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Abstract

Calcineurin inhibitors (CNI) are both the savior and Achilles heel of kidney transplantation. 

Though CNI have significantly reduce rates of acute rejection, their numerous toxicities can 

plague kidney transplant recipients. By 10 years, virtually all allografts will have evidence of CNI 

nephrotoxicity. CNI have been strongly associated with hypertension, dyslipidemia, and new onset 

of diabetes after transplantation – significantly contributing to cardiovascular risk in the kidney 

transplant recipient. Multiple electrolyte derangements including hyperkalemia, hypomagnesemia, 

hypercalciuria, metabolic acidosis, and hyperuricemia may be challenging to manage for the 

clinician. Finally, CNI-associated tremor, gingival hyperplasia, and defects in hair growth can have 

a significant impact on the transplant recipient’s quality of life. In this review, the authors briefly 

discuss the pharmacokinetics of CNI and discuss the numerous clinically relevant toxicities of 

commonly used CNIs, cyclosporine and tacrolimus.
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Introduction

Calcineurin inhibitors (CNIs) have been the backbone of solid organ transplant 

immunosuppression for several decades, with over 90% of kidney transplant recipients 

maintained on CNI containing immunosuppression regimens in 2017.1 Outside of 

transplantation, CNIs are now also being studied and utilized in the treatment of a variety of 

immune mediated glomerular diseases.2–5 Though CNIs have been successful in preventing 

acute kidney transplant rejection, their use has been described as a significant contributing 

factor in acute and chronic allograft injury and ultimately allograft loss – with virtually 

universal presence of CNI nephrotoxicity on allograft biopsy by 10 years after kidney 

transplant.6 Here, we review the pharmacokinetics and pharmacodynamics of CNIs, 
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specifically cyclosporine A (CsA) and tacrolimus (FK506 or FK), and discuss the diverse 

side effect profile including deleterious effects on the kidney and electrolyte homeostasis as 

well as effects on the cardiovascular, endocrine, nervous, and integumentary systems (Figure 

1).

CsA was isolated in 1971, from the fungus Tolypocladium inflatum. Its immunosuppressive 

properties were first described in animals in 1976,7 with demonstration of clinical benefits 

among transplant recipients by Sir Roy Calne at the University of Cambridge in 1979.8 CsA 

was ultimately approved for use in kidney transplant recipients by the United States Food 

and Drug Administration in 1983. A few years later, FK was used in transplant recipients by 

Dr. Thomas Starzl at the University of Pittsburgh.9 CsA and FK cause immunosuppression 

through inhibition of T cell activation by binding to their respective intracellular 

immunophilins, cyclophilin and FK-binding protein 12. The CNI-immunophilin complex 

subsequently binds and inhibits the dephosphorylation activity of the phosphatase 

calcineurin, which impairs nuclear translocation of nuclear factor of activated T cells 

(NFAT), transcription of interleukin-2, and ultimately T cell activation and proliferation.
10–12

Pharmacokinetics

CsA and FK can be administered orally (PO), sublingually (SL), or intravenously (IV). PO 

CNIs have variable intrapatient oral bioavailability, with area-under-the-curves fluctuating 

up to 50% based on formulation, timing, and concomitant administration with food.13 

However, PO CNIs present the lowest potential risk for systemic toxicity and subsequently 

should be the preferred route of administration whenever possible. Both CsA and FK come 

in several PO formulations with varying pharmacokinetics and bioavailability, necessitating 

close monitoring of trough levels if formulations are changed. Following absorption, CNIs 

are highly plasma protein bound, lipophilic drugs with a large volume of distribution. 

