressed antinociceptive activity. Thus, these re-
sults bring in a new element in the immune system research
with primary and practical implications.

Besides the aforementioned properties, it has been found
recently that lectins purified from marine species also demon-
strated antiparasitic (Moura et al. 2006; Nakamura et al.
2012) , ca rd iogenes i s (Ghaskadb i e t a l . 2008) ,
immunoenhancing (Lam and Ng 2002), immunomodulating
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(Merino-Contreras et al. 2001; Wang et al. 2013), mitogenic
(Dresch et al. 2012; Jiang et al. 2010), and vasorelaxing (Lima
et al. 2004) activities.

The abundance of medicine or drugs that have been isolat-
ed from terrestrial organisms is in sharp contrast to the scarcity
of medicine or drugs that have been obtained from marine
sources. It is clear that many marine organisms have not yet
been extensively studied and can serve as a huge source of
potential ready-made medicine or drugs. Moreover, a wide
spectrum of compounds has been obtained from marine spe-
cies. As they reside in a very tough and hostile environment
which is very different in many aspects from the terrestrial
habitat, there is a need for the production of specific and po-
tent compounds.

Though lectins from marine species are relatively new, in-
vestigations on their physiological roles and their applications
in different living systems are now becoming a hot issue. They
have been found in more than 300 species (for a comprehen-
sive review on marine lectin studies, see Chernikov et al.
(2013)), and most of their molecular structures, amino acid
sequences, and carbohydrate specificities have been defined.
The characteristics of some selected lectins mentioned in this
review are displayed in Table 1.

This review comprises a description of some of the recent
work on lectins from marine organisms, with an emphasis on
research aimed at development of the lectins in the direction of
medicinal applications.

Antibacterial activity

Innate immunity constitutes the first line of defense against
pathogens depending on the pattern recognition. Host pattern
recognition receptors can recognize microbial molecules that
are unique to groups of related microorganisms (McGreal
et al. 2004). These microbial molecules are often the cell wall
components of microbes, primarily carbohydrate chains such
as lipopolysaccharides, peptidoglycan, lipoteichoic acids, and
β-glucans (Medzhitov 2007). Lectins, as a key member of
pattern recognition receptors, could function as phagocytosis
receptors, soluble opsonins, and agglutinins to mediate pattern
recognition (Takano et al. 2008).

A 302-amino acid amphioxus intelectin homolog
AmphiITLN-like was cloned by Yan et al. (2012). In situ
hybridization studies revealed that AmphiITLN-like tran-
scripts were expressed in the skin and digestive tract in adult
amphioxus; the expression was upregulated upon challenge
with Staphylococcus aureus; and agglutination with Gram-
negative and Gram-positive bacteria. The agglutination was
usually achieved by the interaction of lectin with lipopolysac-
charide and peptidoglycan which are present on the cell walls
of Gram-negative and Gram-positive bacteria. An L-rham-
nose-binding lectin known as STL fromOncorhynchus mykiss
(steelhead trout) eggs recognized lipoteichoic acid and

