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TUTORIAL

Machine Learning in Drug Discovery and Development 
Part 1: A Primer

Alan Talevi1, Juan Francisco Morales1, Gregory Hather2, Jagdeep T. Podichetty3, Sarah Kim4 , Peter C. Bloomingdale5,  
Samuel Kim6, Jackson Burton3, Joshua D. Brown7, Almut G. Winterstein7 , Stephan Schmidt4, Jensen Kael White3 and  
Daniela J. Conrado8,*

Artificial intelligence, in particular machine learning (ML), has emerged as a key promising pillar to overcome the high failure 
rate in drug development. Here, we present a primer on the ML algorithms most commonly used in drug discovery and de-
velopment. We also list possible data sources, describe good practices for ML model development and validation, and share 
a reproducible example. A companion article will summarize applications of ML in drug discovery, drug development, and 
postapproval phase.

Application of artificial intelligence (AI; Box 1) in drug dis-
covery and development has emerged as a key promising 
pillar. Its importance has been consolidated by the need 
of new strategies to overcome the high failure rate in drug 
development of ~ 90%.1,2 As such, pharmaceutical compa-
nies are beginning to explore how various AI frameworks 
can supplement or be integrated into the current drug dis-
covery and development processes.1

Machine learning (ML), a branch of AI (Figure 1), is “based 
on the idea that systems can learn from data, identify 
patterns and make decisions with minimal human inter-
vention.”13 AI frameworks may contain several different ML 
methods applied together. For example, an AI framework 
in drug discovery may optimize drug candidates through a 
combination of ML models that predict favorable physico-
chemical characteristics (e.g., solubility and permeability), 
pharmacokinetics (PK), safety, and possibly efficacy.14–21 
An AI framework in drug development may use ML meth-
ods to prescreen covariates in PK-pharmacodynamic data, 
identifying patient subpopulations, predicting clinical out-
comes, informing clinical trial design, and investigating 
novel therapeutic purpose for existing drugs (i.e., drug 
repositioning or drug repurposing).22–25 However, ML meth-
ods have been utilized more often in drug discovery than 
in development.

ML can support a range of different drug discovery and 
development applications. To be a fit-for-purpose approach, 
the application of ML should be guided by answers to the 
following three questions: (i) What is the drug discovery and/
or development need? (ii) What ML methods are most appro-
priate to address this need? and (iii) What data can be used 
to support these ML methods? Data quality is as critical as 
data quantity in that data should be unbiased and diverse 

to support robust models. In addition, researchers should 
prepare to validate and interpret the models and results.

This work consists of two parts. The first part is a tuto-
rial on the most commonly used ML algorithms along with 
possible data sources, good practices for ML model devel-
opment and validation, and a reproducible example. The 
second part, published in a companion article, is an overview 
of applications of ML in drug discovery, drug development, 
and the postapproval phase.

DATA SOURCES FOR BUILDING ML MODELS

The amount of data being generated today is staggering. An 
estimated 2.5 quintillion bytes are created every single day.26 
However, it is not the quantity of data but it is the opportunity 
to generate knowledge that matters most. Some common 
examples of large data sets include chemical structure data, 
gene expression and genetic data, high throughput in vitro 
data, clinical trial data, and electronic medical records. Data 
may be freely available public data, commercially available 
data, internal companies’ data, or data shared among par-
ticipating institutions.27 The reader can refer to Conrado  
et al.28 for examples of individual data-sharing initiatives.

“Big data” and advances in technologies for data science 
have paved the way for the applications of ML in drug discov-
ery and development. Recent advances in ML technology, 
in turn, allow us to make use of large data sets on a scale 
that was previously unrealizable. A rapidly emerging field is 
the use of wearable technology and sensors, which provide 
a wealth of real-time data that can be leveraged to assess 
patient health and detect trends for potential health risks.29 
For example, wearable sensors that can be adhered directly 
to patients’ body surfaces can provide detailed movement 
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data.30 Alternatively, small, wearable devices, such as sen-
sors embedded into a ring or wristband, enable pulse wave, 
arterial blood flow, physical activity, and sleep pattern data 
to be monitored continuously.31,32 Technological advances 
in computer-aided diagnosis and detection systems created 
the fields of radiomics and radiogenomics.33,34 These ad-
vances enable researchers to convert medical images into 
quantitative data7,23,24 that can be used to develop ML mod-
els to generate hypotheses and inferences as well as support 
decision making beyond visual interpretation.35 Postmarket 
surveillance data such as adverse drug reaction (ADR) re-
ports from the U.S. Food and Drug Administration (FDA) 
Adverse Event Reporting System36 are also vital sources 
in that they can inform drug discovery and development 
by back translating to the molecular mechanisms and tar-
gets of the adverse events.37 The Adverse Event Reporting 
System contains rich sources of ADR information submitted 
voluntarily by drug manufacturers, healthcare professionals, 
and consumers in the United States. More than 9 million 
ADR reports were submitted from 1969 to the present, and 
the number of reports increases every year.

Data can be either structured or unstructured.28 Structured 
data could occur through a user-friendly online data repository 
including a description of the data, tools for data querying, a 
data dictionary, summary tables, and some means of sup-
port.28 Examples of structured data are the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI), the Parkinson’s Progression 

Markers Initiative (PPMI), and the Coalition Against Major 
Diseases (CAMD) consortium database.28 Unstructured data 
as the name suggests are  everything else. Unfortunately, 
most data are unstructured and require substantial amounts 
of time and effort to curate. Within drug development, efforts 
have been underway through the Clinical Data Interchange 
Standards Consortium (CDISC) to standardize clinical research 
data.38 The Coalition for Accelerating Standards and Therapies 
(CFAST; https://c-path.org/progr​ams/cfast) was initiated in 
2012 as a partnership between CDISC and the Critical Path 
Institute (C-Path) to accelerate clinical research by creating and 
maintaining therapeutic area data standards. Integrated and 
standardized data  sets can catalyze biomedical discoveries 
and drug development28 as well as help the regulatory agen-
cies to review new drug applications more efficiently. These 
standardized structured data sets are ideal for use as “training 
data sets” (refer to the ML Algorithms section) in ML. Together, 
data standardization and ML modeling could revolutionize drug 
discovery and development in these and other disease areas.

ML ALGORITHMS

ML algorithms may involve fitting data to statistical models 
or the algorithms may be more heuristic in nature. Unlike 
traditional model fitting, the goal of an ML algorithm is usu-
ally to make accurate predictions about outcomes for new 
data when the covariates are provided. The parameters 
returned by the model are generally of secondary interest, 
and statistical hypothesis testing is not usually performed.