Metabolism is predominantly hepatically mediated via the cytochrome P450 enzyme system 

(CYP3A), and metabolites are then excreted in the bile with an elimination half-life ranging 

from 10–48 hours.14 The therapeutic effects of FK are prolonged relative to CsA owing to a 

highly active metabolite with equal immunosuppressive potency to the parent drug, 

compared to CsA metabolites that have only 10–20% of parent drug activity. Polymorphisms 

resulting in CYP3A5 loss of function may also significantly influence drug metabolism and 

exposure, and lead to higher incidence of CNI-related nephrotoxicity.15–19 Similarly, 

polymorphisms in ABCB1 which encodes the efflux transporter P-glycoprotein present in 

enterocytes, hepatocytes, and kidney cells may influence oral bioavailability and drug 

clearance as well as CNI concentrations in kidney tubular epithelial cells.20 Though the 

current mainstay of pharmacokinetic monitoring is 12 hour trough level measurement (C0) 

of CsA and FK, studies have shown poor correlation with the 0 – 12 hour area-under-the-

curve (AUC) and the optimal pharmacokinetic monitoring of CNIs remains controversial.21

Pharmacodynamics

CNIs have a narrow therapeutic window, with low levels increasing the risk of acute 

allograft rejection while high levels increase the risk of nephrotoxicity that may lead to acute 

or chronic kidney allograft injury.22, 23 Unfortunately, real-time biomarkers to assess the 
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pharmacodynamic efficacy of CNIs are relatively limited. Measurement of anti-human 

leukocyte antigen (HLA) antibodies remains the only clinically available pharmacodynamic 

assessment of CNI efficacy. More specific pharmacodynamic assays include calcineurin 

phosphatase activity and cytokine expression and production but these are not yet utilized in 

routine clinical practice. Instead assessment of CNI pharmacodynamic dosing adequacy 

generally relies upon routine clinical assessment for signs of medication or immune-related 

toxicities, which may signify over or under-immunosuppression respectively.

Nephrotoxicity

Acute Nephrotoxicity

Acute nephrotoxicity can occur at any time post-transplantation and at any level of drug 

exposure, but is most commonly observed in patients with supratherapeutic trough levels > 

20 ng/mL.22 Acute toxicity is of particular concern immediately after transplantation as 

CNI-induced vasoconstriction can cause delayed-graft function (DGF) post kidney 

transplant or primary nonfunction and can impair recovery from AKI of other etiologies. 

Acute CNI toxicity often presents with an increase in plasma creatinine concentration due to 

acute afferent arteriole vasoconstriction. However, vasoconstriction and increased allograft 

vascular resistance may occur prior to clinically evident nephrotoxicity.24 The mechanism is 

likely due to significant impairment of endothelial cell function resulting from decreased 

production of vasodilating prostaglandin E2 and nitric oxide and increased production of 

thromboxane and endothelin in the afferent arteriole.25, 26 This leads to an acute reduction in 

renal blood flow (RBF), which is reversible after CNI dose reduction or drug cessation. 

CNIs are also associated with the acute development of de novo thrombotic microangiopathy 

(TMA) resulting in AKI, hemolytic anemia, and thrombocytopenia. The exact mechanism 

has not been fully elucidated but likely involves CNI-induced vascular endothelial cell 

injury, and the risk increases with concomitant use of mTOR inhibitors.27

CNI toxicity may be more pronounced in the setting of volume depletion and diuretic use, 

older donor age,28 high doses of CSA29, 30 or FK,31 concomitant use of nephrotoxic drugs 

especially NSAIDs,32 concomitant use of CYP3A4/5 or P-glycoprotein inhibitors, or 

patients with genetic polymorphisms leading to altered CYP3A4/5 and P-glycoprotein 

function.33–35 Accordingly, genetic testing for polymorphisms in the CYP3A4/5 or ABCB1 

genes may aid in CNI dosing and prognostication for patients likely to have high CNI peak 

exposures.36–42 Additionally, there is some evidence in animals and in vitro that decreased 

P-glycoprotein expression may contribute to increased renal CsA levels, leading to 

nephrotoxicity.43, 44 The use of CYP3A inhibitors can also increase while inducers can 

decrease total CNI exposure, and CNI dose adjustments are often required upon the 

initiation or discontinuation of moderate-severe CYP3A/P-glycoprotein inhibitors or 

inducers (Table 1). Lastly, diarrhea can produce variable effects on CNI levels depending on 

the etiology. Infectious diarrhea can increase CNI levels due to impaired activity of intestinal 

CYP3A and decreased drug efflux by intestinal P-glycoprotein,45 while osmotic diarrhea 

can decrease intestinal CNI absorption resulting in reduced drug levels.