lipopolysaccharides which are the major components of the
outer membranes of Gram-negative and Gram-positive bacte-
ria, respectively. It agglutinated Bacillus subtilis and
Escherichia coli K-12, and the binding was inhibited by L-
rhamnose (Tateno et al. 2002). Zhu et al. (2009) found an
Argopecten irradians (bay scallops) C-type lectin known as
AiLec using expressed sequence tag and rapid amplification
of cDNA ends techniques. The amino acid sequence of the
lectin had a high homology to those of the C-type lectins from
other animals. C-type lectins are Ca2+-dependent carbohy-
drate recognition proteins with a classic domain containing
four conserved disulfide bridges and two extra cysteine resi-
dues at the amino end. They take a pivotal part in the innate
immunity of invertebrates. The expression of the lectin tran-
script was mainly detected in the hepatopancreas and was
elevated 6–8 h after challenge with Vibrio anguillarum (a
Gram-negative bacterium) and Micrococcus luteus (a Gram-
positive bacterium). The results demonstrated that the lectin
was a constitutive and inducible acute-phase protein and may
be responsible for immune response toward infections caused
by Gram-negative and Gram-positive bacteria. The lectin
from Holothuria scabra (sea cucumber) known as HSL has
been studied for its role in immune response. The results
showed that a broad spectrum of bacterial challenge could
induce the expression of HSL in which the glycoconjugates
on the bacterial cell wall were involved. The lectin inhibited
the growth of both Gram-negative (E. coli, Proteus sp.,
Serratia sp., and Shigella sp.) and Gram-positive bacteria
(Streptococcus sp.) (Gowda et al. 2008). Saito et al.
(1995) isolated a lipopolysaccharide-binding protein desig-
nated as L6 from the hemocytes of horseshoe crab (limu-
lus). It was lectin-like in nature. The protein showed ag-
glutinating activity on Gram-negative and Gram-positive
bacteria, and inhibition on the growth of Gram-negative
bacteria, including E. coli O9:K39 (K-), Salmonella
minnesota R595 (Re mutant), and Klebsiella pneumonia.
It presumably recognizes carbohydrate components in the
bacterial cell wall. Tachycitin was purified from
Tachypleus tridentatus (horseshoe crab) hemocytes which
showed amino acid sequence similarity to chitin-binding
lectins. It was a single-chain protein with a molecular
mass of 8.5 kDa. It inhibited the growth of both Gram-
negative (Escherichia, Klebsiella, and Salmonella) and
Gram-positive bacteria (Staphylococcus) with IC50 values
of 2.0–50 μg/ml. Furthermore, tachycitin was found to
agglutinate both Gram-negative and Gram-positive bacteria
and the activity was higher toward Escherichia strains
(Kawabata et al. 1996). Schroder et al. (2003) purified a
tachylectin-like protein from a demosponge, Suberites
domuncula. The 27-kDa protein manifested antibacterial
activity against E. coli (Gram-negative bacteria) and
S. aureus (Gram-positive bacteria). The antibacterial activ-
ity resulted was about 16 and 81 % inhibition of E. coli, at
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lectin concentrations of 10 and 300 μg/ml, respectively.
The inhibition percentage for S. aureus was relatively
low which only exhibited 15 % inhibition at 300 μg/ml.
The lectins present in the hemolymph of many bivalve
mollusks are known to have an important involvement in
host defense mechanisms. Takahashi et al. (2008) isolated
a lectin known as MCL-4 from the plasma of Ruditapes
philippinarum (Manila clam) and demonstrated its bacteri-
ostatic and opsonizing properties against invading bacteria
in R. philippinarum. The phagocytic activity of its hemo-
cytes for the lectin-opsonized Vibrio tubiashii was mark-
edly higher than that toward untreated bacteria. Besides,
the lectin significantly inhibited the growth of Alteromonas
haloplanktis. A tetrameric lectin was isolated from the
ovaries of a teleost, the cobia Rachycentron canadum.
The lectin exerted antibacterial activity against E. coli with
50 % inhibition at 250 μg/ml (Ngai and Ng 2007). A
lectin (CvL) from the marine sponge Cliona varians
displayed a cytotoxic effect on Gram-positive bacteria,
such as B. subtilis and S. aureus. The results showed that
the lectin at a concentration of 25 μg/ml exhibited strong
antibacterial activity (75 % inhibition) on B. subtilis,
which increased with higher lectin concentrations, reaching
90 % inhibition at 100 μg/ml. Potent antibacterial activity
was also observed when S. aureus was incubated with the
lectin, reducing bacteria growth by 90 % at 50 μg/ml.
However, it showed a relatively low inhibitory effect on
the growth of Gram-negative bacteria, Pseudomonas
aeruginosa and E. coli (Moura et al. 2006). Holanda
et al. (2005) purified a lectin from Solieria filiformis (red
algae). It inhibited the growth of Gram-negative bacteria
like Serratia marcescens, Salmonella typhi, Klebsiella
pneumoniae, Enterobacter aerogenes, Proteus sp., and
P. aeruginosa though no changes in growth phases (log,
exponential, and decline) were observed. It was postulated
that the binding of the lectin to the cell surface receptors
on Gram-negative bacteria enhanced the changes in nutri-
ent flow. Thus, it would explain the bacteriostatic effect
and the involvement of such interactions of the lectin in
this effect were suggested. Tunkijjanukij and Olafsen
(1998) purified a heterogeneous sialic acid-binding lectin
from Modiolus modiolus (horse mussel) hemolymph. It
recognized bacterial lipopolysaccharides, and its antibacte-
rial activity was tested against different marine bacteria.
The sensitive strains included Vibrio anguillarum, Vibrio
ordalii, Vibrio salmonicida, Vibrio viscosus, Vibrio
wodanis, Aeromonas salmonicida, and Shewanella
putrefaciens. The purified lectin expressed stronger activity
than the whole hemolymph. This lectin reacted with sev-
eral sialoglycoconjugates and purified lipopolysaccharides
from marine Vibrios and with dead and resting cells of a
number of bacteria. This suggested that the lectin may
play a role in recognition and elimination of bacteria.

Antifungal activity

An enormous number of lectins and hemagglutinins have
been isolated from marine organisms, but only few of them
manifested antifungal activity. Agglutination of fungi is nor-
mally tested as part of lectin characterization, as agglutination
may aid its clearance by facilitating phagocytosis. The lectins
usually bind and agglutinate fungi or their expression level is
upregulated when challenged with fungi, and they act in a
similar manner to eliminate invading pathogenic bacteria.
The antifungal lectins discussed under this topic are all C-
type lectins. They are important in innate immunity, pathogen
recognition, and cell-cell interactions. A C-type lectin was
d rama t i ca l ly up regu la t ed when the amph ioxus
(Brach io s t oma be l che r i ) was cha l l enged wi th
Saccharomyces cerevisiae. The lectin (AmphiCTL1) directly
killed S. cerevisiae in a Ca2+-independent fashion by cell wall
permeabilization. The antimicrobial activity of AmphiCTL1
was dose-dependent with AmphiCTL1 at 200 μg/ml strongly
suppressed microbial growth and its binding to microbial cell
wall polysaccharides such as peptidoglycans and glucans pre-
ceded microbicidal activity. These results disclosed that the
lectin interacted with the peptidoglycans and glucans, bound
to the yeast, and killed it directly (Yu et al. 2007). In a study of
another C-type lectin known as AiCTL-7 purified from
Argopecten irradians (bay scallop), the expression level of
AiCTL-7 was upregulated considerably in the hepatopancreas
and hemocytes after challenge with Pichia pastoris GS115.
The agglutination of P. pastoris with the lectin was Ca2+-de-
pendent and inhibited by D-mannose. The collective results
revealed that AiCTL-7 played a role in the primitive acute-
phase response to the yeast. It acted as a key pattern recogni-
tion receptor in the innate immune system of the bay scallop
(Kong et al. 2011). Another C-type lectin with antifungal ef-
fect was demonstrated in a lectin known as Ec-CTL, which
was purified from Epinephelus coioides (orange-spotted
grouper) by Wei et al. (2010). It bound to and aggregated
S. cerevisiae in a Ca2+-dependent manner. The expression
was upregulated when challenged with S. cerevisiae. A serum
lectin purified from Lampetra japonica (lamprey) by Xue
et al. (2013) was classified as an intelectin. The interlectin
was a new type of extracellular animal lectins, being glycan-
binding receptors which bind glycan epitopes on foreign path-
ogens in the host systems. Its expression was induced by bac-
terial stimulation in vivo, and the lectin showed agglutinating
activities against Candida albicans. These findings suggested
that it plays an important role in innate immunity against yeast
in the internal circulatory system of the lamprey.