Supervised ML
A supervised ML algorithm requires an input data set, which 
can be split into a “training” data set and a “test” or “valida-
tion” data set. The process of fitting (or “calibrating”) the model 
to the training data set is called “model training.” The “trained” 
ML model can then be validated—having its predictive perfor-
mance assessed—using the test or validation data set. The 
“validated” ML model can then be applied to new data sets 
(i.e., not used for model development) to make predictions or 
decisions based on the new data set covariates.

With supervised ML, the training data set contains both 
covariates and outcomes. Such a data  set is called “la-
beled”39,40 because it includes the outcomes. The outcome 
may be continuous or categorical. After a supervised ML 
model is trained, it can be used to predict outcomes for new 
data set based on its covariates. Several widely used algo-
rithms in supervised ML are described in the next sections.

Linear and logistic regression. Multiple linear regression 
is a widely used algorithm in supervised ML when a 
continuous outcome varies linearly with the independent 
variables or covariates. An outcome or dependent variable 
can be represented as follows:

where Y is the outcome prediction, �1−n are the coefficients 
and x1−n are the covariates. Ordinary least squares, which is 
based on the principle of maximum likelihood, is the simplest 

Y =�0+�1x1+…+�nxn

Box 1  History of AI

AI was pioneered by British mathematician Alan 
Turing in the 1950s with the idea of training a machine 
to think like a human. He introduced the Turing test, 
which has been used to determine if a machine has 
intelligence.3 The first demonstration of the funda-
mental concept of AI was introduced by American 
electrical engineer Arthur Samuel. Mr. Samuel de-
veloped the self-learning Samuel Checkers-Playing 
Program, which won the 1952 world championship.4,5 
He also first coined the term machine learning, a sub-
group within AI, in 1959.6

In 2011, Apple Inc. (Cupertino, CA) introduced virtual 
AI assistant “Siri” on iPhone 4S, which uses a natural-
language user interface to return contextual informa-
tion and performance according to users’ requests.7 
Google Brain, which is an AI research team at Google 
(Mountain View, CA), trained a neural network to rec-
ognize a cat from randomly selected YouTube vid-
eos in 2012.8 In 2014, a chatbot “Eugene Goostman” 
passed the Turing test at a contest by convincing 33% 
of the judges.9 In 2015, the first formal match occurred 
between AlphaGo10, an AI-based software developed 
by Google DeepMind Technologies Limited, and a 
professional human Go player; AlphaGo won 5–0.
An executive order on maintaining American leader-
ship in AI was issued in early 2019.11 The American 
Medical Association has supported the use of AI in 
medical practice and training since mid-2019.12

https://c-path.org/programs/cfast
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and most common way of estimating the coefficients. This 
model is not designed to handle strong collinearities between 
covariates. Severe multicollinearity greatly reduces the pre-
cision of the estimated coefficients. In such cases, principal 
component analysis may be used to reduce the number of 
features to a smaller set of unrelated components.

Logistic regression is a widely used supervised ML 
method for modeling binary outcomes, such as yes/no, 
success/failure, and survived/died. The logistic regression 
model estimates the probability that the outcome belongs to 
a particular binary category. The probability curve is sigmoid 
or S-shaped and constrained between 0 and 1.

Ridge regression, least absolute shrinkage and 
selection operator (LASSO), and elastic net. Some 
data sets, such as genetic data sets, have large numbers of 
features (covariates) relative to the number of observations, 
but most features are expected to have minimal association 
with the outcome. Including all of the features in a linear or 
logistic regression model would add noise to the model and 

potentially result in a nonidentifiable model when the number 
of features is greater than the number of observations. 
Instead of reducing the number of features for multiple linear 
regression, we can fit a model starting with all predictors 
using a technique that constrains the coefficient estimates, 
or equivalently, that shrinks the coefficient estimates toward 
zero. The two best-known techniques for shrinking the 
regression coefficients toward zero are ridge regression and 
LASSO.41 Multiple linear regression is the underlying model 
used for these techniques. However, the fitting procedure is 
not based on maximum likelihood. Instead, these techniques 
work by applying a “penalty” to the fitting procedure that 
depends on the magnitude of the coefficients. All coefficients 
are usually penalized equally. Therefore, before applying 
ridge regression or other shrinkage methods, the analyst will 
typically rescale the covariates to prevent covariates with 
numerically wider ranges from being excessively penalized.

Ridge regression shrinks the regression coefficients by 
imposing a penalty on their size. Instead of minimizing only 
the residual sum of squares, as ordinary least squares does, 
ridge regression minimizes:

P (Y =1)=
1

1+e−(�0+�1x1+…+�nxn)
.

Y −�X2+��2.

Figure 1  Overview of the types of machine learning and algorithms. Only the most commonly used algorithms are described in this 
tutorial. AdaBoost, adaptive boosting; DBSCAN, density-based spatial clustering of applications with noise; DCNN, deep convolutional 
neural networks; Eclat, equivalence class transformation; FP-Growth, frequent pattern growth; GRU, gated recurrent unit; K-NN, 
K-nearest neighbors; LDA, linear discriminant analysis; LightGBM, light gradient boosting machine; LSA, latent semantic analysis; 
LSM, liquid state machine; LSTM, long short-term memory; MLP, multilayer perceptron; PCA, principal component analysis; seq2seq, 
sequence-to-sequence; SVD, singular value decomposition; SVM, support vector machine; t-SNE, t-distributed stochastic neighbor 
embedding; XGBoost, extreme gradient boosting.
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Here, the first term is simply the residual sum of squares. 
In the second term, � is a weight factor, and �2 is the sum 
of the squared coefficients. Thus, when � =0 the ordinary 
least squares coefficients are returned, and when � =∞, 
the coefficients will approach zero. However, a disadvan-
tage is that it includes all predictors in the final model. As 
with the ridge regression, the LASSO shrinks the coeffi-
cient estimates toward zero:

Here, in the second term, � is a weight factor, and �1 is the 
sum of the absolute values of the coefficients. This penalty 
has the effect of forcing some of the coefficient estimates 
to be exactly equal to zero. LASSO performs variable se-
lection, yielding models that involve only a subset of the 
variables. As a result, models generated from the LASSO 
are generally much easier to interpret than those generated 
from the ridge regression. For a data set with N observa-
tions, LASSO will select at most N features.42 LASSO can 
also be adapted to fit logistic regression models.