Symptoms of PO CNI overdose are generally mild and may include confusion, hypertension, 

somnolence, nausea, and headache. In contrast, IV overdose is associated with increased 
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morbidity and led to one death due to cerebral edema in a retrospective analysis of CNI 

overdoses reported to a Swiss poison center.46 This study also found that enteral 

decontamination with activated charcoal or nasogastric tube aspiration may reduce drug 

absorption. Of the 28 reported CNI overdoses, 22 cases involved patients already receiving 

immunosuppression, 5 involved household contacts of CNI-treated patients, and 1 was 

unknown. Additionally, 13 were iatrogenic errors, 12 were suicidal intent, and 3 were 

accidental occurring at home. The majority (70%) of iatrogenic errors involved non-capsule 

drug formulations (PO liquid and IV).

The management of acute nephrotoxicity in the setting of CNI overdose is generally 

supportive and resolves with a reduction in CNI dose. Highly protein bound CNIs are not 

effectively cleared with extracorporeal treatment modalities, but renal replacement therapy 

may still be indicated for volume overload or electrolyte disturbances in the setting of CNI-

induced acute kidney injury (AKI). Inducers of the p450 system have been occasionally used 

to lower toxic CNI levels. However, evidence is limited to several case reports that describe 

the use of phenytoin or phenobarbital, while use of rifampin or carbamazepine have not been 

reported.47 Additionally, enzyme induction is not immediate and is typically delayed until at 

least 48–72 hours after initiation of the medication inducer raising concerns for timing and 

the potential efficacy of this strategy. Further clinical studies are required before this 

approach can be recommended for routine treatment of acute CNI toxicity.

With increasing use of recreational and medicinal cannabis worldwide, including 

cannabidiol (CBD), potential interactions with CNI metabolism are of interest48 as CBD 

inhibits CYP3A4.49 A case report of a woman taking FK for interstitial nephritis while 

enrolled in a high dose purified CBD clinical trial of up to almost 3 grams daily, 

demonstrated a 3-fold increase in dose normalized FK serum concentration.50 CBD inhibits 

hepatic CSA metabolism in vitro and in mice, but the impact on CSA levels has not been 

studied in humans.51 As a result of an unregulated market for CBD, product labeling is 

inaccurate and intermittent use of different brands and products may contribute to 

unpredictable CNI levels and the potential for toxicity or underdosing.

Of interest, CNI-induced nephrotoxicity has been explored in a novel 3D bioprinted 

proximal tubule-on-a-chip model where CsA was shown to disrupt cell morphology and 

cytoskeleton organization leading to disruption of the epithelial barrier function.52 Cell 

culture based microphysiological models offer a promising means for studying CNI-induced 

nephrotoxicity.

Chronic Nephrotoxicity

CKD and ESRD can result from chronic CNI exposure in many solid organ transplant 

recipients.53 Chronic CNI nephrotoxicity commonly presents as an irreversible, progressive 

decline in allograft function, which is likely from a combination of chronic hemodynamic 

effects and direct tubular effects. CNI-induced vascular endothelial injury and arteriolar 

vasoconstriction leads to repeated episodes of allograft ischemia and chronic kidney 

hypoperfusion, which is exacerbated by salt depletion.54–57 It is difficult to clinically and 

histologically distinguish CNI-induced nephrotoxicity from chronic allograft nephropathy. 

Key kidney biopsy findings in chronic CNI toxicity include obliterative arteriolopathy/
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hyalinization of the afferent arteriole, ischemic collapse or glomerular scarring, tubule 

vacuolization, focal and global segmental glomerulosclerosis, focal interstitial fibrosis 

associated with macrophage influx, and tubular atrophy often referred to as striped fibrosis. 
6, 58–61 The severity of biopsy findings correlates with dose and duration of CNI use. As 

with acute nephrotoxicity, patients with polymorphisms coding for functional CYP3A and 

P-glycoprotein and patients taking CYP3A or P-glycoprotein inducers, both of which 

increase overall CNI dose requirements, may be at an increased risk for chronic CNI 

nephrotoxicity due to higher peak drug exposures and increased circulating CNI metabolites.