A repertoire of natural bioactive compounds has been iso-
lated frommarine organisms which showed promising medic-
inal potential (Cheung et al. 2014). The marine lectins exhib-
ited strong antimicrobial activity as aforementioned, implying
that they can be potential candidates for drug design and
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development in the future. Although the mechanisms of the
marine organism defense systems have been revealed for
some lectins, the possibility to apply those to other antimicro-
bial mechanisms remains to be examined. Further studies on
molecular mechanisms of action (Li et al. 2015; Ng et al.
2014), structure–function relationships (Huang et al. 2015;
Zhou and Sun 2015), and clinical trials can help researchers
in investigating the therapeutic effects and toxicity of lectins.
It is also worthwhile to check if lectins have synergism with
existing antimicrobial agents. Results of the investigation do
not only contribute to knowledge corresponding to antimicro-
bial mechanisms but also have applications from a clinical
viewpoint and the perspective of drug design. It also starts a
new perspective on the potential of lectins from the marine
species.

Antiviral activity

In recent years, marine lectins gave important clues for the
development of antiviral drugs against different viral infec-
tions, particularly human immunodeficiency virus type 1
(HIV-1) infection. They bind to the high mannose sugars
which is the key compoenent of the gp120 on the HIV enve-
lope and inhibit the conformational change that keep it in an
inactive, nonfusable state (Koharudin and Gronenborn 2014).
Due to this breakthrough, a number of antiviral therapeutic
agents based on marine lectins have potential medicinal appli-
cation as new effective drugs for antiviral treatment.

Liu et al. (2013) found that expression of the galectin-1
gene fromParalichthys olivaceus (flounder) was reduced after
poly I:C challenge in the first 8 h and then increased signifi-
cantly beyond 24 h. Galectin is a class of Ca2+-independent
lectins that bind to β-galactosides. Recombinant galectin-1
could neutralize the lymphocystis disease virus (LCDV) and
inhibit cytopathy of the infected cells. It could also prevent
inflammation against LCDV infection, and the expression of
TNF-α and mx (an antiviral protein) in the head kidney and
the gill and IL-1β in the head kidney would be significantly
downregulated when LCDV and galectin-1 were injected.
These findings showed that galectin-1 was related to the anti-
viral activity, controlled mx gene overexpression, and
alleviated LCDV pathogenicity. Luo et al. (2003) studied an
antiviral gene (PmAV) found in Penaeus monodon (shrimp),
which encodes a 170 amino acid protein with a C-type lectin-
like domain. The PmAV gene was cloned, and the protein was
expressed in E. coli. The purified recombinant protein was
tested for antiviral activity in vitro. The grouper iridovirus
was inoculated into grouper embryo cells for 3 days. It was
found that the cells were all killed by the virus. When the
inoculated cells were incubated with the PmAV protein,
around 50% of the grouper embryo cells remained viable with
an EC50 value of about 6.25 μg/ml. The protein also evinced
potent antiviral activity on virus-induced cytopathy inhibition

in the fish cell line. Neither the recombinant nor the native
form demonstrated agglutination activity toward the virus.
This suggested that the antiviral mechanism of the PmAV
protein does not entail the inhibition of virus and target host
cell interaction. Lectins can recognize the specific carbohy-
drate structures such as proteoglycans, glycoproteins, and gly-
colipids resulting in the regulation of various cells via
glycoconjugates and their physiological and pathological phe-
nomena such as apoptosis induction, cancer metastasis and
differentiation, carbohydrate recognition and binding, cell to
cell communication, cell targeting, and host–pathogen inter-
actions. Recently, lectins were also known to block the bind-
ing of virus to its target cells which would prevent viral infec-
tion and dissemination (Sato and Hori 2009). Geyer et al.
(1988) observed that the gp120 on HIV-1 envelope was heavi-
ly glycosylated with about 24 possible N-linked glycosylated
sites. Approximately 50 % of the molecular weight of the
gp120 was attributed to glycans located at these glycosylation
sites. The gp120 glycans were high-mannose and complex
glycoproteins and could act as binding sites for various lectins.
The significance of involvement of gp120 glycans in HIV-1
infection makes them a possible clue for development of anti-
HIV-1 agents (Balzarini et al. 2007).