Elastic net is another shrinkage-based method that linearly 
combines the penalties from ridge and LASSO to minimize:

Compared with LASSO, the elastic net can yield a model 
including more features than number of observations, but 
with possibly far fewer than would be selected via the ridge 
penalty alone. In addition, the elastic net exhibits a grouping 
effect, where highly correlated features will have similar es-
timated coefficients.

Decision trees and random forest. Decision trees41,43–45 
are a commonly used group of nonlinear ML methods. Each 
model is a set of rules organized in the form of a tree. Starting 
at the base or “root node,” the algorithm selects a “branch” 
based on the decision rule at the root node. The decision 
rule is generally based on a single covariate and a specified 
threshold (e.g., if the third covariate is greater than five, take 
the left branch). The algorithm then reaches the next node and 
follows the next decision rule. Eventually, the algorithm reaches 
a “leaf node,” which represents a specific output decision, 
returned as a result. Decision trees can be used for building 
both classification models for making qualitative predictions 
and regression models for making quantitative predictions. 
One reason for the popularity of single decision trees is their 
ease of interpretation and representation. However, they are 
outperformed by more advanced ML algorithms, such as 
random forest or gradient boosting modeling.

Random forest41,46 is a method that creates a large col-
lection of decision trees, where each decision tree makes 
a prediction or “vote” for a certain outcome. For each tree, 
typically one third of the training data set is randomly se-
lected and set aside, and the remaining two thirds of the 
training data  set is used for model development. When 
these decision trees are being built, each time a split in a 
tree is considered, a random sample of predictors is chosen 
as split candidates from the full set of predictors. A single 

predictor and a corresponding decision rule threshold are 
identified that maximize the accuracy of the decision tree. 
When all of the trees are completed, the model is ready to 
make predictions about new data. The prediction is defined 
by majority voting from this collection of decision trees. To 
evaluate the accuracy of the model, the trained forest can be 
used to predict the remaining one-third of the observations 
and calculate the out-of-bag (OOB) error.

Random forest is a type of ensemble modeling because 
it involves combining multiple ML models to improve the 
overall performance of the model. Ensemble models gen-
erally combine the results by voting or taking the mode, 
mean, or weighted mean of the results from different 
models. More advanced techniques include bagging and 
boosting. Bagging involves creating random subsamples, 
or bootstrapping, of training data with replacement and 
building a model for each subset. For boosting, see the 
Gradient Boosting section.

Gradient boosting. Gradient boosting41,47 differs from 
bagging methods in that the trees are trained and combined 
sequentially. This algorithm generates models by computing 
a sequence of trees in which each successive tree is built 
from the prediction residuals of the preceding tree. A simple 
partitioning of the data is determined at each step in the 
boosting tree algorithm, and the deviations of the observed 
values from the respective residuals for each partition are 
computed. Given the preceding sequence of trees, the next 
tree will then be fitted to the residuals to find another partition 
that will further reduce the error in the model.

Neural networks (NNs). NNs48 are composed of units 
called artificial neurons. Each connection between neurons 
can transmit a signal to another neuron. All neurons have 
multiple inputs and one output. The receiving neuron can 
process the signals and then signal downstream neurons 
connected to it. Each input is associated with a weight 
that varies as learning proceeds, which can increase or 
decrease the strength of the signal that is sent downstream. 
A general formula for the output Y of a neuron is:

where f is a specified function, Xi is the ith input, and Wi is 
the weight associated with the ith input. Neurons are typ-
ically organized in the following three types of layers: (i) 
the input layer (i.e., the bottom layer), where the predic-
tors are entered; (ii) the hidden (middle) layers; and (iii) the 
output layer (i.e., the top layer), where the predictions are 
generated.

Deep NN (DNN), also known as deep learning, refers to a 
model with more than one hidden (middle) layer. Recent ad-
vances of DNN-based algorithms have been implemented 
in various fields from automatic speech recognition49 to 
medical image recognition.50 DNNs can be further cate-
gorized based on model architectures; convolution NN, 
recurrent NN, and long short-term memory-based recur-
rent NN.

Y −�X2+��1.

Y −�X2+��2+��1.

Y = f

(

∑

i

WiXi

)

.
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Genetic algorithm. The genetic algorithm is inspired by 
the process of natural selection and belongs to the larger 
class of evolutionary algorithms. The genetic algorithm 
works as following:22

•	 First, the solution space is defined and corresponds 
to a set of models to test.

•	 The search for the best model is initialized by randomly 
creating an initial population, defined as a set of indi-
viduals with a genome (model structures). These model 
structures can then be fitted to the data, and the best 
model is identified based on a goodness-of-fit statistic 
criterion (e.g., Akaike information criterion).

•	 Then, the next generation can be created by first select-
ing sets of “parents.” Parents are selected randomly, with 
replacement and probability of selection proportional to 
fitness.

•	 Next, the genomes of the parents are lined up and 
“crossover” occurs, i.e., some user-defined fraction of 
the parent sets (e.g., 60%), at a single, random loca-
tion in the genome. For instance, if the genome contains 
four genes (model characteristics: one compartment 
PK model  +  first-order absorption  +  presence of lag 
time  +  proportional residual error), then a 50% split 
would generate the left part with “one compartment PK 
model  +  first-order absorption” and the right part with 
“presence of lag time  +  proportional residual error.” 
Then, the left part of the first parent is combined with the 
right part of the second parent and vice versa.

•	 Subsequently, a mutation is randomly applied based on 
a prespecified small proportion. For instance, the “pres-
ence of lag time” feature is reversed to “absence of lag 
time.”

•	 This process is repeated until no further improvement is 
seen (i.e., a model with an improved goodness-of-fit cri-
terion is no longer obtained).

A reproducible example can be found in Bies et al.,22 where 
a genetic algorithm–based, hybrid ML approach to model se-
lection has been developed and applied.

Unsupervised ML
Unsupervised ML deals with unlabeled data51 defined as 
data that include the covariates, but not the outcomes. This 
technique is used to identify patterns and associations be-
tween data points. Dimensionality reduction methods may 
be applied as a first step in the analysis.52 Principal compo-
nent analysis is among the most widely used dimensionality 
reduction techniques. In addition, the data may also be 
normalized to facilitate comparison between data points. 
Several widely used algorithms in unsupervised ML are de-
scribed in the next sections.

