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Abstract We use a multitype continuous time Markov branching process model to
describe the dynamics of the spread of parasites of two types that can mutate into each
other in a common host population. While most mathematical models for the virulence
of infectious diseases focus on the interplay between the dynamics of host popula-
tions and the optimal characteristics for the success of the pathogen, our model focuses
on how pathogen characteristics may change at the start of an epidemic, before the
density of susceptible hosts decline. We envisage animal husbandry situations where
hosts are at very high density and epidemics are curtailed before host densities are
much reduced. The use of three pathogen characteristics: lethality, transmissibility and
mutability allows us to investigate the interplay of these in relation to host density. We
provide some numerical illustrations and discuss the effects of the size of the enclo-
sure containing the host population on the encounter rate in our model that plays the
key role in determining what pathogen type will eventually prevail. We also present
a multistage extension of the model to situations where there are several populations
and parasites can be transmitted from one of them to another. We conclude that animal
husbandry situations with high stock densities will lead to very rapid increases in vir-
ulence, where virulent strains are either more transmissible or favoured by mutation.
Further the process is affected by the nature of the farm enclosures.
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1 Introduction

There is an extensive literature on mathematical modeling of infectious diseases. Both
the rate of spread and the virulence of pathogens are important, and both the dynamics
of disease spread and the evolution of virulence in parasite—host systems have attracted
much attention. The first mathematical model of disease dynamics apparently goes
back to the 1760 paper by Bernoulli (1760) (see also pp.2—6 in Daley and Gani 1999).
A major step in further development of deterministic modelling was the “thresh-
old theorem” (Kermack and McKendrick 1927) showing that the initial frequency
of susceptibles must exceed a certain threshold value to give rise to an epidemic.
The first stochastic epidemiological models appeared in the late 1920s (McKendrick
1926), applying the “law of mass action” suggested in Bernoulli (1760) to probabilis-
tic description of the epidemics. Stochastic models became much more popular after
Bartlett (1949) formulated a model for the general stochastic epidemic by analogy
with the deterministic model from Kermack and McKendrick (1927). Anderson and
May (1982) introduced the first model of evolutionary change in pathogen virulence
in 1982, which explained the decline in virulence of myxomatosis, introduced to con-
trol Australian rabbits, in terms of optimal transmission of the parasite between hosts.
Subsequent work, notably Ewald (1983), Massad (1987), Knolle (1989), Lenski and
May (1994), Gandon et al. (2001), has expanded on this classic paper, to cover the
effects of a vector of the pathogen, vaccination of hosts, and various other issues. For
more extensive surveys of the field and literature reviews, we refer the reader to the
monographic literature (Anderson and May 1991; Becker 1989; Daley and Gani 1999;
Andersson and Britton 2000; Mode and Sleeman 2000) and also to papers (Allen 2008;
Dietz and Schenke 1985; Hethcote 1994; Ebert 1999; Day and Proulx 2004).

In natural systems, the density of host organisms declines when a pathogen pro-
duces an epidemic. Almost all the models referred to above have considered such
natural populations of hosts, where the density of susceptible hosts is reduced by the
pathogen. They show that as host density is reduced, less virulent strains of pathogen
become more viable, such that infected hosts live longer, and thus tend to pass the path-
ogen to more susceptible new hosts, maintaining the epidemic. While hosts will have
longer generation times than their pathogens, they too, will evolve to be more resistant,
further reducing the virulence of the pathogen for these hosts. On this basis one might
expect pathogens to be highly virulent only when they have recently switched hosts,
such as the SARS coronavirus that was probably transferred to humans from animals
such as Himalayan civet cats (Guan et al. 2003) or when the plague bacterium, Yersinia
pestis, has been transferred to humans from rodents (Yersin 1894). Various reasons,
such as low host resistance, have been suggested to explain high initial virulence of
transferred pathogens (Bolker et al. 2010).

Most models have used a game-theoretic approach (see e.g. Anderson and May
1982; Day 2002; Frank 1996) and focused on the equilibrium level of both host den-
sity and pathogen virulence in natural host populations infected by a pathogen. But
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a number of papers have noted that the initial epidemic phase of pathogen infection
may select for high virulence (Lenski and May 1994; Frank 1996; Day and Proulx
2004; Bull and Ebert 2008; Bolker et al. 2010). In particular, Day and Gandon (2006),
Day and Proulx (2004) present a general theory of evolution of virulence that is capable
of predicting both the short- and long-term evolution of virulence.

In animal husbandry as opposed to natural populations, epidemics of new pathogens
are not left to reduce the densities of the stock. Instead, antibiotics are applied, hosts
are destroyed, or other measures are used in an attempt to eliminate the pathogen, once
it is recognised that a serious pathogen epidemic is spreading. If such pathogens per-
sist, they must do so through resistant stages and some mechanism of transfer to new
enclosures of domestic stock or crops, where the initial epidemic stage is repeated.
The initial stages of each epidemic will typically occur at very high host density. This
is the situation we wish to model.

The main objective of the present paper is to provide quantitative and also qual-
itative [cf. the discussion of the above-mentioned threshold theorem and other find-
ings from Kermack and McKendrick (1927) on pp.11 and 29 in Daley and Gani
(1999)] insights into the dynamics of pathogen populations during the initial stages of
epidemics, assuming that in this period the virulence of the pathogens can change
due to mutation. More specifically, we are interested in analyzing the effects that host
density may have on the virulence of the pathogen.

In animal husbandry, stock are commonly maintained at very high densities. Thus
the question arises as to whether high host densities are likely to lead to selection for
more virulent strains of pathogens during the initial stages of epidemics. This question
has been investigated only recently (Day and Proulx 2004; Bolker et al. 2010). Both
these studies use models of the epidemiological dynamics of natural host populations
and the evolution of the pathogen, incorporating an assumed tradeoff between vir-
ulence (the extra mortality due to infection) and transmissibility (the probability of
transmission from an infected to a susceptible host in contact with it). We propose a
novel approach to this question.

The mathematical models we discuss in the present paper incorporate a continu-
ous time Markovian multitype branching process. Branching processes first appeared
in epidemiological context in the mid-1950s: one can mention here the paper by
Bharucha-Reid (1958) and also refer to Bartlett (1955), Kendall (1956), Whittle
(1955). For further literature review, we again refer the reader to the above-listed
monographic and survey literature, while some examples of applications of multitype
branching processes in epidemiology can be found in Becker and Marschner (1990),
Meester et al. (2002), Yates et al. (2006), Heinzmann (2009), Alexander and Day
(2010).

Branching processes are relatively simple and well-understood mathematical mod-
els; for treatments of the theory of branching processes, see e.g. Jagers (1975), Athreya
and Ney (1972), arecent addition to the monographic literature on branching processes
prepared specifically for biological audience being Haccou et al. (2005). At the same
time, the processes were shown to be good approximations to the general stochastic
epidemic models at the initial stage (when the total population size is large and the
initial number of infectives is small) and also at the final stages of the epidemics (see
e.g. Ludwig 1975, Ball and Donelly 1995, Hethcote 1994). As our main objective

@ Springer



1126 K. Borovkov et al.

is not to model the detailed dynamics and describe the whole history of the epi-
demic itself, but rather to suggest a model for changes in the pathogen’s population
composition depending on the density of the host population, we will restrict ourselves
to working with the simpler branching process models.

One can also envisage an extension of our simple analysis to the general stochastic
models as the same mechanism will certainly work for the latter as well. However, such
extensions will be much less tractable analytically and may lead to no closed-form
answers.

Moreover, the most critical stage of an epidemic is the initial one, when it is basi-
cally determined if there will be a large-scale event or the epidemic will die out. And
as branching processes are good approximations to the general stochastic epidemic
models at the initial stage, the threshold analysis aimed to determine if the “basic
reproductive number” (defined roughly as the expected number of secondary cases
produced by one infected individual) is greater than one (which implies the danger of
an outburst or persistence of endemic levels) can be carried out using those models
(see e.g. Chapters 6 and 8 in Mode and Sleeman 2000).

In our analysis, we will look at supercritical two-type branching processes (so that
the basic reproductive number will be greater than one: we are interested in what
happens when there exists a threat of epidemics) and then look at the behaviour of the
ratio of the sizes of the subpopulations in the process (representing two versions of
the pathogen, that can mutate into each other). This quantity can be used to determine
which of the two types will become dominant in the population over time.