Microcystis viridis is a unicellular freshwater bloom-forming
cyanobacterium. It showed transient hemagglutinating activity
in laboratory culture during the stationary phase under
nonaeration conditions. This lectin is a single 13-kDa polypep-
tide with 113 amino acid residues and has two tandemly repeat-
ed homologous domains of 54 amino acid residues. M. viridis
lectin binds oligomannosides with submicromolar affinities and
that two novel carbohydrate recognition domains are composed
of four noncontiguous regions. The residues make numerous
intermolecular contacts with their carbohydrate ligands
(Yamaguchi et al. 1999). The lectin inhibited HIV type 1
envelope-mediated cell fusion with an IC50 value of 30 nM
(Bewley et al. 2004). Lectin purified from the red alga,
Kappaphycus alvarezii, known as KAA-2, exhibited antiviral
activity against a number of influenza strains including swine
influenza virus H1N1. This algal lectin suppressed virus infec-
tion by its specific interaction with target high mannose type N-
glycans on viral surfaces. The anti-influenza virus activity was
tested against different strains including swine influenza virus
H1N1-2009 with EC50 values of 1.71–68.56 nM. By using an
anti-influenza antibody, immunofluorescence microscopy re-
sults showed that the lectin interfered with the virus entry to
the host cells. ELISA assay results demonstrated that the lectin
bound directly to the viral envelope protein (Sato et al. 2011b).
Lectin purified from the green alga Boodlea coacta known as
BCAwas also found to be active against influenza viruses. Like
KAA-2, it also bound to high mannose-type N-glycans.
Besides, BCA has a high specificity for α1-2-linked mannose
at the nonreducing end of the glycans. As the number of non-
reducing end substitution of α1-2-linked mannose increased,
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the binding specificity was also increased. The mechanism for
suppression of virus infection is same as that of KAA-2. BCA
could also interfere with the entry of HIV-1 virus to the host
cells with an EC50 value of 8.2 nM. The surface plasmon res-
onance assay showed a high association constant with a value
of 3.71×108 M−1 in BCA with gp120 on the HIV envelope.
Additionally, BCA demonstrated anti-influenza virus activity
against H3N2 subtypes and H1N1 subtypes with EC50 values
of 18.8–74.2 and 79.3–1590.2 nM, respectively (Sato et al.
2011a). Griffithsin (GRFT) was a lectin-like protein purified
from the the red alga Griffithsia sp. aqueous extract with 121
amino acids in length. GRFT was regarded as an anti-HIV
protein for its prevention of HIV entry to the host cells. The
native and recombinant protein showed strong antiviral activity
against different primary isolates and laboratory strains of Tcell
and macrophage-tropic HIV-1 with EC50 values at a range of
0.043 to 0.63 nM. It also stopped HIV-1 infection transmission
and cell-to-cell fusion among infected and uninfected cells at
this concentration range. Different tests on the interactions of
GRFTand gp120 were done. It was found that GRFT bound to
glycoproteins (gp120, gp41, and gp160) on the virus envelope
in a glycosylation-dependent manner, blocked CD4-dependent
gp 120 binding to receptor-expressing cells, and mildly
inhibited gp120 and soluble CD4 interaction. The soluble
gp120 binding occurred in a monosaccharide-dependent man-
ner in which mannose was the most potent inhibitor and
inhibited gp120/monoclonal antibody 2G12 and gp120/
monoclonal antibody 48d binding. All these findings demon-
strated that GRFT bound to different viral glycoproteins and
could be a potential lead for anti-HIVagent (Mori et al. 2005).
GRFT also demonstrated synergistic activity with tenofovir,
maraviroc and enfuvirtide against HIV-1 clade C. The com-
bined use of the two drugs enhanced their antiviral potency
and supports further clinical investigations in pre-exposure pro-
phylaxis (Ferir et al. 2011). Besides HIV, GRFTwas also active
against hepatitis C virus (Meuleman et al. 2011), Ebola virus
(Barton et al. 2014), atypical pneumonia, and other pathogenic
coronaviruses (O’Keefe et al. 2010), herpes simplex virus 2
(Nixon et al. 2013), and Japanese encephalitis virus (Ishag
et al. 2013).

Other lectins from cyanobacteria such as cyanovirin-N
(Chen et al. 2014; Xiong et al. 2010), microvirin (Huskens
et al. 2010; Shahzad-ul-Hussan et al. 2011), scytovirin
(Alexandre et al. 2013; Garrison et al. 2014), and
Oscillatoria agardhii agglutinin (Ferir et al. 2014;
Koharudin et al. 2011) are considered as potential candidates
to combat HIVor other virus-infected diseases with the same
mechanism, i.e., interacting with the glycans on HIV gp120.
They show specificity for high mannose carbohydrates on the
surface of the heavily glycosylated envelope of HIV and are
endowed with potent anti-HIVactivity. However, these lectins
do have unique properties, including the number of carbohy-
drate recognition sites and their specificity for the

oligosaccharides. These differences may account for the dif-
ferences in antiviral activity (Huskens and Schols 2012). They
are usually divided into two or more internal tandems or re-
peats, and they display pronounced homology to each other.
The domains formed are stabilized by disulfide bridges. Their
amino acid sequences and internal alignments between the
repeats are presented in Table 2. Overall, these lectins have a
broad antiviral activity; however, GRFT and cyanovirin-N
exhibited superior anti-HIV activity which are more potent
(Huskens and Schols 2012; Woodrum et al. 2013), were stud-
ied extensively, and also showed antiviral activity against oth-
er enveloped viruses. This benefits their usage as anti-HIV
agents because HIV-1 infection is commonly associated with
other sexually transmitted viruses, such as hepatitis C virus
and herpes simplex virus (Helle et al. 2006; Meuleman et al.
2011; Nixon et al. 2013; Yu et al. 2010). Irrespective of the
potent antiviral activity of an anti-HIVagent candidate, safety
issues are extremely importanct and can also contribute to a
lack of efficacy. The use of cyanovirin-N as a safe microbicide
raises questions because it has clearly stimulatory/mitogenic
activity and induces elevated amounts of a large number of
cytokines (Buffa et al. 2009). However, when it was tested
preclinlically against HIV in vaginal and rectal transmission
models, it was proved to be effective and safe (Tsai et al. 2003,
2004). In contrast, GRFT with its broad and potent antiviral
activity is devoid of stimulatory properties (Kouokam et al.
2011). However, it is less chemically and physically stable
than cyanovirin-N. To sum up, these two lectins have disad-
vantages. Nevertheless, they still stand out as potential candi-
dates for development of anti-HIVagents.

As the glycans are commonly found on the virus surface,
the aforementioned glycan-binding lectins are promising an-
tiviral agents that could be used for preventing and controlling
virus infections. Although many other high mannose-binding
lectins (such as legume family lectins) have been demonstrat-
ed to exhibit anti-HIVactivity (Balzarini et al. 2007), algal and
cyanobacterial lectins are the most potent compounds reported
thus far comparedwith other plant lectins, because they inhibit
HIVentry into the host cells with EC50 values in the picomolar
to rnanomolar ange by directly binding to envelope gp120
compared with plant lectins which generally show a higher
(micromolar) range of EC50 values. These lectins also demon-
strated powerful activity against HIV and influenza viruses
regardless of different strains and subtypes. Effective antiviral
agents are always in short supply because vaccine production
is sometimes not on time, but there will be a high demand
when there is an outbreak. The antiviral mechanism of the
lectins is strain-independent. They may be more practical for
medicinal use when compared with antibody-based antiviral
agents that are prone to antigenic shift or antigenic drift. The
substantial amount of carbohydrate residues on the virus en-
velope may be good targets for antibody treatment. However,
some virus strains are continually changing their antigenicity
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by making an increased number of glycosylation sites in order
to evade the antibody actions. As a result, it may be advanta-
geous to use lectins as preventive drugs since they inactivate
different virus strains and subtypes collectively. The results
from research on these lectins have uncovered their potential
as novel antiviral agents for the prevention of infection.