K-means. K-means groups data points with similar 
properties or features into a fixed number of clusters (K). 
K-means is commonly applied to gene expression or clinical 
lab data to identify similar groups of samples or subjects. 
The algorithm can be initialized by randomly selecting K 
“centroids” from the data  set. A centroid is a data point 
(imaginary or real) at the center of a cluster, i.e., the mean 

value of the points assigned to the cluster. Hence, “means” 
in the “K-means” expression corresponds to the centroid.53 
Each data point is assigned to the nearest cluster. Each 
centroid is then updated (i.e., iteration) so that the total 
within-cluster variation is minimized. There are several 
K-means algorithms, and the standard algorithm defines 
the total within-cluster variation as the sum of squared 
Euclidean distances between points and the corresponding 
centroid.54 Most often, a local optimum is achieved; 
hence, it is suggested to run the algorithm multiple times 
with randomized starting centroids for better outcome. 
Systematically, the steps are the following:54

1.	 Define K, the number of clusters to be created.
2.	 Select randomly K centroids from the data set (i.e., the 

initial cluster centers).
3.	 Assign each data point to the nearest centroid based 

on the Euclidean distance between the point and the 
centroid.

4.	 Recompute the centroid for each of the K clusters by 
calculating the new mean value of all the data points in 
the cluster.

5.	 Iteratively minimize the sum of squared Euclidean dis-
tances. Repeat Step 3 and Step 4 until the centroids do 
not change.

To select the number of clusters, the total within-cluster 
distance to the centroid may be compared for increasing K 
values. The point where the average within-cluster distance 
to the centroid levels off may be chosen as the value of K.

K-means is relatively fast, robust, and easy to inter-
pret. It is also relatively efficient when the data set are well 
separated from each other. However, some drawbacks of 
K-means include (i) a priori selection of K, (ii) distinguish 
data that are close or overlapping, (iii) obtain different results 
produced by non-linear transformation, and (iv) inability to 
handle categorical data.

Hierarchical. This algorithm creates a set of nested 
clusters structured as a hierarchical tree. Unlike K-means, 
hierarchical clustering starts with considering each 
observation as an individual cluster. Then iterations are 
performed to merge similar clusters until all the clusters 
are merged. A dendrogram (i.e., a tree diagram that shows 
the taxonomic relationship between covariates) is obtained 
to show the hierarchical relationship between the clusters. 
This technique is also known as agglomerative hierarchical 
clustering. Another less commonly used hierarchical 
technique is called divisive hierarchical clustering, where 
all the observations are grouped into one cluster and then 
successively split into multiple clusters.

Hierarchical clustering offers several advantages includ-
ing easy implementation and the lack of a need to specify the 
number of clusters. However, limitations include sensitivity 
to outliers and greater computation resource requirements.

Active learning
Active learning is a ML method where the algorithm can 
interactively request labeled data to train  themselves. 
Active learning can be used when a full labeled data  set 
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has not yet been collected and cost constraints prevent full 
labeling. For example, if one wishes to predict affinity to a 
protein based on selected chemical features, it may be too 
expensive to run experiments with a full compound library. 
An active learning algorithm would design a series of ex-
periments to learn the relationship between the chemical 
features and affinity. Each experiment would be designed 
based on the previous data obtained. The algorithm would 
select the most informative compounds for future exper-
iments. Although there are many different approaches to 
active learning, these methods often use a supervised ML 
algorithm to process the data that have already been col-
lected.55 To select new data for labeling, an active learning 
algorithm may identify unlabeled samples that have the 
greatest prediction uncertainty. These samples will be more 
informative compared with samples with high prediction 
certainty, thus allowing greater improvement in prediction 
accuracy.

GOOD PRACTICES FOR ML MODEL DEVELOPMENT 
AND VALIDATION
Data curation and preparation
Every ML experiment begins with data curation on the 
data required to build a model (i.e., training data); indeed, 
a common saying is that a model will be only as good as 
the data from which it is derived.56,57 Modelers typically 
rely on data generated (and, more recently, even compiled) 
by other scientists. Therefore, data quality is often highly 
dependent on the data providers. Although often an 
overlooked aspect, data curation and preparation are 
cornerstone to develop reliable models. Common issues 
related to data curation and preparation are described in 
the next sections. Good practices for the curation of chem-
ical data sets in drug discovery are presented in Box 2.

Outliers. Data entry or experimental errors can introduce 
observations that appear to be inconsistent with the 
rest of the data. Data curation includes identifying and 
potentially removing or correcting outliers.64 The modeler 
could also perform a sensitivity analysis by rerunning 
the model without the outliers and comparing the model 
results.

Because many data sets for ML are large, manually iden-
tifying and handling outliers may not be possible. However, 
one may be able to summarize the covariate ranges and vi-
sually inspect the distributions to identify outliers or ranges 
where outliers fall. Heuristic or statistical/mathematical 
methods to detect and handle data outliers can be per-
formed in a semiautomated manner.65,66

Missing data. Another challenge with data preparation is 
handling missing data. Missing data are not unusual, often 
the result of missed data collection or entry and issues with 
data processing. Although some ML algorithms, such as 
random forest, can handle missing data, most algorithms 
do not perform well with missing data.

There are several strategies to handle missing data. The 
first step should be to find the number of the missing values 
and visualize their distribution. Packages in R and Python 
such as VIM67 and missingno68 can aid in this process. As 

a rule of thumb, and depending on the importance of the 
variable, one could consider removing variables with 70% 
or more missing data, as often they do not provide infor-
mation toward predictability. For the remaining covariates, 
the simplest strategy is to remove data points for which 
any covariate is missing. Another simple alternative is to 
replace missing values with the median value for continu-
ous variables or with the mode for categorical variables. For 
time-dependent variables, similar statistical measures could 
be considered across time points. Although these strategies 
allow ML models to be fit by various algorithms, they may 
also introduce bias.

More sophisticated approaches to handle missing 
data for time-dependent variables include model-based 
imputation (e.g., regression model of height and weight 
in children). Another model-based imputation is the 
K-nearest neighbor. The assumption with K-nearest neigh-
bor is that a missing point value can be approximated by 
the values of the nonmissing points that are closest to it 
based on other variables.

For established pharmacometric analyses, several effec-
tive strategies to handle missing data have been described 
in the literature.69 Handling missing data is usually quite chal-
lenging, and strategies to address it need to be executed in 
the context of the problem at hand. Often, a combination of 
different methods might be required to effectively manage 
missing data.