As we are interested in stock or crop systems of high host density not regulated
by the parasite, cf. Lenski and May (1994), we assume natural mortality of the hosts
is zero and that host density is effectively not changed by the infection during the
period of interest. We define the lethality of the pathogen as the mean survival time of
an infected host [which corresponds to the usual definition of virulence as the extra
mortality due to infection (Day 2002; Day and Proulx 2004; Bolker et al. 2010)], and
the transmissibility as the probability of an infected host infecting a susceptible one
if a contact occurs [which corresponds to the transmission rate per susceptible host
in many published models Bolker et al. (2010)]. For recent discussions of the inter-
play between these two characteristics, see Girvanl et al. (2002), Lipsitch and Moxon
(1997). The theory of a tradeoff between these postulates that high virulence (which
involves higher host exploitation) requires high transmission, but this theory is still
debated (Alizon et al. 2009; Bolker et al. 2010).

In the paper, we use our approach to model the dynamics of a host/parasite pop-
ulation where parasites can be of one of two types that can differ in their lethality
and transmissibility. We do not assume there is any necessary relation between these,
as in most models (see Bolker et al. 2010). The underlying simple continuous time
Markov model of a two-type branching process is presented in Sect. 2. The analysis of
the model and derivation of the dynamics for the mean functions are given in Sect. 3
and used in Sect. 4 to establish the eventual composition of the pathogen population.
It turns out that our model does show changes in the overall parasite’s lethality in
response to increased density of the hosts. This is not dependent on any relationship
between the lethality and transmissibility of a pathogen strain, as assumed in many
previous models.
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One of the key parameters of our model is the contact rate for hosts, which
clearly depends on the structure of the host population and, provided that the hosts
populate a certain region and are moving within it, on the size of that region and the
hosts’ speed and character of movement. One way of specifying contact rates is to
assume that hosts occupy sites in a contact network, and a number of publications
have discussed spatially structured host—parasite dynamics basing on that standard
assumption. Approaches used include the simulation of probabilistic cellular auto-
mata (see e.g. Jeltsch et al. 1997), the derivation of modified versions of SIS/SIRS
differential equations (Lion and Boots 2010) and so-called correlation dynamics (see
e.g. van Baalen 2002 and references therein).

However, using contact networks does not seem appropriate in the situations we
envisage, where branching process models may be applicable, as the dynamics assumes
host populations that are constantly mixing. Moreover, instead of stipulating contact
rates (by means of contact networks), for such populations, the natural question that
arises is how the contact rate will be determined by more basic parameters such as
hosts’ speed, the character of their movement etc. In Sect. 5, assuming chaotic inde-
pendent movements of the hosts, we present a few remarks on how the change in the
size of the enclosure a given population of hosts inhabits can affect the “encounter
rate” for the hosts — the key parameter of the model describing the “effective density”
in the host population.

Finally, in Sect. 6 we consider a multi-stage modification of our model that can
be used to analyse farm or aquaculture situations in which there are many enclosures
or tanks of animals, and an outbreak of an infectious disease occurs in one of them.
We assume that the pathogen might at some stage be transmitted to the next enclo-
sure, where the epidemic process starts anew etc., and discuss possible scenarios of
the development of the epidemic in the farm. Section 7 contains a few final remarks
concerning biological interpretation of our results.

2 Description of the branching process model

Assume that we have a large population of hosts that can be infected by parasites of
one of two types that will be denoted by 77 and 7,. The pathogen types can differ in
both their lethality and transmission rate. The numbers of infected hosts at time ¢ are
represented by the vector

Z(t) = (Z1(1), Z2(1)), 1 =0,

Z;(t) being the time ¢ number of hosts infected with the type 7; pathogen (for sim-
plicity, at any given time, any given host can be infected with one type of the pathogen
only). We do not keep track of the number of hosts that remain uninfected (suscep-
tible), assuming instead that this number will remain large enough during the time
period for which our mathematical model is intended, so that the dynamics of the
process {Z(t), t > 0} to be described do not change over time.

A general description of the model is as follows. We assume that each infected
individual lives a random time (which will tend to be shorter when one is infected
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with the “more lethal” of the two pathogen types). During its lifetime, an infected host
can encounter susceptible hosts and, with a probability depending on the type of the
pathogen it carries, transmit the parasite to them. The rate of such (random) encounters
will be specified by a special parameter that we can vary in order to model changes in
the density of the host population.

Finally, we also allow the pathogens to mutate, so that when a host originally
infected with 77 encounters a susceptible host, the latter can become infected with
T»-type parasites (and the other way around).

Now we will present a formal mathematical model. First recall that the exponential
distribution with rate (or intensity) o > 0 has density of the form

p(t) =ae™™, t>0, (1

with mean 1/, and plays a special role in probability theory due to its unique memory-
less property that makes the distribution ubiquitous in the theory of Markov processes.
Namely, a random variable T > 0 modelling, say, the time of the first encounter of
a given infected host with a healthy one, has this property if, for any s, > 0, the
conditional probability of the event {r > s + ¢} given that T > s coincides with the
probability of {t > ¢}:

Prc>s+t, t>s5) Pr(t>s+1)
Pr(t > s) " Pr(t > s)

Pr(t >s+1t|t>9)= =Pr(t >1). (2)

In words, if, at time s we know that there has been no such encounter, then the condi-
tional distribution (given that information) of the residual random time 7 — s till the
encounter will be the same as the original distribution of 7. It is obvious that if 7 has
density (1) then

o]

Pr(t > 1) = / p(s)ds =e ', t>0, 3)

t

and so the property (2) is clearly satisfied.

An equivalent formulation of the property can be given in terms of the distribution’s
hazard rate r; (s) that quantifies the probability that, given there has been no encounter
up to time s, there will be one “immediately afterwards”: in case a random variable t
has a continuous density p;, the hazard rate is defined by

s d
rr(s):#gs)z—glnﬁ(r >5), s>0, (4)
and,as h | O,
Pr(t <s+hlt>s)=r:(s)h+o(h), s>0, 5)

where, as usual, o(h) denotes a quantity that vanishes faster than &: o(h)/h — 0.
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It is obvious from (3) and (4) that the hazard rate of a distribution is constant if and
only if it is exponential (in that case, the hazard rate simply equals the distribution’s
rate). In applications, one often uses exponentially distributed random variables to
model times between successive events of a particular kind and also lifetimes. This is
because, on the one hand, such assumptions make sense from the modelling view point
(in a large population, meeting a new individual during a time interval ¢, t+h], h > 0,
can scarcely depend on one’s “life history” prior to time ¢) and, on the other hand,
as the resulting models are usually Markovian, so that the powerful machinery of the
theory of Markov processes is applicable.

Our basic model assumptions are as follows:

(a) The initial population contains z; hosts infected with parasites of type T;,
i=12.

(b) A hostinfected with type 7; parasites lives a random time which is exponentially
distributed with parameter o; > 0, i = 1, 2. Clearly, the pathogen with a higher
rate o; will be the more lethal one, as the mean lifetime in that case will be lower.

(c) Any infected host can encounter susceptible ones. The time till the first encounter

of a given infected host (of any type) with a susceptible host is a random variable
exponentially distributed with rate A. It is clear from the above discussion of the
properties of exponential distributions that, at any time ¢, the residual times till
encounters of the current infected hosts with susceptible hosts are all exponential
with the same rate A. A similar observation applies to the residual lifetimes; this
ensures that the process {Z(#)} will be Markovian: given the current state of the
process, its future evolution does not depend on the past one.
In a modification of the model, one can assume that, at time ¢, the time till the
first encounter of a given infected host (of any type) with a susceptible host has
a hazard rate A(¢) which can depend on 7. This will enable one to model changes
in the density of the host population that occur over time (the higher A, the more
often are encounters, which corresponds to higher host density situations). The
process will remain Markovian, but will become time-inhomogeneous.

(d) At any encounter with susceptible hosts, a 7;-infected host meets only one sus-
ceptible host (there can be several such encounters during the host’s lifetime). At
each such instance, the 7;-infected host transmits the parasites to the susceptible
one with probability S; (so that, with the complement probability 1 — S;, the
encounter will have no consequences for the susceptible host).

