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Plants require protection against a wide 
range of attackers such as insects and 

pathogens. The adequate plant defense 
responses are regulated via sophisticated 
signal cascades, which are activated fol-
lowing the perception of specific cues 
of the attackers. Plants might, however, 
gain a significant fitness advantage when 
pre-empting enemy attack before it 
actually occurs. Monitoring cues from 
attacked neighbors can permit plants to 
reach this goal. We have recently found 
airborne disease resistance against a bac-
terial pathogen in uninfected lima bean 
plants when these were located close to 
conspecific, resistance-expressing neigh-
bors. The emitters could be chemically 
induced with benzothiadiazole or bio-
logically with an avirulent pathogen. 
Unexpectedly, receiver plants, although 
expressing a functioning resistance, did 
not show reduced growth rates, which 
represent a common side-effect of directly 
induced pathogen resistance. Nonanal 
was identified as an active volatile and, 
rather than directly inducing full resis-
tance, primed defense gene expression, 
which became fully activated only when 
the plants were subsequently challenged 
by a virulent pathogen. Priming by air-
borne signals allows for a more efficient 
and less costly preparation of plants for 
future attack and airborne signaling 
can affect resistance against both major 
groups of plant enemies: herbivores and 
pathogens.

Plants are continuously threatened by her-
bivores and pathogens and the occurrence 

of these mobile enemies is difficult to 
anticipate. In order to maintain high fit-
ness in the presence of enemies, plants 
express numerous defense traits, which are 
usually subject to phenotypic plasticity:1 
plants respond to attack by pathogens or 
herbivores with extensive changes in gene 
expression that lead to induced resistance 
phenomena.2 Because any induced resis-
tance expression suffers from the intrinsic 
problem of a time lag between attack and 
the full expression of a functioning resis-
tance, plants might gain a significant fit-
ness advantage when they can pre-empt 
future encounters with their enemies and 
prepare themselves before they are actu-
ally damaged. In fact, three phenomena 
indicate that plants can make use of cues 
that are indicative of future enemy attack: 
(i) resistance induction by egg deposition, 
(ii) plant-plant signalling and (iii) priming 
of resistance expression.

A concrete ‘sign of danger’ is the depo-
sition of insect eggs onto the plant surface, 
since herbivorous larvae will most likely 
emerge from such eggs. ‘Early herbivore 
alert’ by insect egg deposition and result-
ing resistance induction has been described 
in several cases that comprise herbaceous 
as well as tree species.3-5 Second, both 
pathogens and herbivores can move from 
one plant to another and several plant spe-
cies can monitor the volatile organic com-
pounds (VOCs) that are released from 
herbivore-infested neighbors, in order to 
mount their own anti-herbivore defense 
(reviewed in ref. 6). Finally, because herbi-
vores and pathogens spread from the initial 
site of attack to other organs of the same 
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Indeed, two VOCs that were released from 
the induced plants (nonanal and methyl 
salicylate, MeSA) primed the expression of 
the resistance marker gene, Phaseolus luna-
tus pathogenesis-related protein-2.15

Our data indicate that plants pre-empt 
future pathogen infection and prepare 
themselves for this important threat in a 
similar way as they cope with herbivore 
attack: VOCs released from neighboring 
plants that are already infected are used as 
alarm-cues. As yet uninfected neighbors 
respond to the perception of these VOCs 
with an induction, or priming, of their 
resistance. How common might this phe-
nomenon be? One of the two VOCs that we 
identified in our recent study, MeSA, rep-
resents the volatile derivative of the central 
SAR-eliciting hormone, salicylic acid19-21 
(Fig. 2) and has been reported to function 
in the systemic signaling of tobacco and 
in airborne resistance induction against 
viruses.22,23 Every plant that expresses an 
active methyl salicylate esterase and is, 
thus, able to convert MeSA into the active 
hormone, salicylic acid,24 should therefore 
have the capacity to respond to volatile 
MeSA. Moreover, even volatiles that are 
released from plant growth-promoting 
rhizobacteria can interfere positively with 
plant growth rates and induce plant resis-
tance against pathogen infection.25,26 It 
appears, therefore, likely that an induc-
tion of resistance to pathogens by airborne 
cues represents a common phenomenon, 
but future studies will have to investigate 
how common this phenomenon is.

“Plant-plant communication” via 
airborne cues could cause evolution-
ary conflicts when benefiting genetically 
independent receiver individuals at the 
cost of the emitter. As a solution, a role 
of VOCs in within-plant signaling has 
been predicted27 and was indeed found 
for three plant species by now: poplar, 
lima bean and blueberry.12-14,28 As stated 
by Gershenzon,29 plant volatiles “carry 
both private and public messages” and 
their distribution cannot be controlled 
once they have been released into the 
air. VOCs can, however, serve as reliable 
within-plant signals only when mainly 
reaching other leaves of the same plant7 
and when they carry specific information 
on the type of enemy that is attacking the 
emitter tissue.