Several potential therapies have been considered in an attempt to prevent or reverse the 

cascade of effects resulting from CNI-induced arteriolar vasoconstriction. Calcium channel 

blockers (CCBs) are generally considered first-line antihypertensives immediately following 

kidney transplantation and may be beneficial in combating the vasoconstrictive effects of 

CNIs, though clinical studies have not shown superiority in blood pressure lowering or 

preservation of kidney function over other anti-hypertensive agents.62–64 In one study of 

kidney transplant recipients, CsA induced kidney vasoconstriction and the reduction in GFR 

and RBF were completely prevented by the addition of a CCB.65 The degree of reduction 

correlated with dose and peak CsA levels. Choice of the optimal CCB agent remains 

controversial as anti-proteinuric effects are generally greater with non-dihydropyridine 

CCBs when compared to dihydropyridine CCB, but use of these agents may be complicated 

by CYP3A4/P-glycoprotein mediated drug interactions. In some instances, the non-

dihydropyridines CCBs, diltiazem and verapamil, can be used in transplant recipients to 

lower the total CNI dose and therefore, the cost of therapy. Diltiazem also attenuates CNI-

induced vasoconstriction although there is no definitive evidence that diltiazem prevents 

chronic CNI nephrotoxicity. Angiotensin converting enzyme inhibitors (ACE-Is) or 

angiotensin II receptor antagonists (ARBs) also work to block the downstream effects of 

CNI-induced vasoconstriction although their use remains controversial after transplantation 

due to potential overlapping toxicities with CNIs. Despite these concerns, a small study 

demonstrated equivalent efficacy in blood pressure lowering between ACE-I and CCBs post-

transplant.66 The comparison between RAAS blockade and CCBs remains controversial. 

RAAS blockade attenuates CSA induced interstitial fibrosis and arteriolopathy in rats.56, 67 

Among kidney transplant recipients, ARBs decrease circulating plasma levels of TGFβ, a 

cytokine which plays a central role in causing CNI-induced interstitial fibrosis.68 However, a 

recent meta-analysis has shown inadequate evidence to determine if RAAS blockade 

improves clinical outcomes in kidney transplant recipients.69

Urinary biomarkers show promise in detecting CNI-induced nephrotoxicity although their 

use remains in pre-clinical stages. In rats treated with CSA for 3 weeks, increased urinary 

KIM-1, TNF-α, fibronectin, and microalbuminuria indicated acute CsA nephrotoxicity 

while a delayed increase in urinary osteopontin and TGF-β indicated chronic CsA 

nephrotoxicity.70

Though treatment options for now are limited to minimizing CNI exposure at the risk of 

suboptimal immunosuppression, conversion to belatacept has been shown to stabilize eGFR 

in patients with chronic CNI nephrotoxicity.71
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Electrolyte disorders

CNIs cause numerous electrolyte disturbances including hyperkalemia, metabolic acidosis, 

hypercalciuria, and hyperuricemia. The clinical significance and possible mechanisms will 

be discussed. A comprehensive discussion of all CNI-induced electrolyte and acid/base 

derangements has been reviewed elsewhere.72

Hyperkalemia

While hypertension may be more common with CsA, hyperkalemia may be more common 

with FK.73 Hyperkalemia is common early post-transplant due to DGF, trimethoprim use, 

and higher serum CNI levels. CNI-induced hyperkalemia has been attributed to volume 

expansion induced pseudohypoaldosteronism, with suppression of the renin-angiotensin-

aldosterone system.74 In a clinical study, CsA treated patients demonstrated an impaired 

ability to excrete a PO potassium load and had lower plasma renin activity when supine and 

after standing compared to those treated with AZA.74 Another study attributed the 

hyperkalemia to a tubular insensitivity to aldosterone that was partially overcome by 

stimulating bicarbonaturia.75 Subsequent studies have also hypothesized that CNIs may 

impair the ability of the distal convoluted tubule to regulate the activity of the sodium 

chloride cotransporter NCC in response to changes in extracellular potassium.76 Impaired 

potassium secretion in the aldosterone sensitive distal nephron (ASDN) may also contribute, 

as CsA has been shown to inhibit apical potassium channels in principal cells of the rabbit 

cortical collecting duct.77

CNI-induced hyperkalemia is commonly associated with hypertension, hyperchloremic 

metabolic acidosis, and hypercalciuria, a similar phenotype to Gordon’s syndrome or 

familial hyperkalemia and hypertension (FHHt). Case series have reported a prevalence of 