(e) Mutations T; <> T are possible. A host infected with T7-type pathogens will
remain such till its end, but, when transmitting pathogens to a susceptible host
during an encounter, the newly infected host will carry 7>-type pathogens with a
probability u;. Likewise, o denotes the probability that a successful transmis-
sion of parasites from a T»-infected host to a susceptible one resulted in making
the latter 7 -infected.

(f) All the above-mentioned random times (lifetimes, times till the first encounter)
are independent of each other.

Of course, the above assumptions oversimplify the real biological processes. There
are likely to be several or many strains of pathogen, and the probability of mutation
from one to another will vary. We suggest that simplifying the system to two strains is
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Fig. 1 Mean lifetimes of
infected hosts and mean times to ;
encounter 1/0[1
—{
1 / a9
} }
0 /N 1N time

likely to retain the same key dynamic features. Further, the distributions of times until
events occur are likely to be approximately exponential as argued earlier, and we do
not see any reasons why host survival times and encounter rates should depend in any
way on each other. Note that “encounters” between hosts are simply occasions where
a pathogen can be transferred between hosts. They do not have to involve physical
contact. Thus a pathogen transferred by aerosols might be transferred between pigs
that are isolated in neighbouring stalls.

The diagram in Fig. 1 illustrates the “physical” meaning of our assumptions. The
two horizontal segments represent the mean lifetimes of hosts infected by the patho-
gens of our two types: the longer segment (of length 1/«) corresponds to 77 which
we assume less lethal by stipulating that a» > o1, whereas the shorter one (of length
1/a) corresponds to 7.

When the host population density is relatively low (say, represented by the value
A = A", as depicted), the lifetime of T»-infected hosts will be too short compared to the
mean time 1/ between encounters to give them a good opportunity to encounter sus-
ceptibles and hence further propagate in the host population. One may expect that this
will result in the eventual prevalence of 77 pathogens who have better chance of being
transmitted as they live longer. However, if the host population density increases (say, to
A = A/, as depicted), then the more lethal type 7> may have frequent enough encounters
which, combined with its higher transmissibility, can lead to its eventual prevalence.
As we will see in Sect. 3, the above argument is confirmed by mathematical analysis.

Assumptions (a)—(f) imply that our process {Z(¢)} is actually a two-type time homo-
geneous Markov branching process in continuous time, see e.g. Section V.7 in Athreya
and Ney (1972). That is, {Z(¢)} describes the dynamics of a population consisting of
individuals (or “particles”) of two types, 1 and 2. The transitions of different parti-
cles in the process are assumed to be independent. A particle of type i lives for an
exponentially random time with rate a;. At the end of its life it disappears. It can either

(i) simply disappear (in terms of our modelling assumptions above, this means that
a given T; infected host died having never encountered a susceptible host), or

(i) produce one particle of the same type (meaning: there was an encounter, but
no transmission occurred); we think of the “newly produced” particle of type
i as just the “old” infected host of type 7; who keeps living—note that, due to
the memoryless property of the exponential distribution, such an identification
of a “new” particle with the “old” one is in agreement with our assumptions
(a)—(f) (so that the life of one T;-infected host can actually be represented by
a succession of several type i particles, for which reason we do not use 7; to
denote the type of particles in the branching process), or
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(iii) produce two particles of the same type i (meaning: there was an encounter and
successful transmission, but no mutation; one of the “newly produced” parti-
cles is actually the original host, the other represents a newly infected—with
the same T7;-type pathogen—host), or

(iv) produce two particles of different types (meaning: there was an encounter and
successful transmission and mutation; one of the “newly produced” particles
is actually the original host, the other represents a newly infected—with the
pathogen of the other type—host).

To see that both sets of assumptions (a)—(f) and (i)—(iv) describe the same dynamics
of {Z (1)}, it suffices to note that in both cases we deal with time-homogeneous continu-
ous time jump Markov processes (which follows from the exponentiality assumptions)
and then verify that, choosing suitable parameter values for the second model, one can
obtain the same transition rates as for the first one.

To do that, we first observe that assumptions (i)—(iv) imply the branching property
which means that, forany s > 0, given Z(s) = (z1, 22), the future {Z(s+1), t > 0} of
the process will follow the same probability laws as that of the sum of z; independent
copies of Z(t) starting at time O with a single particle of type 1 and z, independent
copies of Z(¢) starting at time O with a single particle of type 2. It is clear that the first
model [specified by (a)—(f)] has the same property.

Moreover, the branching property implies that to completely describe the evolution
of the process, it suffices to specify transition probabilities

PGt ) = Pr(Z(h) = (1. 2)| Z(0) = ¢;)
from the basic initial states
e; =(1,0) and e, = (0,1)

for arbitrary small time increments % (for more detail, see Chapter V in Athreya and
Ney 1972). It is obvious that the probability of having more than one transition during
a small time interval (0, #) will be o(h), so we just need to consider where a single
transition can take the process from a basic state e; according to assumptions (a)—(f)
and show that the transitions will have the same rates as for a process specified by
(1)—(@v) (for a suitable choice of parameter values).

Suppose that, in our branching process, particles of type i have exponentially dis-
tributed random lifetimes with rates a; = «; + A, i = 1, 2. Moreover, at the end of a
type i particle’s life, it produces a random number of children (possibly of both types)
according to the offspring distributions ¢; (j1, j2) = Pr(a particle of type i gives birth
to j1 particles of type 1 and j, ones of type 2) given in Table 1.

Then, due to independence and (5),

p%h)(O, 0) = Pr(initial type 1 particle dies in (0, /), no children produced)
= Pr(initial type 1 particle dies in (0, h)) x q1(0, 0)

— a1
= ((a1 + 2)h +o(h)) x o

=arh +o(h),
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Table 1 Postulated offspring

distributions in the branching U, 72) a1, 72) 201 72)
process model (i)—(iv) ay )
0,0 e Atan
d-ppr
1o T 0
A=—pppir
20) e 0
(1,1) I‘)‘\I.BI)L l;;ZﬂZ)‘
These distributions result in e (lto? VB
. s 0,2) 0 U 1p)Par
transition probabilities as > Ao
. . 1-B2)2
specified in (a)—(f) ©,1) 0 %

which is clearly the same as the probability for a single 77 -infected host (from the first
model) to die during (0, h).
Likewise,

p"(2,0) = Pr(initial type 1 particle dies in (0, h), producing 2 children of type 1)
=Pr (initial type 1 particle dies in (0, h)) x q1(2,0)
(I —p)Bir

= ((@1 + 1)h +o(h)) x T (I = p)Birh +o(h).
+ o

The corresponding transition in the first model is as follows: a 77 -infected host did not
die during (0, /), but met a susceptible; the pathogen was transmitted, no mutation
occurred. Due to independence, the probability of this will be

I+ 0Mh) x Ah +o(h)) x 1 x (I — 1) = (1 — wi)Birh + o(h).

Virtually the same argument shows that

pih) (1, 1)=Pr (initial type 1 particle dies in (0, /), producing one child of each type)
=Pr (initial type 1 particle dies in (0, h)) x q1(1, 1)

m1B1h

= (@1 + 1)h +o(h)) x o = p1pi1rh +o(h),

coincides with the probability for a T1-infected host to meet a susceptible and transmit
the mutated form of the pathogen.

Finally, given Z(0) = ey, the most likely state for Z(#) is e;. In our branching pro-
cess this occurs when either the original particle lives through the time interval [with
probability 1—(a;+A)h+o(h)] oritdies prior to 4 producing a single type 1 particle [of
which the probability is ((«¢; +A)h+o0(h)) x (1 =LA/ (A+ay) = (1—B)Ah+o(h)],
so that

P (1,0) = 1= (@1 + Mh+ (1= B)rh +0(h) = 1 — (@1 + BiA)h + o(h).
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Table 2 Transition probabilities

1o 72) M ir, i) M it i)
for small & values (o(h) terms J1:J2 Py Ut 2 py U1, )2
are omitted)

(0,0) arh arh

(1,0) 1— (a1 +B1Mh 0

(2,0) (1 = p1)pirh 0

(L1 n1B1Ah wapPorh

0,2) 0 (1 = u2)Barh
0,1) 0 1 — (a2 + Bor)

In the first model, to get to this state, the initial 77 -infected host survives for 4 time units
and either has no encounters with susceptibles or has one, but without transmission of
a pathogen. The probability of this is

(1 —arh +o(h)) x [(1 = Ah +o0(h)) + (1 — Br)Ah + o(h))]
= —aith+o(h) x (1 —=pirh+o(h) =1— (a1 + 1i)h + o(h),

the same value as for the branching process model.
Of course, we could also work out the probability for (1, 0) just as the complement
probability

1,0 =1-(p©0,0 + p 2,00 + p"(1, 1)) + o),

but the presented argument demonstrates the difference between the interpretation of
the elements of the two models (7;-infected hosts in the first model and type i particles
in the second one are not the same, as we noted earlier).