Besides the ability to block HIVentry into host cells, lectins
from other sources can inhibit the cytopathic effect induced by
HIV-1 and production of HIV-1 p24 antigens, thus replication
of virus in host cells. Wang et al. (2006) purified a β-
galactose-specific lectin with antiviral activity known as
CVL from a polychaete marine worm Chaetopterus
variopedatus. Its size is 30-kDa, and the anti-HIV-1 activity
was tested. It was demonstrated that at the early virus
replication stage, the lectin inhibited production of the viral
p24 antigen and HIV-1-induced cytopathy with EC50 values

of 0.057 and 0.0043 μM, respectively. It also stopped the cell-
to-cell fusion with an EC50 of 0.073 μM among HIV-infected
and normal cells. The anti-HIV-1 action started at the early
virus replication phase and may be due to blocking of HIV-1
from gaining entry into the target cells. By using fluorescence-
based real-time quantify PCR, CVL blocked 21 and 86 % of
virus attachment at a concentration of 0.07 and 0.33 μM,
respectively. Molchanova et al. (2007) purified an N-
acetylglucosamine-specific lectin (SVL) from another poly-
chaete Serpula vermicularis which also showed anti-HIV ac-
tivity. It inhibited HIV-1-induced cytopathy and viral p24 an-
tigen production in host cells with EC50 values of 0.15 and
0.23 μg/ml, respectively. Luk’ianov et al. (2007) purified
three lectins from Crenomytilus grayanus (designated as
CGL) and Didemnum ternatanum (designated as DTL and
DTL-A). CGL manifested high specificity to glycoproteins

Table 2 Amino acid sequences of selected algal lectins

B*^, B+^, and B-^ represent identical, similar amino acids within the proteins and gaps in alignments, respectively
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of the mucin type. DTL was N-acetylglucosamine-specific
with a shorter carbohydrate-binding site which bound to N-
acetylglucosamine residues at the terminal. DTL-Awas an N-
acetylglucosamine/N-acetylgalactosamine and heparin-
specific lectin. CGL, DTL, and DTL-A inhibited syncytium
formation in C8166 cells induced by the HIV-1 IIIB with EC50

values of 27.88, 0.002, and 0.36 μg/ml, respectively.

Antitumor activity

Tumors and normal cells have different surface structures as
shown by the selective agglutination of malignant tumor cells
by some lectins. Nearly all types of malignant cells demon-
strate alterations in their glycosylation patterns when com-
pared to their normal counterparts (Powlesland et al. 2009).
Meticulous studies of cell surface carbohydrates from human
and experimental tumors showed that a prominent alteration
in glycoproteins is the presence of larger and extensively
branched N-linked β-1,6-GlcNAc oligosaccharides
(Couldrey and Green 2000). The β-1,6-GlcNAc branched
N-glycans are tri- or tetra-antenna oligosaccharides that in-
crease the total cell surface terminal sialylation in malignant
cells and are typically found in the initial stages of carcino-
genesis induced by oncogenic viruses or by oncogenes
(Dennis et al. 1989). The lectin that recognizes carbohydrate
moieties on the N-glycans on tumor cells would function as a
therapeutic agent via apoptosis induction.

Yao et al. (2012) studied the antitumor activity of bighead
carp (Aristichthys nobilis) lectin known as GANL purified
from its gills. Six human tumor cell lines were tested for an-
tiproliferative activity, and it was found that the lectin exhib-
ited strong antitumor activity against the HeLa cell line with
an IC50 value of 11.86μg/ml. Rabelo et al. (2012) investigated
the mechanism of apoptosis induction in human tumor cells
from a marine sponge lectin. They isolated a marine sponge
Cinachyrella apion lectin (CaL) and studied its antiprolifera-
tive activity against three human tumor cell lines. The results
showed that the lectin exhibited the highest antiproliferative
activity toward HeLa cells at a dose-dependent manner. It was
also found that the lectin probably induced apoptosis in HeLa
cells by increasing expression of the proapoptotic protein Bax,
enhancing mitochondrial membrane permeabilization, acti-
vating caspase cascades, and inducing cell cycle arrest at the
S phase. Matsumoto et al. (2012) isolated a lectin known as
HOL-18 from Halichondria okadai (demosponge). It is diva-
lent and cation-independent and exhibited cytotoxic activity
against K562 erythroleukemia cells and Jurkat leukemia T
cells in a carbohydrate- and dose-dependent manner. N-
acetylgalactosamine and N-acetyl-D-glucosamine residues
are known to be expressed on the surface of these two cell
lines, and the cytotoxic activity was inhibited by the presence
of these two amino sugars. The results suggested that lectin-
glycan interaction plays a pivotal role in its cytotoxicity to the

tumor cell lines. Bah et al. (2011) isolated a rhamnose-binding
lectin fromOncorhynchus tshawytscha (chinook salmon) roe.
It was demonstrated that the lectin exhibited cytotoxic activity
toward human hepatoma Hep G2 and breast cancer MCF-7
cells. Queiroz et al. (2009) investigated the antitumor activity
of a lectin known as CvL isolated from Cliona varians
(sponge). It was tested on a few cancer cell lines and found
that Jurkat cells and K562 cells were sensitive with IC50