CNI-induced Gordon’s phenotype in between 10–33% of kidney transplant recipients treated 

with CNIs. Recent investigations in humans and animals have implicated the with-no-lysine 

(WNK) kinase pathway in the pathogenesis of CNI-induced hyperkalemia 78–81 which is 

discussed here and the associated hypertension is discussed in a later section. In distal 

convoluted tubular epithelial cells, calcineurin functions to activate kelch-like 3 (KLHL3), a 

component of the E3 ubiquitin ligase complex, which targets WNK1 and WNK4 for 

degradation. In mice, FK prevented KLHL3 activation and therefore unregulated WNK1 and 

WNK4-SPS1-related proline/alanine-rick kinase (SPAK) mediated activation of NCC, 

contributing to salt-sensitive hypertension.82 Loss of KLHL3 in the collecting duct increases 

paracellular chloride conductance through interactions with claudin-8 to recapitulate 

Gordon’s syndrome.83 Increased chloride reabsorption in the ASDN prevents the generation 

of a favorable lumen-negative potential for potassium secretion, that may contribute to 

hyperkalemia.75 Therefore it is tempting to speculate CNIs cause hypertension and 

hyperkalemia by increasing chloride reabsorption in the ASDN.

Although clinical evidence is lacking, mechanistic studies suggest that CNI-induced 

hyperkalemia should be treated with alkali salts and thiazide diuretics. Fludrocortisone may 

also effectively manage CNI-induced hyperkalemia but at the expense of raising blood 

pressure. Despite the common use of fludrocortisone to treat hyperkalemia, evidence is 

scarce in kidney transplant recipients and is mostly limited to case reports/series in 
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adults84–87 and children.88, 89 In a small retrospective study of OLT recipients, 

fludrocortisone decreased serum potassium without effect on serum creatinine, systolic 

blood pressure, or diastolic blood pressure over 14 days.90

Metabolic Acidosis

Chronic metabolic acidosis is associated with increased risk of graft loss, death-censored 

graft failure, and mortality among kidney transplant recipients, and this may potentially be 

exacerbated by concomitant CNI therapy.91, 92 Acidosis may be due to impaired tubular acid 

secretion from either a direct effect of hyperkalemia, CNI-induced effects, or low 

aldosterone levels. Additional contributing mechanisms for acidosis include CsA and FK 

induced reductions in Na+/K+-ATPase pump activity in the medullary thick ascending limb 

of the loop of Henle and cortical collecting duct in vitro.93, 94 CsA but not FK may also 

promote distal renal tubular acidosis by interfering with the adaptation of β-intercalated cells 

to acidosis.95 CNIs increase the kidney avidity to sodium and chloride predisposing to 

volume expansion, hyperchloremic acidosis, and hypertension. Hyperchloremia can in turn 

decrease RBF and worsen kidney hypoperfusion through afferent vasoconstriction.96 As 

chronic CNI toxicity is also mediated by afferent vasoconstriction, we speculate tubular 

mediated hyperchloremia may also contribute to accelerated GFR decline. Alkali therapy 

prolongs survival and kidney outcomes among patients with CKD.97 However, the benefits 

of sodium bicarbonate among kidney transplant recipients remains unknown. An ongoing 

multi-center, randomized placebo-controlled trial aims to test if sodium bicarbonate 

treatment will preserve kidney graft function and decrease kidney function decline following 

transplantation.98

Hypercalciuria

Hypercalciuria is common among kidney transplant recipients treated with CNIs, and CNIs 

have in turn been shown to cause hypercalciuria in animal models.99 CNIs also cause 

hypocitraturia, increasing the risk of developing urolithiasis or nephrocalcinosis,100 which 

can be detrimental to the kidney allograft. CsA has been shown to impair kidney calcium 

reabsorption through reduced TRPV5 expression in mice,101 and induce high turnover bone 

disease.102 Thiazides reverse CNI-induced Gordon’s phenotype and are also commonly used 

to reduce hypercalciuria and prevent recurrent calcium nephrolithiasis in native kidneys, 

however, no studies have directly studied the efficacy of alkali therapy or thiazides to reduce 

the risk of calcium stone formation in kidney transplant recipients.