The same calculations are applicable in the case of the initial state e;, which leads
us to the transition probabilities presented in Table 2 (for & — 0, the additive terms
o(h) being omitted for brevity).

3 The dynamics of the means

Consider the matrix of mean values M (¢t) = (M;;(t)), where
M;j(t) =E(Z;()I Z(0) =€), i,j=1,2,

is the expected number of type j particles present in the process at time ¢ given that
the process started at time O with a single particle of type i. Clearly,

1 0
M(O)ZIE[O 1i|,
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the identity matrix, and, using the branching and Markov properties of {Z(¢)}, it is
easy to demonstrate that {M (¢), t > 0} possesses the operator semigroup property:

M(s+1)=M(s)M(t) forany s,t3>0. (©6)

Indeed, given that Z(0) = (z1, z2), the value of Z(s) is just the sum of z; independent
copies of Z(s) starting at time 0 with a single particle of type 1 and z» independent
copies of Z(s) starting at time O with a single particle of type 2. As the process is
time-homogeneous, we infer that

2
E(Z(s + 0| Z(s) = (z1.22)) = D_uE(Z()| Z(0) = &) = 1. 2)M(1). (7)

i=1

From here, using the Markov property and the double expectation law for conditional
expectations, we have

E(Z(s + DI Z(0) = e;) = E[E(Z(s + 1| Z(5)) | Z(0) = ¢;]
=E[Z6)M®)] Z(0) = ei] = (M1 (s), Mia(s)M (1),

which is equivalent to (6).
Relation (6) implies (cf. p.202 in Athreya and Ney 1972) that one has the matrix
exponential representation

.tk Ak
M(t) = = 1= 0, ®)
k=0
where A? = T and
A=1 1(M(t) I) )
= um — —
hl0 h

is the so-called infinitesimal generator of {M (¢)}. Indeed, from (6) one has M (t +h) —
M(t) = (M(h) — I)M(t), so that (9) implies that %M(r) = AM(t), M) =1,
for which (8) is clearly a solution, as seen from its term-wise differentiation.

Evaluating matrix exponentials is rather straightforward: it basically reduces to cal-
culating the values of the function on the matrix’ spectrum (for more detail on functions
of matrices, see e.g. Chapter V in Gantmakher 1989). If, say, A is diagonalisable, so
that there exists an invertible matrix Q (with inverse Q~': Q7'Q = Q' = 1)
such that

o_

0 'A0Q = D =diag{o;,0_) = [Uo+ 0 } (10)
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for some o+ (which is the case in our situation, as we will see below), then clearly
A=0D07",

A’=(QDQ )Y =0DpQ'eDQ ' = 0D*Q ! = Qdiag{o},02} Q7!

and so on: AK = QDFQ~! = 0 diag {af, ok} 0. We obtain

o0k —1\k 0k q; k Sk
etAzz (Q?C'Q ) =ta dlagl{CT+»O;} Q—1=Qdiag{eta+’ett7,} Q_l-
k=0 k=0

(1)

Thus, to derive the dynamics of the means, we just have to compute the generator A,
which can easily be done using Table 2. Indeed, we infer from the table that, as 7 — 0,

M11(h)=0 x arh+ vl x [(1 = (a1 +B1A)h)+ 1 Bi1Ah]+2 x (1—py) Birih+o(h)
=1+ (1 = pp)piA —aph + o(h);
Mia(h) =0 x ath + 1 x u1p1Ah +o(h) = wiBi1rAh + o(h)

and similarly for M»; (h). From here and (9) we immediately obtain

5
Az[gl l]’ ve == w)fih —ar, S = pprr, k=1,2.
2 7

Now solving the characteristic equation det(A —o I') = 0 for o we find the eigenvalues
o+ of A given by

1
ot = 5()/1 +ymE+A), A= \/(Vl — )% +4818;

(cf. similar calculations of the threshold parameter for a somewhat different two-type
model in Section 8.4 of Mode and Sleeman 2000), with the respective (right) eigen-
vectors

u Vi—nEtA
ui:|:1:ti|, Mi:TEO

The eigenvalues o are clearly different from each other (in any case, this is guaran-
teed by the fact that o is the Perron—Frobenius root for the quasi-positive matrix A,

cf. Section A.8 in Thieme 2003), which ensures that A is diagonalizable and we can
take the transformation matrix Q from (10) to be given by

_ _|uy u— o 1 1 —u_
e-wu=[ ] et = [ )
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Hence (8) and (11) imply that

1 uy u_|[e*+ 0 1 —u_
e K A ey

1 |:I/t+€0+[ —u_e%-! u+u_(e"*’ _ eath)

eO'+T _ eU_t u+eO'_T _ u_eO'+l

], t>0. (12)

Uy —u—

4 The asymptotic composition of the pathogen types

As o4 > o_, itis clear from (12) that o is the so-called Malthusian parameter of
the branching process that determines the long-term behaviour of the branching pro-
cess means. Note that this “long-term behaviour” still corresponds to the initial stage
of the epidemic that we are aiming to model (even more so since the means of the
branching population “settle” in that asymptotic composition exponentially fast, as
shown below).

As we said in Sect. 1, the most interesting for us is the case of supercritical pro-
cesses for which o > 0, implying unbounded exponential growth of the population
(unless it becomes extinct at a pretty early stage). Otherwise, the process {Z (#)} would
be doomed to die out very soon, so that no epidemic would arise.

It is clear that, in the supercritical case, the ratio of the time ¢ expected number of
type 2 particles to that of type 1 particles will be given by

Ri(tH)=

o_t _ ,041
Mip(t)  uju_(e e +):|u_|[1_(

u- —At
M)~ wre i —u e == pom)e |, 1 o0

U+
if the process starts with a single type 1 particle, and by

My(t)  uie®'—u_e+!
Ma(1) e+l —eo-

Ro(t) = =|u_|[1+(1—z—++o(1))em] £ > 00,

provided thatit started with a type 2 particle (recall thatu_ < Oandoy—o_ = A > 0).

Therefore, using (7), we see that, regardless of the initial state (z1, z2), the eventual
ratio of the mean number of 7>-infected hosts to that for 7;-infected hosts will be one
and the same quantity

R E(Z2(1)] Z(0) = (21, 22)) _v—-vntA
= lim =lu_|=——F5—",
=00 B(Z1(1)] Z(0) = (21, 22)) 25

which is a well-known fact from the theory of multitype branching processes (it fol-
lows, for instance, from Theorem 1 on p.185 in Athreya and Ney 1972, see also
p-203). The convergence rate is clearly exponential: the remainder term decays as
e~ 2. Note also the obvious facts that R1(0) = 0, R»(0) = oo and that R; (¢) (R2(¢))
is an increasing (decreasing) function of ¢ (so that always Ry (z) < R2(t)).
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Thus the single value R = R(«1, a2, B1, B2, L1, 42, A) completely specifies the
eventual balance of the mean numbers of individuals of different types in our super-
critical process (whatever the initial values). This reflects a much deeper result on the
long-term behaviour of {Z(¢), + > 0}—namely, the fact that, with probability one,
the scaled vector e~ 7+' Z(t) will converge, as t — 00, to a non-trivial random vector
whose distribution is concentrated on the ray {rv, r > 0} collinear to the (positive)
left eigenvector v of A corresponding to the Perron—Frobenius eigenvalue o (see e.g.
Theorem 2 on p. 206 in Athreya and Ney 1972 and references therein). This implies that
convergence to R holds not only for the ratio of the means, but for the random variables
Zy(t)/Z1(t) as well: if we denote by A the event {Z(¢) # 0 for all # > 0}, then

Zo(1)

im =R on A
=00 Z1(1)

(up to an event of probability zero). In words, this means that either the branching
process becomes extinct in finite time or the sizes of the subpopulations of individuals
of the two types grow unboundedly in such a way that their ratio tends to R.