Overfitting
Overfitting is gaining explanatory power of the training data 
by sacrificing generalizability (i.e., predictive ability for rel-
evant data sets not used in the model building). As in any 
learning task, memorizing peculiarities of the training data 
(i.e., fitting noise) is discouraged because the goal of learn-
ing is to envision a general principle that can be later applied 
to other scenarios or cases. According to the principle of 
parsimony, one should use the simplest model or method 
that delivers the pursued performance level (e.g., avoid 
using NN or random forest if a single linear model provides 
an adequate solution). This also means to avoid including 
more parameters and/or covariates than required.70 Models 
that explain too well the training data usually experience 
a sharp drop in performance when making predictions for 
new data.

Overfitting may be addressed in a retrospective manner 
(i.e., after model development) using adequate model vali-
dation procedures (refer to the Model Validation section) or 
in a prospective manner (i.e., before model development). 
The distinction between retrospective and prospective ap-
proaches to avoid overfitting is philosophically similar to the 
distinction between quality control and quality assurance. 
In the context of computer-aided drug discovery and devel-
opment of ML models, both prospective and retrospective 
approaches are utilized.

Prospective avoidance of overfitting usually involves a 
rule of thumb regarding the ratio of training observations 
to covariates included in the model. A minimum ratio of 
5:1 is often recommended for multivariate regression ap-
proaches,60,71 but a more conservative ratio of 10:1 is 
safer.
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An approach called regularization can help avoid over-
fitting when using complex, flexible ML approximations.72 
Regularization techniques are neither prospective nor retro-
spective, but somewhat in the middle, as they are applied 
“on the fly” while training the model. For example, dropout 
is a regularization technique used in the context of DNN; it 
consists of removing or ignoring randomly selected neurons 
during training, resulting in a network that is capable of bet-
ter generalization.73 Moreover, for complex ML approaches 
that require tuning hyperparameters (e.g., learning rate and 
number of hidden units in a neural network), the models are 
usually interrogated by a third data  set (besides traditional 
training and holdout sets), which is called a “test data set.” 

Test data sets can be used for regularization by early stopping, 
i.e., stopping further training when the error on the validation 
data set increases, as this is a warning of overfitting.74

Overfitting can depend on the number of tested covari-
ates in the model.75 If covariates are added in an univariate 
or stepwise manner, then one must consider the inflation of 
the false positive rate or Type I error as a result of multiple 
comparison, i.e., the larger the number of covariate mod-
els tested, the greater the probability of finding significant 
covariates by chance. For instance, if one statistical test 
is performed at the 0.05 α level and the null hypothesis is 
true, there is a 5% chance of incorrectly rejecting the null 
hypothesis (i.e., false positive or Type I error); however, if 

Box 2  Good practices for curation of chemical data sets in drug discovery

The curation of chemical data sets involves removing duplicates and checking that the molecular representations 
are appropriate and correct. The required degree of curation depends on the molecular predictors that will be used 
in the models. For instance, if only conformation-independent descriptors are to be used, geometry optimization or 
considerations on the stereochemistry of the training samples might be avoided. The opposite is true if methods that 
consider molecular geometry are employed. During curation, the modeler may resort to cheminformatic tools that 
perform some of the previous steps in an automated manner but complementing such automated procedures with 
manual curation would be ideal. Studies show that, on average, there are two structural errors per medicinal chemistry 
article.57 In 2008, Young et al.58 examined six databases (both public and private) to collect structural information on 
8,530 chemicals. They observed that the databases had error rates ranging from 0.1% to 3.4% and concluded that 
small errors in structural representations can lead to significant errors in predictions. Recently, Maeda et al.59 exam-
ined the database of Natural Product Updates 2010 and 2011 published by Royal Society of Chemistry. From the listed 
literature, the articles reporting newly isolated or structurally updated natural products were individually investigated. 
Among about 2,500 compounds requiring confirmation in the primary source, 63% showed unclear drawing and not 
well-defined chiral atoms, 3.7% had the correct name but the wrong structure, and 0.4% showed discrepancies to 
nuclear magnetic resonance data. The previous examples, which coincide with our experience managing data sets 
from online resources, illustrate the importance of prior curation before applying ML methodologies.

When intending to build ligand-based models for virtual screening applications, the following specific considera-
tions must be taken into account: (i) Ideally, the dependent variable (i.e., the modeled biological activity) should cover 
at least two or three orders of magnitude,60–62 from the least to the most active compound; (ii) the available biological 
data on the training set compounds should, preferably, be uniformly distributed across the range of activity, or at least 
follow a normal distribution, and the same applies to the independent variable60 (in the case of classificatory models, 
a balanced training set is recommended to avoid bias toward the prediction of a particular category); and (iii) the bio-
logical activities of all the training examples should be of similar quality. Preferably, they should have been measured 
in the same laboratory using the same conditions61,62 so that the variability in the measured biological activity only 
reflects treatment differences. To mitigate the influence of noisy data points associated to large experimental errors 
or variability, data sources should be sensibly examined, disposing of training examples extracted from inadequate or 
dubious experimental protocols. Some public databases flag bioassay data to warn the user on possible reliability is-
sues. For instance, ChEMBL (https://en.wikip​edia.org/wiki/ChEMBL) has incorporated a “Data Validity” column to the 
interface, which warns from potential or confirmed author errors and bioactivity values outside usual range and miss-
ing data, among other issues. Lastly, classification models can be used to lessen the impact of data heterogeneity.

A wide coverage of the activity space allows the model not only to capture essential molecular features needed to elicit 
the desired activity but also to identify those characteristics that reduce activity and sometimes to detect nonlinear be-
havior. Data distribution should be studied to avoid poorly populated regions within the examined chemical and biological 
space as well as densely populated narrow intervals.60 It is often stated that data extrapolation should be avoided; however, 
interpolation could also be dangerous if too sparsely populated regions exist within the task space. Histograms can be of 
help for visualizing the distribution of the dependent and the independent variables; however, examination of the multivari-
ate space can reveal empty or poorly occupied regions that a separate analysis of the independent variables may not.63

Concerning data set size, historically it has been said that the number of compounds in the training data set should 
be at least 20 (in the case of classifiers, at least 10 compounds of each class are required), and at least 10, in each 
of the test and external evaluation data sets (with a minimum of 5 compounds per class for classifiers). Therefore, 
the total minimum number of compounds is recommended to be at least 40.57 Nevertheless, a minimum of 150 com-
pounds is preferred when available.

https://en.wikipedia.org/wiki/ChEMBL
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10 independent statistical tests are performed and the null 
hypotheses are true, the family-wise error rate is 40%. If 
these “false positive” covariates are then included in model, 
this will contribute to overfitting. We have observed that the 
use of small random subsets of descriptors (a “random sub-
space” approximation) is a useful strategy to mitigate the 
chance of spurious correlations.76 Ensemble learning, which 
is the combination of individuals models into a meta-model 
(e.g., random forest), can also improve model robustness.