Hypomagnesemia

Hypomagnesemia is also common among kidney transplant recipients treated with 

CNIs103–105 and is associated with an increased risk of new onset diabetes after 

transplantation (NODAT) cardiovascular morbidity.106–108 CNIs cause renal magnesium 

wasting due to impaired tubular reabsorption 109 through TRPM6.101 Clinical management 

of CNI-induced hypomagnesemia generally consists of exogenous supplementation to 

replete deficits and raise the serum magnesium level. Magnesium supplementation was even 

demonstrated to attenuate CsA-induced kidney interstitial fibrosis and tubular atrophy in a 

rat model.110

Farouk and Rein Page 7

Adv Chronic Kidney Dis. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hyperuricemia

CsA contributes to hyperuricemia and increases the risk of gout through a reduction in urate 

clearance.111–116 Additional predisposing factors to hyperuricemia include diuretic use and 

poor allograft function. CsA more than FK may in turn lead to chronic hyperuricemia and 

the formation of uric acid stones. Elevated serum urate levels can also induce endothelial 

dysfunction and impair vasodilatory nitric oxide secretion potentially contributing to chronic 

CNI nephropathy.116 Lowering serum uric acid levels attenuated experimental CsA 

nephropathy in rats however clinical data in humans is lacking.117

Cardiovascular and Metabolic Toxicity

Cardiovascular disease is the leading cause of death after kidney transplantation.118 CNIs 

contribute to hypertension, dyslipidemia, and NODAT, all of which are known risk factors 

for the progression of cardiovascular disease and have adverse effects on kidney transplant 

survival.

Hypertension

Hypertension is associated with adverse short-term and long-term allograft outcomes and 

can lead to increased morbidity and mortality post-transplant.119 Hypertension is common 

after kidney transplant due to a number factors including allograft dysfunction, volume 

overload, corticosteroid use, acute rejection, transplant renal artery stenosis, recurrent 

disease, and post-transplant proteinuria. Comprehensive reviews on the management of 

hypertension in transplant patients120 and CNI-induced hypertension have been previously 

published. 121, 122 A recent Cochrane review established that CsA increases blood pressure 

in a dose-dependent manner compared to placebo as well as the risk of stroke, myocardial 

infarction, heart failure, and other hypertension related adverse cardiovascular events.123 

CNIs raise blood pressure and cause hypertension through multiple mechanisms including 

tubular salt reabsorption, peripheral vasoconstriction, and the sympathetic nervous system. 

When compared to hypertensive AZA-treated kidney transplant recipients, CSA-treated 

patients demonstrated salt sensitive hypertension that responded to salt restriction.124 CSA 

has also been shown to prevent proper suppression of renin release by calcineurin in cultured 

rat juxtaglomerular cells,125 suggesting that CNIs may dysregulate renin secretion and 

tubuloglomerular feedback in kidney transplant recipients.

The WNK kinase pathway is involved in mediating CNI-induced hypertension. Kidney 

transplant recipients with CNI-induced hypertension demonstrate a greater increase in 

fractional excretion of chloride compared to healthy volunteers treated with a thiazide, 

suggesting a role for inhibition of the sodium chloride cotransporter NCC. Kidney biopsies 

from patients treated with a CNI had pronounced increase in kidney cortex NCC and 

phospho-NCC expression compared with the azathioprine (AZA) treated and healthy control 

groups.126 Another study demonstrated a 4–5 fold higher abundance of NCC and pNCC in 

urinary extracellular vesicles from CNI treated kidney transplant recipients compared to 