Observe also that the above shows how fast the composition of the population will
change if the encounter rate A switches to another value. Suppose that the initial value
is A/. As we saw, after some (exponentially short) time, the balance of types in the
process will establish around the value R(A) = R(a1, a2, B1, B2, i1, n2, A'). Now if
the value of A quickly changes to A”, then the population will re-establish balance at
a new level R(\”)—again exponentially fast, with the rate characterized by the new
value of A (provided, of course, that the process will still be supercritical, i.e. o > 0
for the new value of A).

As we discussed earlier, the increase in the encounter rate A ought to be beneficial
for the parasite type with higher lethality as that increases its chances to spread in the
host population. Indeed, we have

IR _(—a)n-—n+4)

— = 0
oA 260 A

since ap > o] by assumption and it is obvious that [y» — y1| < A. Figure 2 displays
the dependence of R on A varying in (0,20), for different levels of the lethality oy (left
pane) and mutation rate 1 (on the right) of the type 2 pathogen.

In this example, our model corresponds to many previous models in that trans-
missibility is greater for the more virulent pathogen. The model shows the expected
increase in the frequency of more lethal parasites in a host population when the density
of the hosts increases. Observe that the threshold value R = 1 (after which type 2
pathogen dominates the population) may play no critical role: our model is a crude
approximation for the initial stage of an epidemic only, so R/(R + 1) will just give
the proportion of the carriers of type 2 parasite in the population of infected hosts at
the end of that stage.

It is important to note that it is the “splitting” of the single “virulence” characteris-
tic of the parasite into two (lethality and transmissibility) that made such a capability
possible: if, say, there is no difference in lethality («¢; = «r2) then, as a simple algebraic
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Fig.2 The plots of R as a function of 1 € (0, 20). For the fixed common valuese; = 0.5, u; = 0.2, 1 =
0.3 and B = 0.6, the left pane displays the plots of R for four different lethality levels p = 1, 1.5, 2 and
2.5 for fixed up = 0.2 (the lower the value of «, the higher the curve), whereas the right one shows the
plots for different mutation rates up = 0.2,0.3,0.4 and 0.6 (the higher the mutation rate, the lower the
curve), for fixed ap =2
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Fig. 3 Convergence of R;(f) to R ast — oo. For a common set of parameter values, the plots display the
behaviour of R;(¢), i = 1,2, for A = 2, 6, 10 and 14 (from left to right, top to bottom), with the respective
values R =~ 0.210, 1.076, 1.500 and 1.699. In all the cases, the process is supercritical (o > 0)

calculation shows, the value of R does not depend on density A. The last observation
we could have actually made earlier, as it follows from the model construction.

Figure 3 illustrates the stated exponentially fast convergence of the ratios R; () to a
common limit R in four situations that have common parameter values oy = 0.5, ap =
1.5, w1 = p2 = 0.2, 1 = 0.3, B2 = 0.6, but different encounter rates. The plot in
the top left corner displays the graphs of Ry (#) < R»(t) in the case when the encounter
rate A = 2 is small enough to allow type 1 parasite to dominate (R ~ 0.210). On the
top right plot, we see that, for A = 6, there establishes a rough balance (R ~ 1.076),
whereas on the plots in the second raw we see type 2 parasites to gain dominance
pretty fast (which is due to higher values of A = o — o_), with the limiting values
R ~ 1.500 and 1.699, respectively.
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Fig. 4 The plots of the limiting value R as a function of the transmissibility probabilities (81, B2) in four
cases: A = 2,6, 10 and 14 (from left to right, top to bottom), when all the other parameters of the model
are common (a1 = 0.5, ap = 1.5, u1 = pup = 0.2). The plots are restricted to the regions where the
respective processes are supercritical

The character of the dependence of R on the transmission probabilities is illustrated
in Fig. 4. For four different values of the encounter rate (A = 2, 6, 10 and 14), the
figure shows the plots of R as a function of (81, B2), restricted to the regions where
the process is supercritical (i.e. o4 > 0). The values of the other parameters are
a; = 0.5, g = 1.5, u1 = 2 = 0.2. As one could expect, the value of R strongly
depends on (81, B2) and is an increasing function of 8, and a decreasing one of S;.

In all four cases presented in Fig. 4 the threshold value R = 1 is exceeded (that
is, the more virulent pathogen becomes dominant) only when the transmissibility of
type 2 pathogen is greater than that for type 1 (82 > B1), so it may appear that inequal-
ity is a necessary condition for type 2 to prevail. This, however, is not true: it turns
out that a higher mutation rate from type 1 to type 2 can compensate for some lack of
transmissibility. Figure 5 shows the plots of R as a function of the mutation probabil-
ities (w1, n2) € (0, )2 for different encounter rates, all other parameters being fixed
and common, with the transmission probability for type 1 being double that for type 2
(B1 = 282 = 0.4). On the left plot corresponding to A = 4, the maximum value of R
barely exceeds 0.5, whereas on the right one, due to the increase in the encounter rate
to A = 7, not only the supercriticality region is much bigger, but also the maximum
value is R = 3. We see type 2 parasite’s domination in the region where the mutation
rate ;1 (from type 1) is high enough, while i is relatively small.

Finally, we turn to the dependence of R on the lethalities ot ;. As one can easily see,

oR 1 Yi— WV oR JR
s 2

- - =—— <0.
dog 28, day dog
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Fig. 5 The plots of R as a function of the mutation probabilities for A = 4 (the left pane) and 1 = 7 (on
the right), for fixed common values of all the other parameters of the model (o1 = 1, ap =2, 1 = 0.4
and B = 0.2. The plots are restricted to the regions where the respective processes are supercritical. Note
the unusual orientation of the p-coordinate axes (chosen so as to have a better view of the plots)

4\ A7
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R\ ot
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Fig. 6 The plots of R as a function of the lethalities («, «rp), in the same four cases as on Figs. 3, 4:
A = 2,6, 10 and 14 (from left to right, top to bottom), when all the other parameters of the model are com-
mon (81 = 0.3, o = 0.6, 1 = puy = 0.2). The plots are restricted to the regions where the respective
processes are supercritical and o] < « (as we assumed). Note the unusual orientation of the a-coordinate
axes (chosen so as to have a better view of the plots)

This is quite natural, as the increase in a pathogen type’s lethality does not improve
its chances to prevail when all other parameters of the model remain unchanged.
The character of the dependence is illustrated in Fig. 6 showing R as a function of
(a1, ) € (0, 7)2, for L = 2, 6, 10 and 14. Note how the encounter rate A influences
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the size of the region where the process is supercritical (thus, for A = 2 it shrinks to a
narrow strip in the (1, @2)-domain, corresponding to small values of «1).

This is consistent with previous models of virulence evolution—it appears that they
all would show that a more virulent pathogen strain would not be competitive if all its
other parameters were equal to other strains. The “trade-off” relation between viru-
lence and transmission rate in those models is necessary for more virulent pathogens
to dominate. The recent model in Day and Gandon (2006) which also does not assume
a tradeoff, produces a similar result.

We do not assume a trade-off between transmission and virulence (i.e. a function
linking these characteristics), or that there is a genetic covariance between them. As
noted in Day and Gandon (2006), virulence and transmissibility are affected by both
the pathogen and its host. But our model suggests that more virulent strains can domi-
nate only if higher transmissibility or mutation rate (or a combination thereof) favours
them. It is this subset of more virulent pathogens that can dominate more easily at
high host density.

5 On the effects of the change in enclosure size on the encounter rate

As we said, our main motivation was to model the effect that a change in “effective
density” represented by the parameter A (the rate at which infected hosts encounter
susceptibles) can have on the ratio of the number of hosts infected, say, with T, path-
ogen to that for T7-infected hosts. But how does the value of A relate to physically
measurable parameters of the modelled situation— for instance, the density of fish
in an aquaculture tank (given the tank size and all other parameters of the model are
fixed) or the size of the tank (given the number of fish in it is fixed)? How will A change
if one, for example, “squashes” the same host population to a “world” whose linear
dimensions are twice as small as for the original one?