values of 100 and 70 μg/ml, respectively. These human leu-
kemia cells were killed due to induction of apoptosis after
addition of lectin. Experimental results from confocal fluores-
cence microscopy revealed that the lectin induced cathepsin B
release; flow cytometry disclosed an increase in apoptotic in-
dex; Western blot demonstrated that the expression of tumor
necrosis factor receptor 1 was upregulated and that p65 sub-
unit of nuclear factor kappa B was downregulated in lectin-
treated cells. These results suggested that cathepsin B played a
role in an undefined association with the apoptotic pathway. A
17-kDa lectin known as MytiLec was purified by (Fujii et al.
2012) f rom the Medi te r ranean musse l , Myt i lus
galloprovincialis. It is an α-D-galactose-binding lectin and
could also bind to globotriose (Gb3; Galα1-4Galβ1-4Glc)
specifically. This lectin exhibited antiproliferative activity on
human Burkitt lymphoma Raji cells in which Gb3 was
expressed on their surfaces. The activity was inhibited in the
presence of α-galactoside. Experimental results demonstrated
that the lectin was related to late-stage apoptosis and triggered
the loss of membrane integrity and cell membrane inversion.
Another example of Gb3-specific lectin is Silurus asotus
(catfish) egg lectin designated as SAL. It also bound to Gb3
expressed on the surfaces of the Burkitt’s lymphoma cells. It
was found that the size of the lectin-treated cells was 10 %
smaller than that of untreated cells. Gb3 present in the
glycosphingolipid-enriched microdomain was involved in
the lectin-Gb3 interaction which brought about a reduction
in cell size through activation of potassium channel Kv1.3.
These results provided some new approaches into the under-
standing of glucosphingholipid-targeting cancer therapy
(Kawano et al. 2009).

Antinociceptive and anti-inflammatory activities

Different harmful stimuli provoke a strong inhibition of pain
sensation evoked at a distant region of the body. After tissue
injury and inflammation, nociceptors are sensitized in such a
way that an ineffective or a weak stimulation becomes painful.
The sensitization of primary afferent nociceptors is normal for
all inflammatory pain types that lead to hyperalgesia and/or
allodynia states in humans and is known as nociception in
animal models (Kurihara et al. 2003). At present, nonsteroidal
anti-inflammatory drugs and analgesia-inducing drugs such as
opioids are not suitable for all cases because of their low
potency and side effects (Ahmadiani et al. 1998). As a
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consequence, development of alternative drugs has become
necessary and beneficial.

Holothuria grisea agglutinin (HGA) from the sea cucum-
ber Holothuria griseawas used to test for antinociceptive and
anti-inflammatory activities in rats. It was a dimeric, mucin-
specific lectin with a molecular mass of 228 kDa. HGA was
injected intravenously, and the results showed that neutrophil
migration induced by carrageenan into the peritoneal cavity
was inhibited. As selectins were known to induce neutrophil
migration into the inflammatory tissues, it was proposed that
HGA could block the selectin which shares a common carbo-
hydrate ligand; thus, the selectin action was stopped. HGA
also exhibited a strong antinociceptive effect in acetic acid-
induced writhing test, and the number of abdominal constric-
tions was reduced significantly in the HGA-treated group.
Intraperitoneal injection of acetic acid caused local irritation
and induced the release of different endogenous mediators
such as prostaglandins, bradykinin, substance P, tumor necro-
sis factor-α, interleukin-1β, and interleukin-8. They activated
the chemosensitive nociceptors that caused inflammatory pain
(Collier et al. 1968). The results suggested that the
antinociceptive effect may be caused by decreasing the num-
ber of leukocytes in the peritoneal cavity or the inhibition of
the endogenous mediators release induced by HGA adminis-
tration. HGA showed antinociceptive effect only in phase 2 of
the inflammatory phase in formalin tests, indicating that the
effect was only associated with inflammatory pain. However,
in the hot-plate tests, the lectin did not exhibit any nociceptive
action, demonstrating that HGA did not show a central
antinociceptive action, and that a peripheral mechanism may
be involved instead, and verifying what was observed in the
formalin test (antinociceptive effect in inflammatory phase).
The treatment with HGA caused an increase in the circulating
nitric oxide levels and inhibition of myeloperoxidase activity.
Myeloperoxidase is a peroxidase usually expressed in neutro-
phils and regarded as a direct marker of neutrophils. The de-
crease in the myeloperoxidase activity agreed with the results
of neutrophil migration test. The inhibition of the migration
may be associated with increased circulating nitric oxide
levels caused by HGA. It has been demonstrated that the ex-
pression of adhesion molecules was downregulated by nitric
oxide in the vascular endothelium, hence decreasing the num-
ber of neutrophil that migrated to the inflammatory region
(Lavich et al. 2006). The results, show that HGA has the
ability to modulate the inflammatory response in in vivo
models (Moura et al. 2013).

Bitencourt Fda et al. (2008) tested the mucin-specific
Hypnea cervicornis agglutinin (HCA) previously purified
from the red marine algae Hypnea cervicornis for
antinociceptive and anti-inflammatory activities in mouse
and rat models. HCA smoothened the paw edema in rats in-
duced by carrageenan but not that induced by dextran. The
edema induced by carrageenan is a multimediated and

temporal incident, distinguished by massive neutrophil migra-
tion (Srinivasan et al. 2001). On the contrary, dextran is a pro-
inflammatory mediator distinguished by an increase in vascu-
lar permeability without involving neutrophil migration (Lo
et al. 1982). These results demonstrated that its action in-
volved an inflammatory process related to neutrophil migra-
tion. The results of an investigation have shown that there was
a strong link between the inflammation and pain development,
and the inhibition of neutrophil migration alleviated the
hypernociception induced by different inflammatory stimula-
tions (Cunha et al. 2005). The effects were inhibited after pre-
incubation with mucin, suggesting that the lectin was mucin-
specific, and the participation of its carbohydrate-binding site
in its actions. When it was intravenously injected to mice, no
signs of toxicity were observed. It did not cause renal or he-
patic malfunctions, affect body mass and macroscopy of the
liver, kidney or heart. Further investigations demonstrated that
the anti-hypernociceptive effect of HCA was not related to
increase in nitric oxide production. Nitric oxide alleviated
hyperalgesia by activating the L-arginine/NO/cGMP pathway.
It caused direct blocking of persistent and acute
hypernociception by opening K+

(ATP) channels through the
stimulation of protein kinase G (Nunes et al. 2009; Sachs
et al. 2004). Experimental results disclosed that the
antinociceptive effect of HCA on carrageenan-induced
hypernociception was reduced by treatment with nitric oxide
synthase inhibitors which demonstrated that nitric oxide may
be associated with the action of HCA (Figueiredo et al. 2010).