CNI-free kidney transplant recipients and healthy volunteers.127 Furthermore, higher levels 

predicted the antihypertensive response to thiazide diuretics. In a randomized non-inferiority 
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crossover trial among kidney transplant recipients receiving FK, treatment with 

chlorthalidone or amlodipine resulted in similar blood pressure reductions.128

Animal studies have revealed kidney specific deletion of FK binding protein in mice to 

attenuate FK induced hypertension and hyperkalemia129 and hydrochlorothiazide to reverse 

FK induced hypertension, which was dependent on WNK4-SPAK pathway activation of 

NCC.126 Another study of rats treated with CsA revealed increased abundance of WNK4 in 

kidney tissue, which was further demonstrated in distal convoluted tubule cell culture.130 

Other ion transport regulators have been implicated in contributing to hypertension. CsA and 

FK increased renin content of mouse collecting duct principal cells associated with 

increased vascular endothelial growth factor production and worsening of local hypoxia and 

fibrosis.131 Suggesting a role for NKCC2 activity in mediating salt reabsorption, CsA 

treated rats demonstrated increased NKCC2132 and phosphorylated NKCC2 kidney 

abundance, which was dependent on the presence of vasopressin.133, 134

Dyslipidemia

Both CsA and FK are associated with impaired lipid metabolism, with CsA having a more 

profound impact.135 Abnormalities of the lipid profile include increased total cholesterol, 

low density lipoprotein cholesterol (LDL-C), non-high density lipoprotein cholesterol (non-

HDL-C), triglycerides, apolipoprotein B and apoO-III.136 In vitro studies have shown that 

CsA inhibits sterol 27-hydroxylase (OYP27A1), which is required for 27-

hydroxycholesterol formation and cholesterol metabolism.137 As 27-hydroxycholesterol 

inhibits 3-hydroxy-2-metyhylglutaryl coenzyme A (HMG-CoA), the rate-limiting enzyme 

involved in cholesterol biosynthesis, CsA leads to an increase in HMG-CoA activity and a 

subsequent increase in cholesterol levels.138 CsA also inhibits the 26-hydroxylase, leading to 

a decrease in bile acid synthesis from cholesterol and increased serum levels.139 Lastly, CsA 

may contribute to reduced triglyceride breakdown via inhibition of lipoprotein lipase 

activity.140

Management of immunosuppression induced dyslipidemias is typically similar to that 

observed in the general population. The 2013 K/DOQI Guidelines consider kidney 

transplantation a cardiovascular risk equivalent.141 Statins are recommended for all patients 

with kidney transplants and is considered first-line pharmacotherapeutic options and remain 

the backbone of dyslipidemia management post-transplant for their proven benefits in 

reducing major adverse cardiovascular events.142

Care should still be taken when selecting a statin agent and dose due to the potential for 

CYP3A/P-glycoprotein mediated drug interactions. Fluvastatin, pravastatin, rosuvastatin and 

pitavastatin may be easiest to manage due to their non-CYP3A mediated metabolism. 

Simvastatin should be avoided whenever possible due to significant potential for drug 

interactions and increased rates of myopathy and rhabdomyolysis.143

New Onset Diabetes After Transplantation (NODAT)

Although FK use is associated with lower kidney allograft rejection rates when compared to 

CsA, FK has been associated with a higher incidence of NODAT.144 In addition to CNI use, 

risk factors for the development of NODAT include increased body mass index (BMI), 
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planned maintenance corticosteroid use, hepatitis C virus infection, and cytomegalovirus 

(CMV) infection.145 Interestingly, CNI-induced hypomagnesemia, which is more common 

with FK than CsA, was shown to be an independent risk factor for the development of 

NODAT.146 CNIs interfere with NFAT signaling in pancreatic b-cells, as they do in T-cells, 

and decrease insulin secretion.147 The high levels of FK-binding protein 12 in pancreatic β-

cells relative to cyclophilin may explain the higher risk of NODAT with FK use.148 In 

addition to lifestyle modifications, early insulin initiation to manage hyperglycemia post-

transplant has been proposed to decrease oxidative stress on the pancreas caused by an 

absolute insulin deficiency and reduce the odds of developing NODAT in the future.149

Neurotoxicity

Neurotoxicity is a frequent treatment-limiting concern among patients treated with CNIs. 