Model validation
Model validation is performed to assess the model’s pre-
dictive performance when it is used to make predictions 
for relevant data that were not used for model building. A 
validated model is expected to make sufficiently accurate 
predictions for the intended use (i.e., to have sufficient pre-
dictive performance). Model validation includes a series 
of techniques for quantitative assessment of the model 
stability and predictive power;77,78 it serves to detect the 
occurrence of overfitting and chance correlations (when 
no cause–effect relationship is encoded in the correlation). 
Validation techniques can be roughly classified into internal 
and external validation approaches.

External validation. External validation is the most 
stringent type of model validation.77,79 Here, the validation 
data set should be completely independent from the training 
data  set—e.g., a different study altogether. For instance, 
a model was developed using a sample of subjects with 
disease X (training data  set), and the intended use for the 
model is to make predictions of any sample of subjects 
with disease X outside of the training data set. A successful 
external validation may rely on the following assumptions: 
(i) the training data  set is representative of the general 
population with disease X, and (ii) the validation data set is 
a sample of the population with disease X, consequently, a 
sample of the training data set.

The validation data set must not be used at any stage of 
the model development or selection. If this condition is not 
met, then an additional external validation data set would be 
required as a more definitive proof of the model predictive 
ability.57 For instance, if multiple models are built and the 
best models are selected based on the predictive perfor-
mance for the validation data set, then this is not an external 
validation. Something similar occurs when a model ensem-
ble is built using a selective ensemble procedure based 
on the performance on a holdout set; in this case, a third 
validation sample should be included as solid proof of the 
ensemble predictive power.

Internal validation. Cross-validation is one of the most 
frequently used internal validation procedures. It can 
be used when an external validation data  set is not 
available or is prohibitively expensive to obtain. However, 
it is important to understand that internal validation 
methods can be considered overoptimistic in the sense 
that a successful internal validation does not guarantee 
transportability.

The simplest type of cross-validation is the holdout 
method.80 The analysis data set is split into two subsets 

called the training subset and the holdout subset. The 
model is developed using the training subset only and 
used to make predictions for the holdout subset. Then, at 
the minimum, a measure of the residuals (e.g., difference 
between the observed and model predicted values) could 
be used to evaluate the model performance. However, 
evaluation results can have a high variability, depending 
on which data points end up in the training vs. the test 
subset.80 Ensuring that the data set is split randomly and 
relevant variables are balanced among the subsets can 
help mitigate this issue.

K-fold cross-validation is an improvement of the hold-
out method.80 The training data set is randomly divided into 
K equal or nearly equal subsets (also called “folds”) and 
then K-1 parts of it are systematically used for model de-
velopment and the remaining fraction is reserved for model 
evaluation. The process is repeated until each part has 
been once removed from the training data set. Averaging 
the predictive performance on the folds allows computing 
a confidence interval for the parameter estimates, for in-
stance. Although the training data set should be randomly 
divided into K parts, one may want to ensure that relevant 
variables are balanced among the K parts. The advantage 
of this method is that the variability in evaluation results 
as a result of the splits of the data set is attenuated, with 
the reduction magnitude being directly proportion to the 
size of K.80 Leave-one-out cross-validation is a K-fold 
cross-validation with K equal to N, where N is the number 
of independent experimental units (i.e., subjects within a 
study). Although K-fold cross-validation methods are more 
computationally intensive, they can be automated using 
packages such as caret (refer to the Resources section). 
Cross-validation has also been implemented in Perl-speaks 
NONMEM as part of the stepwise covariate modeling 
procedure.81

Data leakage
Data leakage is a common and critical mistake when de-
veloping ML models. Definitions for data leakage include 
the following: (i) it is “when information from outside the 
training data  set is used to create the model”82 or (ii) 
“when the data you are using to train a ML algorithm hap-
pen to have the information you are trying to predict.”83 
Data leakage may reduce the generalization of the model 
(overfitting), overestimate model performance, and/or 
completely invalidate the model. A common example of 
data leakage is leaking data from the test or validation 
data set into the training set:82–84

•	 Perform data preparation (e.g., variables normalization) 
or featuring engineer in the whole data  set before 
splitting into training and validation data  sets

•	 In time-series data:

a	 Sample time points instead of experimental units 
(e.g., subjects) when setting aside the validation 
data set

b	 Include time-varying predictors that are correlated 
with time and have a similar distribution between the 
training and validation data sets
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Other examples are:82–84

•	 Leaking the correct prediction into the test data (e.g., 
use the response itself as a predictor)

•	 Leaking of information from the future into the past
•	 Reversing randomization or anonymization of data that 

were intentionally included
•	 Include information from data that is outside of the ap-

plication scope for the model

Recommendations to avoid data leakage include:82–84

•	 Remove incremental identification fields from the 
data  set

•	 When possible, remove predictors that are correlated 
with time from time-series data sets

•	 Conduct data preparation and feature engineering sepa-
rately for the training and validation data sets. In the case 
of cross-validation, this should be done within the cross-
validation folds

•	 In time-series data, perform nested cross-validation to 
evaluate performance: select a particular time value (t) 
and, for instance, establish that all data points lower than 
(or equal to) t will be part of the training set, and all data 
points greater than (or equal to) t will be part of the valida-
tion data set

•	 Use an unseen validation data set as a final check

A REPRODUCIBLE EXAMPLE
ML model to guide drug repurposing: Searching for 
novel inhibitors of putrescine uptake in Trypanosoma 
cruzi (T. cruzi)
This example is an adaptation of the work of Alberca et al.76 
to obtain a ML model for the subsequent search for drugs 
against T. cruzi, i.e., putrescine uptake inhibitors. T. cruzi is a 
parasite that is transmitted to animals and people by insect 
vectors and causes Chagas disease, a neglected tropical in-
fectious disease endemic to Latin America.85 Putrescine is a 
low-molecular-weight polyamine with crucial importance for 
the parasite survival.76 Different from humans, T. cruzi cannot 
synthesize putrescine and must uptake it from the human 
host via a high-affinity putrescine transporter; this makes 
putrescine uptake an attractive target for drugs against  
T. cruzi.76

Alberca et al.76 developed a linear regression model 
using small random subsets of descriptors (a random 
subspace approximation) followed by an ensemble- 
learning procedure to combine the results (Supplementary 
Material S1).76 Although we follow the data  set pre-
processing (i.e., creation of the training and validation 
data  sets) of Alberca et al., a random forest model 
and a LASSO model are developed for demonstration 
(Supplementary Material S2).