Another lectin purified from the marine alga Amansia
multifida is mannose-specific, and its actions were tested in
mice. An interesting finding was observed in the formalin and
hot-plate tests. The antinociceptive action of the lectin was
blocked by naloxone, indicating possible involvement of the
opioid system (Neves et al. 2007). Similar results were obtain-
ed in tests of antinociceptive and anti-inflammatory activity
for the red marine alga Pterocladiella capillacea lectin known
as PcL (Silva et al. 2010) and the green marine alga Caulerpa
cupressoides lectin known as CcL (Vanderlei et al. 2010).

In conclusion, all aforementioned marine lectins exhibited
strong antinociceptive and anti-inflammatory activities.
However, the detailed mechanism has yet to be clarified.
Further investigations could help in acquiring more informa-
tion for their development into alternative therapies for pain
and inflammatory processes.

Other medicinal applications

Cutaneous wounds originate from the disruption of skin in-
tegrity and could be a major trouble in public health.
Postponed healing or lack of proper treatment will lead to
complex therapeutic problems, particularly in diabetic pa-
tients. The healing process is a complex arrangement, but
well-ordered phases overlap in which highly specialized cells
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interact with the extracellular matrix to result in growth and
tissue repair (Diegelmann and Evans 2004). A lectin was pu-
rified from Bryothamnion seaforthii (marine red algae) known
as BSL, and its healing potential was studied. Cutaneous
wounds were made in mice in the healing test, and the mice
were topically treated with BSL for 12 days. In the first few
days of treatment, edema and hyperemia were observed in the
treated group. There were indicative signs of a pro-
inflammatory effect of BSL, and a decrease in the wound area
was observed. The results of histopathological examination
revealed that the BSL-treated animals experienced epithelial
covering restructure with keratin production, cutaneous im-
mature annex formation, and active collagen formation in re-
ticular dermis region with fibroblastic activity. All these ob-
servations were signs of good healing. The portion of wound
closures was assessed in terms of the wound exposed areas
with the progress of time. The results showed that the BSL-
treated mice experienced faster healing and an increased clos-
ing in the wound areas. The results demonstrated that the
lectin had a wound healing enhancing effect and can be used
as a potential acute wound treatment. It can enhance the
healing process and expedite wound closure. The mechanism
probably involves triggering of the immune system in the
inflammatory phase, followed by modulation of growth fac-
tors and cytokines, activation of collagen synthesis by fibro-
blasts and their differentiation into myofibroblasts used for
traction and wound contraction (do Nascimento-Neto et al.
2012).

In an effort to halt transmission by inhibiting the develop-
ment of malarial parasite, lectin (CEL-III) isolated from the
sea cucumber Cucumaria echinata was expressed in geneti-
cally modified mosquitoes. This lectin elicited both cytotoxic
and hemolytic activities. The transgenic mosquitoes expressed
CEL-III after gene modification and managed to impair the
formation of ookinetes. The ookinetes failed to migrate into
the mosquito midgut, reproduce to form daughter cells, which
will then invade the salivary glands and consequently infect a
human. Positive results were reported by observing ookinete
inhibition by CEL-III and erythrocyte lysis in the midgut of
mosquitoes after ingestion of infectious blood, suggesting a
novel approach incorporating genetic engineering to control
the disease (Yoshida et al. 2007).

By using drug delivery systems to transport pharmaceutical
products to targeted tissues are much better than traditional
nontargeted therapeutics. Smart drug delivery efficiently de-
livers the medication to the diseased tissues, localizes drug
exposure to diseased tissues, and reduces the side effects of
medications on healthy tissues, thus increases treatment effi-
ciency. Limiting or preventing side effects in treatments is
important because side effects typically lead to reduction in
dosage, delay in treatment and therapy termination (Minko
2004; Rek et al. 2009). The lectin–sugar interaction can be
used to trigger vesicular transport into or across epithelial

cells. Many proteins and lipids on cell membranes are glyco-
sylated, and these glycans are binding sites for lectins.
Different cell types express different glycan arrays and in par-
ticular, diseased cells, often express different glycans com-
pared with their normal counterparts. Therefore, lectins could
be used as carrier molecules to target drugs specifically to
different cells and tissues. This kind of receptor-mediated
bioadhesion may also be used to convey signals to cells in
order to trigger vesicular transport processes into or across
polarized epithelial cells. When coupled to macromolecular
drugs or particular drug carriers, the selection of a suitable
lectin may perhaps allow the cellular uptake and subsequent
intracellular routing of such delivery systems to be controlled
(Haltner et al. 1998).

Lectin may also be used to target therapeutic agents for
different cells due to their property of increasing microparticle
adherence to the target cells and of enhancing penetration of
drugs. One application is used in the novel lipidic microcap-
sule drug delivery system for transporting and delivering an-
ticancer drugs for the treatment of cancer. Eucheuma serra
agglutinin (ESA) derived from a marine red alga, Eucheuma
serra, is a lectin that specifically binds to mannose-rich car-
bohydrate chains. It specifically bound to human colon ade-
nocarcinoma and cervical squamous cell carcinoma but did
not bind to normal human lymphocytes and fibroblasts. It
can also induce apoptotic cell death in carcinoma and sarcoma
cells. The specific binding of the lectin to the cancer cell lines
is based on unique interactions between ESA and the high
mannose type sugar chains on tumor cell surface (Sugahara
et al. 2001). When ESA was incorporated into Span 80 vesi-
cles and use in drug delivery system, the ESA bound on the
vesicles surface can act as a targeting ligand. ESA bound to
the osteosarcoma cell at 2 μg/ml and induced apoptosis after
48 h. The results showed that the ESA-incorporated Span 80
vesicles have the potential to be used in osteosarcoma treat-
ment via drug delivery system. In addition, encapsulation of
anticancer drugs into the ESA-incorporated Span 80 vesicles
is expected to provide extra antitumor action on sarcomawhen
compared with blank vesicles (Hayashi et al. 2012). Some
problems associated with drug delivery system still have to
be tackled, notably those of toxicity and immunogenicity. It is
hoped that some of these problems might be overcome in the
future by the application of biotechnology techniques to pro-
duce quantities of smaller fragments of lectins that will retain
the high target specificity that these fascinating molecules
possess, but will be easier to manipulate (Bies et al. 2004).