The answer to this type of questions will in general depend on what one assumes
about the character of the hosts’ movements (and of course, on the pathogen trans-
mission mechanism—but we will not address this aspect in our simple analysis in
the section). One of the most popular models for “wandering particles” is the famous
Brownian motion process {W (z), t > 0} (see e.g. p. 169 in Karlin and Taylor 1981),
which can be thought of as a continuous analog of a simple (symmetric) random walk.
Recall that the Brownian motion is defined as a continuous time process with con-
tinuous trajectories that starts at zero at time + = 0 and has independent Gaussian
increments: W (¢t + h) — W(t) ~ N(O, h) for ¢, h > 0. One of the key properties of
the process is its self-similarity: for any a > 0, one has

[aW(), t > 0} £ (W(a%), 1 > 0}, (13)

i.e. these two processes have the same distribution.

Since the total number of hosts is assumed to be large enough, encounter rates are
mostly determined by the “local” characteristics (the density of the population and the
dimensionality of the space) of the enclosure and will have little dependence on the
“shape of the world”. Therefore, for analysis purposes, we will assume in this section

@ Springer



1142 K. Borovkov et al.

that hosts perform independent Brownian motions in a “simple world” S in one, two
or three dimensions (starting at some “individual” initial points) and show how the
encounter rates change when one “contracts” the original world without changing its
shape, i.e. switches from S to the set ¢S = {ex : x € S}. In this context, the dimen-
sionality can actually be thought of as a crude description of the shape of the world.

Suppose that there are N susceptibles in the population and that the movements of
all the hosts are independent of each other. The value of the parameter A = Ay gives
the average number of encounters of a given infected host with susceptible ones per
time unit (we assume that N is large enough so that the “conversion” of some suscep-
tibles into infected hosts during our modelling “time horizon” does not significantly
change the number N and hence the encounter rate X). It is clear that Ay = NAj and,
moreover, that .| = 1/¢*, where t* is the mean time to encounter of our infected host
with a given susceptible host. Thus the answer to the question on how the encounter
rate will increase if the host density living in a “fixed world” increases is simple: it
is just proportional to the number of hosts in the world. However, to understand the
effect of the world size change (when we switch from S to €S) on the encounter rate
A = A(g), we will have to analyze that effect on the mean time * = 1*(¢).

The one-dimensional case

First we assume that § = [0, 1] C R. Our hosts move according to independent
Brownian motions, reflecting from the boundaries O and 1 of the set S. This can be
formalised by introducing the function

o) = [)IC_ ixj_ LX) Lfn Bj 12 eo\ézl?’ x| :=max{k € Z: k < x},
and letting the location of our infected host to be given by Hy = Hy(t) = ¢ (Hp(0) +
Wo(t)) and that of a given susceptible one by H; = H\(t) = ¢(H1(0)+ W(¢)), where
H;(0) € S are some fixed initial positions and W; are independent standard Brownian
motions, i = 0, 1. We say that the hosts have an encounter at time ¢ if Hy(t) = H;(¢).
Now consider the space ¢S, where our hosts move according to {¢ H; (), t > 0}
and denote by ¢*(¢) the mean time to encounter of the hosts in this new world, ¢ > 0.
It is obvious from the self-similarity property (13) that t*(¢) = €2t*(1) and therefore

A(e) = e 2A(1).
Thus, if our hosts are confined to a one-dimensional world where they wander at

random, the encounter rate displays inverse quadratic dependence on the world size:
say, halving the “living space” will increase the encounter rate fourfold.

The two-dimensional case

To avoid dealing with any boundaries, we assume that our hosts live on the two-dimen-
sional sphere
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SP={(x,y,20) eR: x> +y>+ 2 =1}

and that our hosts wander on it at random according to independent spherical Brown-
ian motions {H; (t), t > 0} (see e.g. Karlin and Taylor 1981, Chapter 15, Section 13I),
starting at some fixed distinct points H;(0), i =0, 1.

In this case, Pr(Hy(t) # H;(t), t > 0) = 1, so we need to modify our definition
of encounter. Fix a small enough 6 > 0 and define the encounter time of the hosts
H; asinf{t > 0 : r(Hy(t), Hi(t)) = &}, where r(-, -) is the geodesic distance on S2.
Denote by #§ =t (1) the mean value of this time (suppressing the dependence of the
initial locations H; (0); to simplify the exposition, we deliberately make it somewhat
sketchy).

Next we consider the “contracted world” €S2, where our hosts wander according to
{eH;(t), t > 0}, but the definition of encounter remains unchanged (the hosts should
find themselves within distance § of each other); the mean time to encounter for this
case is denoted by 75 (¢). Again using self-similarity, we can easily conclude that

t3(e) = e213,.(1). (14)

However, we want to relate 75 (¢) to £5(1), so it remains to clarify the relationship
between tg‘/s(l) and 73 (1).

It is obvious that t,’; = t,’;(l) is a decreasing function of n > 0. As we are interested
in situations where §/¢ is small (despite the small size of the “world”, encounters are
still relatively rare), it suffices to find the asymptotic behaviour of t:; asn — 0. To
do that, we first observe that analyzing the dynamics of the position of Hy(t) rela-
tive to Hj(t) shows that finding the mean time when the two points are first within
distance n of each other is equivalent to finding the mean time a Brownian particle
H*(t) (with an initial position at a distance r (Hy(0), H;(0)) from the “North Pole”
P =(0,0,1) € S? and local diffusion coefficient \/E times that for the original
spherical Brownian processes) will need to get within distance n of P.

Denoting by V() the projection of H*(¢) on the z-axis, one can easily see from
1t6’s formula that {V (), + > 0} is a diffusion process with the state space [—1, 1]
governed by the stochastic differential equation

dV (1) = n(V(0)dt + o (1)dWo(1),

where Wy is a standard univariate Brownian motion process and the drift and diffusion
coefficients are given by

2

_ 2z 5 _l—Z
w(z) = o 07°(2) = 7

respectively (see e.g. p. 194 in Matthews 1988; for convenience we assumed that H*(¢)
follows a standard spherical Brownian motion on S? which will have no adverse impli-
cations for the validity of our analysis). The geodesic distance from H* to P is equal
to 7 iff its projection on the z-axis equals r := cos 1, so that we need to find
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v(z) = E(r|V(0) =2z), where 7 =inf{t >0: V() =r}.
This can easily be done using the standard technique of the method of differential

equations (see e.g. Problem B on p. 192 in Karlin and Taylor 1981): the function v(z)
is the bounded solution to the equation

/ 1 2 7 1 / 1 2 17
I =—-u@v(z)— 5° @' (2) = SV (z2) + Z(Z — v (z), ze(-1,r),
(15)

with the boundary condition v(r) = 0. Setting u(z) := Z-1 /4, we notice that
u'(z) = z/2 and so (15) is equivalent to

1=uv +u” =W,
which means that u(z)v'(z) = z + ¢y, and so

v o e A te)
9= u(zy  22—-1°

Therefore the general solution to (15) is given by
v(2) =2[(I+en)in(l —2) + (1 =) In(l +2)] + c2,

which is bounded on (—1, r) iff ¢c; = 1. Now using the boundary condition at z = r
to find ¢, leads to

1—z
v(z)=4ln1 , ze[=1,rl]

To find the asymptotic behaviour of v(z) asn — 0, weusecosn = 1 — r)2/2(1 +o0(1))
to obtain that, for a fixed initial value z,

v(z) = 8]Inn| + O(1).

This means that, for fixed initial positions of Hy and Hp, we have t;]" = (c +
o(1))|Inn| as n — 0. Together with (14) this yields, for small §/¢,

5|Iné| —[Ineg|

ey~ e t5(1).
5 (e) T d| s (1)
That is, the encounter rate behaves as
ey~ e )
e T—m— .
[Ind| — |In¢g|
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In the two-dimensional case, it might be more natural to relate the encounter rate not
to the linear dimensions of the enclosure, but rather to its area (proportional to 82).
The above formula shows that, in this case, the encounter rate in a “shrinking” world
still grows somewhat faster than the inverse proportion of its area, the latter giving the
density of hosts.