For model development and validation, a data set com-
posed of 256 polyamine analogs (previously assayed against 
T. cruzi) was compiled from literature.76 The 256 compounds 
were labeled as “active” or “inactive” according to their 
half-maximal effective concentrations against T. cruzi. The 
active group were compounds with half-maximal effective 

concentrations of less than 20 µM (n = 116), and the remain-
ing compounds were considered inactive (n = 140).

For reproducibility, Supplementary Material S3 carries 
the data set with the 256 compounds (polyamines_data-
set.csv). The first column of the data set contains a code 
for each compound, with the compounds labeled as 
“AXXX” belonging to the active class, and the compounds 
labeled as “IXXX” belonging to the inactive class. The 
second column is a binary dependent variable (named 
“ActivityClass”) that takes values of 0 for the inactive com-
pounds and values of 1 for the active compounds. Other 
data set columns are the 3,668 molecular descriptors that 
were computed with Dragon 6.0 (commercial software, 
Milano Chemometrics & QSAR Research Group, Syracuse, 
Italy); these descriptors can be used to evaluate molecular 
structure-activity relationships as well as high-throughput 
screening of molecule databases.86 Common examples of 
molecular descriptors are molecular weight and number 
of atoms.

The procedure for the analysis is the following:

1.	 A series of packages required for data analysis pur-
poses are installed

2.	 Working directory is set
3.	 Data set with the 256 compounds is read
4.	 A random and balanced training data set with 87 active 

and 87 inactive compounds is obtained. The data set 
consisting of 256 polyamine analogs was divided into 
two groups using a representative sampling proce-
dure: (i) training data set, which was used to develop 
or “train” the models, and (ii) test data set, which was 
used to internally validate the models. Of the com-
pounds, 75% (n = 87) in the active group were kept for 
the training data set; an equal number of compounds 
(n = 87) were taken from the inactive group (62.1% of the 
inactive group). To obtain a balanced training data set, 
we have undersampled the inactive group. A balanced 
training data set prevents model bias toward predict-
ing a specific category (i.e., active vs. inactive). In the 
original article, Alberca et al.76 sampled the 87 com-
pounds from the active and inactive groups through a 
two-step clustering approach (hierarchical clustering 
followed by K-means) to ensure representativity. For 
simplicity, we have omitted this sampling approach in 
this example.

# Obtain a random and balanced training data set 

with 87 active 

# and 87 inactive compounds 

set.seed(123) 

random _ sample <- strata(data = data set, strata-

names = "ActivityClass", 

size = c(87, 87), method = "srswor" ) 

training _ set <- data set[random _ sample$ID _ unit, ]

5.	 Columns (i.e., variables) with missing values or scarcely 
informative descriptors (constant or almost constant 
values) are then removed to yield the final training 
data  set with 1,608 predictors:



138

CPT: Pharmacometrics & Systems Pharmacology

ML in Drug Discovery and Development
Talevi et al.

# Columns containing non-available descriptor 

values for at 

# least one compound are removed (i.e., keep only 

descriptor 

# with information available for all compounds) 

training _ set <- training _ set[ , apply(train-

ing _ set, 2, 

function(x) !any(is.na(x)))] 

# Columns displaying no variance (sd = 0) or al-

most no variance 

# are indexed. Applied to numeric columns only. 

index _ low _ variance <- nearZeroVar(x = train-

ing _ set) 

# Remove the previously indexed columns 

training _ set <- training _ set[ , 

-index _ low _ variance]

6.	 The remaining 29 active and 53 inactive compounds 
were assigned to the validation data set. For simplicity, 
a holdout cross-validation (internal validation) is being 
used.

# Create the validation set 

testing _ set <- data set[-random _ sample$ID _ unit, ] 

testing _ set <- subset(testing _ set, select = 

names(training _ set))

7.	 Then we develop a random forest model using default 
parameters. Among the “randomForest” arguments are 
“mtry” and “ntree”: (i) mtry is the number of variables 
tried at each split. The default values are different for 
classification (sqrt(p) where p is number of predictors) 
and regression (p/3). (ii) ntree is the number of trees 
to grow with a default of 500. Note that this should 
be set to a reasonable large number to ensure that 
every input row gets predicted at least a few times.

# Develop a random forest model using default pa-

rameters 

set.seed(123) 

rf _ model <- randomForest(ActivityClass ~ ., data 

= training _ set, 

importance = TRUE) 

rf _ model 

# Call: 

# randomForest(formula = ActivityClass ~ ., data = 

training _ set, importance = TRUE) 

# Type of random forest: classification 

# Number of trees: 500 

# No. of variables tried at each split: 40 

# 

# OOB estimate of error rate: 23.56% 

# Confusion matrix: 

# 0 1 class.error 

# 0 72 15 0.1724138 

# 1 26 61 0.2988506 

# Predicting on validation set and check classi-

fication accuracy 

pred _ testing _ rf <- predict(rf _ model, testing _

set, type = "class") 

mean(pred _ testing _ rf == testing _ set$Activity-

Class) 

# 0.804878 

table(pred _ testing _ rf, testing _ set$Activity-

Class) 

# pred _ testing _ rf 0 1 

# 0 43 6 

# 1 10 23

8.	 In the previous model, a few metrics can be looked at 
to evaluate this forest classification model, such as OOB 
estimate of error rate (23.6%) for the training data  set 
and the classification accuracy (80.5%) and confusion 
matrix for the validation data  set—(i) OOB error rate: for 
each tree, one third of the training data  set is randomly 
selected and set aside (do not confuse it with the vali-
dation or holdout data  set), hence the trained forest 
model makes predictions on the remaining one third of 
the observations and calculate the OOB error; (ii) clas-
sification accuracy is the proportion in which the model 
predicted the correct classification of the validation 
data  set (i.e., the number of correct predictions divided 
by the total number of predictions); and (iii) the output-
ted confusion matrix can be interpreted as following:

 

True classification

0 1

Predicted classification

0 True negative (TN) False negative (FN)

1 False positive (FP) True positive (TP)

where 0 and 1 correspond to the inactive and active clas-
sifications, respectively. From this, the positive predictive 
value (PPV) and the negative predictive value (NPV) can be 
derived:

Hence, PPV is the proportion of positive predictions that 
are true positives, and NPV is the proportion of negative pre-
dictions that are true negatives.

As we mentioned previously, random forest is a type of 
ensemble modeling in that it combines multiple ML models 
to improve the overall performance of the model. This along 

PPV =
TP

TP+FP
=

23

23+6
=0.793 or 79.3%.