Lectins show high affinity for specific carbohydrate struc-
tures, and therefore, they can be used as specific probes for
both intracytoplasmic compartments and cell surface
glycoconjugates in histopathological and histological applica-
tions. As some carbohydrates do not elicit antibody produc-
tion due to their less complex structure, the use of lectin,
instead of traditional antibodies, in histochemical studies of
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carbohydrates and membrane glycoconjugates has become
more common. Transformed cells present wide qualitative
and quantitative variations in the glycosylation pattern of the
membrane and the formation of carbohydrate clusters that occu-
py restricted areas of the cell surface, which allows their interac-
tion with lectins. By contrast, this distribution is homogeneous in
normal cells. Lectins may be important tools for obtaining infor-
mation regarding the development, differentiation stage, malig-
nancy level, and capacity for metastasis of tumor cells (Wu et al.
2009). The lectin (designated ACL-1) isolated from aqueous
extracts of Axinella corrugata (a marine sponge) displayed
strong agglutinating activity with rabbit erythrocytes. The hem-
agglutination was inhibited by N-acetyl derivatives like N-ace-
tyl-D-glucosamine, N,N′,N″-triacetylchitotriose, N-acetyl-D-ga-
lactosamine, and N-acetyl-D-mannosamine. ACL-1 was able to
bind to N-acetyl-D-galactosamine, and N-acetyl-D-glucosamine
glycans present on the surfaces of several tumor cells. These
included the bladder (T24), colon (HT-29), breast (T-47D,
MCF7), ovary (OVCAR-3), and lung (H460) cancer cell lines,
and thus, biotinylated ACL-1 could stain them. The lectin can be
used as a marker diagnostic and also tissue mapping tool in
suspicious neoplasms. As biotinylated ACL-I could stain the
tumor cells, it might be used to identify transformed cells and
study the glycan structures synthesized by such cells (Dresch
et al. 2013). One characteristic of malignant cells is related to
abnormal cell surface protein glycosylation. It was shown that
some of these abnormal glycosylations are common in the de-
velopment of distant metastases and tumor progression (Corfield
et al. 1999). The expression of these glycoproteins was associat-
ed with malignant transformation. For example, when compared
with normal colon cells, expression of MUC1 and MUC13
(mucin) in colorectal neoplasia were overexpressed (Baldus
et al. 2004). Pinto et al. (2009) have purified two lectins known
as BSL and BTL from two red marine algae under the same
genus, Bryothamnion seaforthii and Bryothamnion triquetrum,
respectively. These carbohydrate-binding lectins could be used
to discriminate human colon carcinoma cell variants regarding
glycoprotein types on their cell membrane. The two lectins could
bind to mucin found on the cell surface of human colon adeno-
carcinoma cell line LS-180. The interaction occurred in a dose-
dependent manner, and the fluorescence spectra could discrimi-
nate them clearly from the flow cytometry results. Besides, these
two lectins bound to glycoproteins on cell surface experienced
extensive internalization as observed under the confocal micro-
scope. It showed that the lectins could be used as targeting tools.

Discussion

Nowadays, many investigators are studying natural products iso-
lated from marine species and their diverse pharmacological
roles, hoping to develop new antimicrobials, and antiviral espe-
cially anti-HIV agents and antitumor agents (Smith et al. 2010;

Vo and Kim 2010). Lectins which recognize and bind to specific
carbohydrate structures such as glycoproteins, glycolipids, and
proteoglycans are one of the investigated targets. Such interac-
tions mediated via the glyco-conjugates induce cell regulation,
pathological and physiological actions through cell-cell commu-
nications, and host–pathogen interactions. Investigations on the-
se phenomena and their applications are now becoming popular.
A large number of marine lectins have been isolated, and the
number is growing, and we need to investigate and elucidate the
details of structure/interaction/activity relationships in marine
lectins in order to develop new therapeutic agents. One reason
for the urgency in development of new therapeutic drugs is the
problem of drug resistance. Pathogens that have developed drug
resistance to a specific antimicrobial or antiviral may not develop
drug resistance to its natural derivatives which have similar ac-
tions (Yasuhara-Bell and Lu 2010). Hence, the different antimi-
crobial or antiviral derivatives that are produced by other species
may be a breakthrough in the discovery of new drugs.
Furthermore, the countless undefined unique compounds in the
marine world form an attractive reserve for novel medications
against drug-resistant pathogens.

With respect to the question regarding the potential value of
the aforementioned marine lectins in medicinal applications, the
answer is not yet certain. Lectin resources from marine species
are rather new. To date, relatively few have received commercial
consideration. At this stage, it is hard to know which of these
lectins might persist and meet with success in the drug market.
Many may not pass muster because of the problems of toxicity,
antigenicity, and production costs. Others might show promise
initially but have low stability in the human body. Compounds
derived from marine species that are used as anti-HIV agents
have been shown to play an important role against the disease
recently. It is encouraging to know that the use of marine lectins
as possible drug candidates to reduce or control HIV infection-
related chronic symptoms (Vo and Kim 2010). Furthermore,
these results imply that these anti-HIV agents have potential to
be use as active ingredients for new drug discovery. Up till now,
nearly all investigations on marine lectins derived anti-HIV
agents were tested only in vitro or in an animal model. Hence,
the final step of the novel drug development must be the study of
their activities in clinical trials.
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