The three-dimensional case

We still have (14), and an analysis similar to the one carried out in the two-dimensional
case shows that now t,’]" =(c+ 0(1))77_1 as 1 — 0 (cf. p. 195 in Matthews 1988), so

that £} (e) = &3t (1)(1 + o(1)). That is,
re) = e A (D) + o(1)).

We see that, in the three-dimensional case (assuming that the hosts wander according
to three-dimensional Brownian motions), the encounter rate in a “shrinking” world is
inversely proportional to its volume. That is, in this case the rate is proportional to the
density of hosts.

To summarise the above analysis, we observe that the encounter rate . = A(g)
grows rather fast when the linear dimensions (specified by the parameter ¢) of the
hosts” “world” diminish. In the three-dimensional case, A is inversely proportional
to the volume per host, in the two dimensional case it grows slightly faster than the
reciprocal of the area per host, while in the one-dimensional case the growth rate of
A is inversely proportional to the square of the size of a host’s share of the enclosure.
This indicates that not only effective density per se, but also the shape of the enclosure
can be an important factor leading to an epidemic. Thus the nature of the enclosures
in which animals are kept can be an important factor in determining the progress and
nature of an epidemic.

6 A multistage modification of the model

In this section we will consider an aggregate model for situations in which there are
several populations of hosts that exist in originally isolated enclosures. The situation
we model here could be viewed as a simple instance of a meta-population model (we
refer the reader to Hanski and Gaggiotti 2004 as an extensive source on metapopu-
lation modelling). But in our scenario there is no feedback from later enclosures to
earlier ones, and we do not consider any dynamics of the hosts. Thus we find it more
useful to consider it as a chain of epidemic episodes.

In intensive animal husbandry, there are often many pens, paddocks or sheds enclos-
ing animals at a farm or many fish tanks at an aquaculture facility. We consider the
scenario where initially, one of the enclosures becomes infected with a single type
pathogen. This can give rise to a “local epidemic” in the infected enclosure, which can
be modelled using our processes from Sect. 2 (assuming that we have supercritical-
ity: o > 0). The original pathogen may also mutate to become more or less lethal.
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We will initially assume that it may mutate to a more lethal type 2 pathogen (ar = ro
for some r > 1, o1 = «). That new pathogen type can also have different trans-
missibility and mutation rate, but, to make our model as simple as possible, we will
assume for the time being that it differs from type 1 pathogen in lethality only, all
other parameters being unchanged. Denoting them simply by B and 1, we see that the
Malthusian parameter for that process is given by

1
oo o) =5 (2(1 — B —an —ar (e —an)? + 4M2ﬂ2k2)- (16)

At some point, the infection might be transmitted to the next enclosure (say, by a
worker in a farm situation). We assume that this occurs after the epidemic has gone
through the initial stage, and so the ratio of the numbers of hosts infected with different
pathogen type can be assumed equal to pg, where p; = R(rka, rhtly, B, B, 1, i, A).
The transmitted pathogen is chosen at random, so that the probability of transmitting
the one with lethality o (denote this event by A) is 1/(1 4+ pg), while the one with
lethality ro is transmitted with probability po/(1 + pg). This, in turn, may lead to a
local epidemic in the new enclosure: we again assume the possibility of mutation to
a more lethal pathogen (so that now we will have o1 = «, oy = ra if the event A
occurred, and o] = ra, ap = rla otherwise), and to have an epidemic we again need
oy = o4+ (a1, @) > 0 (now for the new set of parameters o1, o). Once the epidemic
has established itself in the second enclosure (and the balance of pathogen types has
stabilized around the respective R-value), the next step is the transmission of the dis-
ease (by means of a random mechanism of the same type as in the first instance) to
the next enclosure, and so on.

Scenarios of this type have been encountered often where once a disease is recog-
nized in a herd, animals in the infected enclosure are removed or killed, but the disease
is subsequently found in other herds, for example the spread of foot and mouth disease
among herds in Taiwan, which was related to herd size and the number of herds in
a province (Gerbier 1999). Of course, biosecurity measures are intended to prevent
such transmission between enclosures, but often the need for diligence is learned after
the event.

It is easily seen from (16) that

d
0+(0,0) >0, —o4(a,ra) <0, lim oy(o,ra) =—00, (17)
Jo a—>00

0
and also that ™ R(w, ra) < 0. Thus, if the lethality of the pathogen will keep increas-
o

ing, the Malthusian parameter of the model will eventually drop below zero, and then
the epidemic will collapse. More specifically, setting

k* =inf{k > 0: 0’+(Vk0[, o) <03,
we see that

or(rfa, " a) <0 forall k > k*. (18)
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It is clear that the transition of the disease from enclosure to enclosure according
to the above scheme is described by a discrete time Markov chain {X},}, the “time” n
having the meaning of the number of steps (i.e. enclosures infected), X,, representing
the level of lethality of the pathogens in the nth infected enclosure: we set X,, = k if
(a1, ap) = (rka, r*+1u) in the enclosure. Thus the state space of the Markov chain is
{0, 1,2, ...} and the only nonzero entries in the transition matrix P = [p; «]; x>0 of
the chain are

Pk =Pr(Xp1 =k| X1 =k) =

1+t

Pk
Pkl =Pr(Xpp1 =k + 1| X1 =k) =
L+ pr

)

k=0,1,2,...

Further, in view of (18), one can assume that once the Markov chain {X,} has
reached the state k*, the epidemic becomes unsustainable, and hence there will be no
further transmission of the disease to other enclosures. So we can truncate our state
space to {0, 1, 2, ..., k*}, which results in a finite decomposable Markov chain with
a single absorbing state k*. Whatever the current state of the chain, at the next step it
can either stay at it or move to the right, the transition probabilities forming the matrix

T T
[ij]=Q=|:0 rl]

where T is the k* x k* substochastic matrix formed by the first * rows and k* columns
of P, r =(0,...,0, ppr_1 i) € R’f: and T denotes transposition.

The (random) number of steps 7 the chain will need to reach the absorbing state is
nothing else but the total number of enclosures that will be affected by the epidemic
prior to its collapse. Using our model, we can easily find the distribution of 7.

Indeed, using the standard approach to solving such problems (see e.g. p. 80 in
Kijima 1997), we note that as the state k* is absorbing, we have Pr(T < n| Xo = 0) =

q(gnlz*, where qj(.',? are the n-step transition probabilities:

T"r| _
[q}’,?]zQ”z[O rl"}, =T +T+ -+ T YT,

so that for the probability mass vector function f(n) = {f;(n), j = 0,...,k* —
1}, fj(n) = Pr(T = n| Xo = j), one obtains

f)y=ry—rp =r(T"HT, n>1.

Of course, we are only interested in the first entry of the vector f(n).
To compute the mean and higher moments of 7" one can use the generating function

Ff@Q=>""fm=re(I—2T7)7" 2 < 1.

n=1

@ Springer



1148 K. Borovkov et al.

d _ _
In particular, since d—f*(z) = r(I — zTT) ! + rzTT(I — zTT) 2, we find that
z

2 1

d - -
ETIXo=))= '@ =r(I-T") " =1(I-T")",

z=1

where the last equality follows from the obvious observation that r(I - T T)_l =
ffH=1=(,....,1)eRE.

A possible objection to the above simple aggregate model is that pathogens will
not always mutate to become more lethal. The model can be further generalized by
allowing, within each enclosure, mutations of our pathogen not only in the direction
of higher lethality, but also in the opposite direction. So we will first have to generalize
our basic model from Sect. 2 to a three-type branching process, assuming that, if an
enclosure is infected with a pathogen with lethality «, then the pathogen can mutate
to ones with lethalities r '« and ra, respectively, where, as before, r > 1 is a fixed
number (all other parameters being assumed equal for the different types of patho-
gens). Mathematically, analyzing such processes is essentially equivalent to what we
did in Sects. 2—4, although all the closed-form expressions will become much more
complicated, and so we will not give much technical detail for brevity’s sake. The main
assertions concerning the asymptotic behaviour of the branching process will remain
true: there will exist a limiting balance of types in the supercritical case (denote the
shares of the different pathogens by 7; = m;(a), j = 1,2, 3, Zj mj = 1), which
can be found from the generator A of the semigroup of the mean matrices, and the
almost sure convergence of the process scaled by e+ (as before, o denotes the
Perron—Frobenius root of A) to a limiting random vector will hold.