NPV =
TN

TN+FN
=

43

43+10
=0.811 or 81.1%.



139

www.psp-journal.com

ML in Drug Discovery and Development
Talevi et al.

with the fact that the random forest model is interrogated "on 
the fly" by a test data set (one third of the training data set) 
make for a powerful ML algorithm. In this example, however, 
interpreting an ensemble of 500 trees with more than a thou-
sand predictors is rather cumbersome, and the modeler may 
want to investigate the performance of a simpler model.

Therefore, we also developed a logistic regression model:

# 10-fold cross-validation 

set.seed(123) 

fitControl <- trainControl( 

method = "cv", 

number = 10) 

# Logistic regression model training 

logistic _ model <-train(ActivityClass ~ ., 

data = training _ set, 

method = "glm", 

family = "binomial", 

maxit = 100, 

trControl = fitControl) 

## Predicting on training set and checking clas-

sification accuracy 

pred _ training _ logistic <- predict(logistic _

model, training _ set) 

mean(pred _ training _ logistic == training _

set$ActivityClass) 

# 1 

table(pred _ training _ logistic, training _ set$Ac-

tivityClass) 

# pred _ training _ logistic 0 1 

# 0 87 0 

# 1 0 87 

## Predicting on testing set and checking classi-

fication accuracy 

pred _ testing _ logistic <- predict(logistic _

model, testing _ set) 

mean(pred _ testing _ logistic == testing _ set$Ac-

tivityClass) 

# 0.5609756 

table(pred _ testing _ logistic, testing _ set$Ac-

tivityClass) 

# pred _ testing _ logistic 0 1 

# 0 31 14 

# 1 22 15

As we expected, the accuracy of the logistic model in 
predicting the training data set (100%) is higher than that 
of the random forest model. However, it performs poorly in 
predicting the validation data set (i.e., close to a random 
classification). This is an example of overfitting, as logistic 
regression cannot handle a large number of covariates.

We then perform a multiple linear regression model with 
the LASSO algorithm, a relative simple model that can work 
with many covariates by performing variable selection:

# Format x and y variables as required (x as a 

matrix, y as a list of # values) 

x <- as.matrix(training _ set[ , -1]) # Removes 

ActivityClass 

y <- as.double(as.matrix(training _ set[ , 1])) # 

Only ActivityClass 

x _ test <- as.matrix(testing _ set[ , -1]) # 

Removes ActivityClass 

y _ test <- as.double(as.matrix(testing _ set[ , 1])) 

# Only ActivityClass 

# Use default parameters 

# alpha=1 is the lasso penalty, and alpha=0 the 

ridge penalty. 

# Logistic regression (family=’binomial’), as we 

have a 

# binary response. Here, we already perform 10-

fold cross 

# validation to choose the best λ. 
set.seed(123) 

cv _ lasso <- cv.glmnet(x, y, family = 'binomial', 

alpha = 1, 

type.measure = 'class') 

# lengthy output suppressed 

# best lambda 

cv _ lasso$lambda.min 

# 0.02904885 

# extract only non-zero coefficients 

extract.coef(cv _ lasso) 

# or equivalent 

coef(cv _ lasso, s = "lambda.min")[which(coef(cv _

lasso, 

s = "lambda.min") != 0)] 

# results 44 non-zero coefficients 

# Predicting on validation set and check classi-

fication accuracy 

pred _ testing _ lasso <- predict(cv _ lasso, newx 

= x _ test, 

type = "class", 

s = "lambda.min") 

mean(pred _ testing _ lasso == y _ test) 

# 0.7682927 

table(pred _ testing _ lasso, y _ test) 

# y _ test 

# pred _ testing _ lasso 0 1 

# 0 44 10 

# 1 9 19

LASSO selected 40 predictors for the final model. For the 
validation data  set, the classification accuracy, PPV, and 
NPV are 76.8%, 65.5% and 83.0%, respectively. Although 
the classification accuracy and NPV are comparable with 
those of the random forest model, the PPV is lower (65.5% 
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vs. 79.3%). Whether the percent reduction in PPV with 
LASSO justifies the choice of the random forest model 
though will depend of the context in which the model will 
be applied. Herein, the fit-for-purpose context goes be-
yond knowing that the model will be applied to screen for 
potential drug candidates to treat against T. cruzi. For in-
stance, let us assume that an “active” classification from 
the model will be the gold standard on deciding whether 
to translate the compound to a clinical trial in the disease 
population. In this case, having a model with a higher PPV 
is probably warranted. On the other hand, if the model will 
be used to generate a short list of compounds (i.e., get-
ting rid of probable inactive compounds) to be tested in 
a series of more definitive in vitro tests, then the LASSO 
would be expected to perform similarly to the random for-
est model (NPV of 83% and 81% for LASSO and random 
forest, respectively). In summary, there is no absolute best 
ML algorithm.

RESOURCES

The popularity and widespread adoption of ML across in-
dustry has helped create versatile tools and resources for 
researchers to build a variety of ML models. For the ben-
efit of our readers, we have compiled a list of open source 
tools and learning resources related to ML (Table 1). 
Although the list is not exhaustive, it contains a useful col-
lection of tools based on our experience with building ML 
models.

ADDITIONAL CONSIDERATIONS

Models used by ML algorithms may be much more complex 
than traditional statistical models, thus limiting interpret-
ability. In some cases, the model could be interpreted 
based on the relative importance of the covariates. This 
could be determined, for example, by refitting the model 
without a given covariate and computing the reduction in 
model accuracy. Another way of interpreting the effect of a 
covariate is to plot the predicted outcome vs. the covariate, 
setting the other covariates equal to their medians within 
the data set.

In pharmacometric analysis, models are often used to sim-
ulate new data. However, many ML models do not describe 
the variability in the outcome as a model parameter, thus 
making the simulation process more difficult. If new simulated 
outcome data are required, and the covariates are provided, 
one approach is to start with the model predictions and add 
random noise with a variance determined by the model accu-
racy for the test or validation data set. However, this approach 
may not work when there are repeated measurements within 
subjects because model accuracy alone does not distinguish 
between intersubject and intrasubject variability.

This first part of our work presented a tutorial on ML 
concepts and technical aspects. With such knowledge, the 
reader will be able to follow the second part of our work, 
which is an overview on applications of ML in drug discov-
ery, drug development, and the postapproval phase.

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).

Supplementary Material S1.
Supplementary Material S2.
Supplementary Material S3.
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