Mild symptoms are more common with FK150 and include tremor, neuralgia, and peripheral 

neuropathy. Severe symptoms affect up to 5 % of patients and include psychoses, 

hallucinations, dysarthria, vision loss, seizures, cerebellar ataxia, paresis, and 

leukoencephalopathy.151 Severe neurologic toxicity is more commonly associated with 

spikes in CNI exposure and typically demonstrates little correlation with trough levels.152 

As a result, intravenous CNI administration and rapid titration post-transplant may be risk 

factors. The exact mechanism of CNI associated neurotoxicity is not completely understood 

as CNIs are highly lipophilic medications and do not readily cross the blood brain barrier. 

However, proposed mechanisms include altered CNS permeability due to increased 

endothelin production as well as increased production of toxic free radicals resulting from 

CNI-induced mitochondrial dysfunction.153 CNIs have been associated with hypertensive 

encephalopathy and posterior reversible encephalopathy syndrome (PRES).154 Patients can 

develop severe headache, visual disturbances, altered consciousness, and seizures. Most 

cases of PRES resolve over days to weeks without complications, however, death and 

permanent neurologic disability can occur from cerebral edema either from intracranial 

hemorrhage or the disease itself.154, 155 Gradual blood pressure lowering and switching to an 

alternative immunosuppressant are often associated with clinical improvement. Risk of 

PRES is increased among patients with significant fluid overload, elevated blood pressure, 

or impaired kidney function.

Gingival Overgrowth & Hair Growth

The underlying pathophysiology of gingival overgrowth (GO) is related to inhibition of 

intracellular calcium influx, with possible additional roles for fibroblasts, cytokines, and 

matrix metalloproteinases. GO, more commonly linked to CsA use, is associated with 

impaired oral hygiene, mastication, pain, and disfiguration. Not surprisingly given the 

proposed pathogenesis, a synergistic relationship has been shown between CsA and 

dihydropyridine CCBs in the development of GO.156, 157

CsA and FK have opposing effects on hair growth. Hypertrichosis associated with CsA may 

be related to inhibition of NFAT in follicular keratinocytes,158 and PO CsA has even been 

reported for the treatment of alopecia areata.159 Conversely, FK is associated with the 

development of alopecia,160 though the mechanism is unknown. In females it is thought to 
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potentially be related to an imbalance in sex hormones and generally responds favorably to 

topical minoxidil therapy.160

Conclusions

CNI have revolutionized kidney transplantation and continue to have widespread use, though 

unfortunate and sometimes unavoidable toxicities may significantly affect kidney allograft 

function, overall survival, and patient quality of life. The mainstay of CNI toxicity 

management relies on both managing the adverse effect, often with additional medications, 

and also avoiding high plasma CNI levels while balancing the risk of allograft rejection. 

Though novel immunosuppressive regimens seek to mitigate the risk of CNI nephrotoxicity 

and ultimately prolong allograft survival, it seems that CNI and their toxicities are here to 

stay for now.
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Clinical Summary

• Calcineurin inhibitors (CNI) are widely used in solid organ transplant and are 

also used for immune mediated glomerular diseases.

• CNI use can lead to a wide variety of toxicities that may cause both acute and 

chronic kidney parenchymal injury, electrolyte derangements, and harmful 

effects on the endocrine, nervous, and cardiovascular systems.

• Strategies to overcome CNI-mediated toxicities include decreasing the CNI 

dose, switching between CNIs or other immunosuppressant classes, and the 

use of calcium-channel blockers.
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Figure 1. Toxicities of Cyclosporine and Tacrolimus
The calcineurin inhibitors, cyclosporine and tacrolimus, share many toxicities. Some 

toxicities are more common with or specific to a particular drug.
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Table 1.

Commonly Used Inhibitors and Inducers of Cytochrome P450 Isoform CYP3A

CYP3A Inducers CYP3A Inhibitors

Rifampin Ketoconazole, fluconazole, clotrimazole

Phenobarbital Erythromycin

Efavirenz Diltiazem, verapamil

Carbamazepine Ritonavir, cobicistat, nelfinavir

Dexamethasone Cannabidiol

Phenytoin
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