carbothioic acid S-methyl ester) or had 
been induced biologically. Resulting 
changes in the resistance of the receivers 
were monitored at the phenotypic (Fig. 1) 
and the gene expression level. Experiments 
conducted both under field conditions and 
in the growth chamber confirmed that 
exposition to the air coming from SAR-
expressing plants rendered receiver plants 
phenotypically more resistant to the bac-
terial pathogen, Pseudomonas syringae. 
This effect became obvious both from the 
visual inspection of the challenged plants 
and when quantifying the pathogen popu-
lation per leaflet. Thus, airborne signals 
indeed can enhance resistance of lima 
bean to bacterial pathogens.15

Interestingly, we found no significant 
reduction of growth in the exposed plants, 
although delayed growth is a common 
cost usually associated with direct resis-
tance induction.16 When we assessed for 
the occurrence of such costs, the exposed 
plants showed normal growth rates and 
leaf shape, although they exhibited an 
enhanced resistance when being chal-
lenged. This pattern is redolent of primed 
plants, in which the defense arsenal had 
been sensitized rather than fully induced.17 
Priming allows plants to prepare for a more 
rapid and/or effective response to subse-
quent attack11,17 but comes at much lower 
costs than direct resistance induction.18 

plant, defensive plant responses are often 
not restricted to the damaged tissue but 
are expressed systemically, in yet undam-
aged organs.7-9 However, local responses 
may suffice to kill the attacking insects 
or pathogens and plant enemies eventu-
ally will leave the plant for other reasons. 
Plants dispose, therefore, of another layer 
in their phenotypically plastic alarm 
response: priming, which prepares tissues 
to respond more rapidly and/or effectively 
to subsequent attack.10,11 Although prim-
ing has been described mainly in the con-
text of pathogen resistance, self-priming 
by herbivore-induced VOCs was found for 
poplar, lima bean and blueberry.12-14

In summary, plants possess three dif-
ferent strategies to prepare themselves for 
upcoming herbivore encounters before 
these have actually happened. Much less 
was known, however, on whether similar 
strategies are used also in the context of 
disease resistance. Most recently, we dis-
covered that plants indeed perceive VOCs 
to prepare themselves for upcoming 
pathogen infection.15 We used lima bean 
(Phaseolus lunatus L.) plants, which were 
exposed to the VOCs emitted from neigh-
bors that expressed systemic acquired 
resistance (SAR) to biotrophic pathogens. 
The emitters were either treated with the 
chemical SAR elicitor benzothiadiaz-
ole (BTH = benzo(1,2,3)thiadiazole-7-

Figure 1. Airborne induction of plant immunity against bacterial spot caused by Pseudomonas 
syringae pv. syringae in leaflets of lima bean plants treated before challenging with the resistance-
inducing volatiles, nonanal and MeSA, or directly with BTH. Control was treated with water. Differ-
ent letters indicate significant differences using Fisher’s protected LSD test at p = 0.05.
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Lima bean responds to herbivore attack 
and pathogen infection with the emission 
of clearly different bouquets of volatiles15 
and nonanal, the compound that primed 
resistance to pathogens (Fig. 1), proved 
inactive in the context of extrafloral nec-
tar secretion,35 an indirect defense against 
herbivores. The potential for specific 
responses by the receivers when different 
types of enemies threaten the emitter is 
clearly there. Future studies will have to 
figure out which VOCs are mainly emit-
ted under which conditions and which 
ones of these carry the active and specific 
message that plants use when they pre-
empt future enemy attack by monitoring 
VOCs emitted from plant organs in their 
immediate vicinity.
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Future Perspectives

Several questions are open and require 
future scientific scrutiny. (i) First, the 
question over which distances these sig-
nals remain active represents a central one 
in order to understand the evolutionary 
stability of airborne plant-plant signaling 
and its relevance in natural and agronomic 
ecosystems. By now, the ranges for which 
signaling among different plants has been 
reported ranged from few centimeters up 
to less than a meter.13,30,31 It appears, thus, 
to be likely that VOCs emitted from a cer-
tain organ will mainly reach other parts of 
the same plant,7,32 but systematic studies 
on the distances over which VOCs remain 
active are lacking. (ii) Second, VOCs for 
which an enhancing effect on plant resis-
tance to diseases has been reported so far 
comprise MeSA,15,22,23 nonanal,15 trans-2-
hexenal, cis-3-hexenal, cis-3-hexenol33 and 
the bacterial acetoin and 2,3-butanediol.26 
What do these compounds have in com-
mon (Fig. 2) and can their perception lead 
to specific responses? Specific motifs char-
acterizing volatiles that induce gene expres-
sion in plants have been discussed34 but 
could not be confirmed in later studies.35 

Figure 2. Chemical structures of compounds with resistance-enhancing effects. MeSA was re-
leased from resistance-expressing tobacco or lima bean plants and induced disease resistance in 
conspecific neighbors,15,23 nonanal fulfilled the same function in lima bean,15 trans-2-hexenal, cis-
3-hexenal and cis-3-hexenol rendered Arabidopsis thaliana more resistant to Botrytis cinerea33 and 
the bacterial volatile 2,3-butanediol induced systemic disease resistance in the same species.26
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