In the multi-stage model, we start with initial infection of one of the enclosures
with a pathogen with lethality «. That leads to an epidemic (provided, of course, that
o4+ > 0) in which pathogens of three types will be present, with lethalities given by
the vector (a1, a2, @3) = (r~la, @, rer). The next enclosure to be infected will receive
a pathogen chosen at random from those present in the first infected enclosure, and so
it will have lethality o; with probability 7r;, j =1, 2, 3, and so on.

Observe that the triplets of lethalities (o1, a2, @3) characterizing the pathogens
present in a given enclosure in our system will all be of the form (x, rx, r2x) for some
x > 0, 1i.e. lying on a common ray L with the direction vector (1, r, r2). Therefore we
will again have a basically “univariate” Markov chain {X,} showing what pathogens
can be present in different enclosures, X, = k meaning that the nth affected enclosure
was initially infected with the pathogen of lethality r*«, k € Z (and in this case there
can also be pathogens with lethalities r* ' and 7!« in that enclosure), assuming
that Xo = O (as « is the lethality of the pathogen that was initially introduced into
our system). The original state space for the process willbe Z = {..., —1,0,1, ...},
which is infinite in both directions. At each step, the value of the chain can remain
unchanged (the interpretation being that the pathogen transmitted to the next enclosure
had the same lethality as the one with which the epidemic started in the current one)
or can either decrease or increase by one (that is, the transmitted pathogen would have
lethality values equal to »~! or r times the current one, respectively).
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Further, as before, one can show that %mr (x,rx, rzx) < 0, so that, moving along
the ray L in the “positive direction”, we will eventually enter the subcriticality region
for the branching process, where the basic reproductive number will be less than one.
Therefore, at this stage the epidemic will collapse, and hence we again can “truncate”
the state space for {X,}—mnow to {..., —1,0,1,..., k*}, where k* is an absorbing
state that has the same meaning as above.

The variety of behaviours that such a chain can display will be somewhat wider
than for our first multi-stage model. The dynamics of the chain are determined by the
behaviour of the mean step values

E(Xpt1 — Xu| Xp = k) = m3(r*a) — mi (), k < k™.

In particular, the parameters of the model can be such that the above quantities will
be negative. Then absorbtion at k* occurs with probability less than one, while on the
complement event the chain will drift away in the negative direction, which corre-
sponds to the disease “fading”, when the pathogen’s lethality vanishes, and so on.

7 Discussion

We conclude with remarks concerning possible biological interpretation of our results.

First, our model results are generally consistent with previous models of virulence,
but we have focused on the initial stages of epidemics in an animal husbandry context,
and used a different approach and assumptions. The mathematical models we have
presented show that, at the beginning stages of any epidemics that arise in such situa-
tions, the density of hosts is an important factor in determining whether more or less
lethal strains of the pathogen will predominate. Many authors have noted that selection
for virulence differs during the initial (spreading) stage of an epidemic (Frank 1996;
Day and Proulx 2004; Bull and Ebert 2008; André and Hochberg 2005), and others
have noted that high host densities are likely to lead to increased virulence (Ewald
1994; Gandon et al. 2001; Bull and Ebert 2008).

Many previous models (Ewald 1994; Frank 1996; Day 2003) have assumed that
more rapid production of copies of the pathogen inside the host would both increase
the likelihood of transmission to new hosts and also shorten the life of the host. There
has been considerable criticism of this “tradeoff hypothesis™, although there are lim-
ited data supporting it (de Roode et al. 2008; Fraser et al. 2007; Bolker et al. 2010),
but it has now been realised (Bull and Ebert 2008) that it is simply not relevant to the
initial stages of an epidemic. Nevertheless, our model shows that increased lethality
alone will not lead to dominance by a pathogen strain—although more lethal strains
can invade more easily at high densities and they will dominate more rapidly, provided
they are favoured by some factor such as higher transmission or mutation rates.

Our models show that the ratio of infections by more and less lethal pathogens
stabilizes very fast, so that even if measures to prevent further spread of the disease
are put in place as soon as an outbreak is identified (such as elimination of the animals
in an enclosure), the relative frequency of pathogen types is likely to have changed
before action is taken. Thus a high density of animals on farms or mariculture facilities
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will rapidly lead to the dominance of more lethal strains of pathogens if these can enter
the farm and mutations occur to produce more lethal variants. An example of this pro-
cess has recently been described in the mariculture of fish in Pulkinnen et al. (2010).
The problem has been recognized in intensive poultry production (Slingenbergh and
Glibert 2010), and the identification of more virulent trains of Marek’s disease in
chickens (Witter 1997) may also be an example of this process. It also seems possible
that the advent of very virulent strains of Spanish Flu in August 1918 in US military
camps, troop ships, and European disembarkation camps, some time after the start of
the epidemic may be linked to high densities of soldiers in these camps and troop ships
and the difficulty in implementing quarantine in these overcrowded camps (Mathews
et al. 2009), although there are other plausible explanations, such as overcrowded
conditions leading to higher infection doses.

Thus the increasing density at which animals are kept (intensification of the indus-
try) should be considered as a risk factor for the evolution of more virulent diseases.
Various authors have pointed to this issue (Biggs 1985; Gandon et al. 2001; André and
Hochberg 2005) but in many cases attention has been focused on the possibility that
vaccination—especially where the vaccine reduces pathogen replication—selects for
higher virulence. We contend that it is likely that the higher transmission of pathogens
at high densities that allows more virulent pathogens (which may replicate faster) to
become dominant in spite of such vaccines.

Assuming a chaotic pattern of movement of animals inside the enclosure where they
are kept (as modelled by independent Brownian motion processes), we have modelled
how the effective stock density affects their encounter rate (the key parameter of our
model) and thus influences what pathogen type will predominate. The effect increases
more rapidly with density where an enclosure is most appropriately measured as area
(cattle feedlots, paddocks) than if the appropriate measure is a volume (fish tanks).
We assumed constant mixing so that the rate of encounter with susceptible hosts is not
materially changed in the first stages of the epidemic. These assumptions will limit
the situations in which this result may apply to cases where animals mix freely and
rapidly in the enclosure, but our result may also apply if there is a large area around
an infected individual where others may become infected by a pathogen, because it is
dispersed in air, water or over time [as a long-lived propagule (Biggs 1985) that can
disperse or survive until restocking (Bull and Ebert 2008)].

In agricultural systems, humans have been maintaining animals and plants at very
high densities for about 10,000 years, and humans themselves began living at high
local densities in villages, towns and cities from about the same time (Crawford 2007).
Densities of both humans and domesticated organisms have probably increased con-
tinually since then, but the densities at which some domestic animals are kept appear
to have increased very rapidly in the last few decades (see e.g. Fraser 2005), and the
recent rapid development of large scale commercial aquaculture involves the mainte-
nance of very high densities of a whole new set of marine species that will have their
own pathogens (see Harvell et al. 2004, 1999; Bergh 2007).

The ratio of pathogen types will clearly also depend on the transmissibility of path-
ogen strains. We have focused on differences in lethality between pathogen strains,
because pathogen strains with increased transmissibility would obviously become
more prevalent. It is interesting to note that our model showed that, even if the trans-
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missibility of pathogen of one type is lower than that for the other, the former patho-
gen can still prevail provided it is favoured by mutation. Increased density of animal
hosts may itself increase transmissibility, due to stress on the hosts caused by crowd-
ing (Sniezko 1974). Increased transmissibility might in turn lead to the evolution of
increased lethality (Ewald 1994).

Modern animal husbandry often involves a large number of separate enclosures,
each containing a large number of animals at very high densities. Once a disease is
detected in an enclosure, farmers would either use antibiotics, or sacrifice or remove
the animals, but pathogens may be carried between enclosures by various mechanisms,
depending on the type of pathogen and the biosecurity practices followed. A multi-
stage version of our model for this situation suggests that if pathogens are transferred
a number of times, then the evolution of more lethal pathogens may be very rapid, but
the increase in lethality will eventually lead to the epidemic becoming unsustainable
(hosts dying too fast to be able to transit the pathogen).

We suggest that the outcomes predicted by the mathematical models discussed in
the present paper can carry important messages for animal husbandry, where there are
strong commercial incentives to increase the densities of animals in enclosures to very
high levels, and often very large numbers of enclosures are built in a single farm.
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