
Citation: CPT Pharmacometrics Syst. Pharmacol. (2020) 9, 129–142;  doi:10.1002/psp4.12491

TUTORIAL

Machine Learning in Drug Discovery and Development
Part 1: A Primer

Alan Talevi1, Juan Francisco Morales1, Gregory Hather2, Jagdeep T. Podichetty3, Sarah Kim4 , Peter C. Bloomingdale5,
Samuel Kim6, Jackson Burton3, Joshua D. Brown7, Almut G. Winterstein7 , Stephan Schmidt4, Jensen Kael White3 and
Daniela J. Conrado8,*

Artificial intelligence, in particular machine learning (ML), has emerged as a key promising pillar to overcome the high failure
rate in drug development. Here, we present a primer on the ML algorithms most commonly used in drug discovery and de-
velopment. We also list possible data sources, describe good practices for ML model development and validation, and share
a reproducible example. A companion article will summarize applications of ML in drug discovery, drug development, and
postapproval phase.

Application of artificial intelligence (AI; Box 1) in drug dis-
covery and development has emerged as a key promising
pillar. Its importance has been consolidated by the need
of new strategies to overcome the high failure rate in drug
development of ~ 90%.1,2 As such, pharmaceutical compa-
nies are beginning to explore how various AI frameworks
can supplement or be integrated into the current drug dis-
covery and development processes.1

Machine learning (ML), a branch of AI (Figure 1), is “based
on the idea that systems can learn from data, identify
patterns and make decisions with minimal human inter-
vention.”13 AI frameworks may contain several different ML
methods applied together. For example, an AI framework
in drug discovery may optimize drug candidates through a
combination of ML models that predict favorable physico-
chemical characteristics (e.g., solubility and permeability),
pharmacokinetics (PK), safety, and possibly efficacy.14–21
An AI framework in drug development may use ML meth-
ods to prescreen covariates in PK-pharmacodynamic data,
identifying patient subpopulations, predicting clinical out-
comes, informing clinical trial design, and investigating
novel therapeutic purpose for existing drugs (i.e., drug
repositioning or drug repurposing).22–25 However, ML meth-
ods have been utilized more often in drug discovery than
in development.

ML can support a range of different drug discovery and
development applications. To be a fit-for-purpose approach,
the application of ML should be guided by answers to the
following three questions: (i) What is the drug discovery and/
or development need? (ii) What ML methods are most appro-
priate to address this need? and (iii) What data can be used
to support these ML methods? Data quality is as critical as
data quantity in that data should be unbiased and diverse

to support robust models. In addition, researchers should
prepare to validate and interpret the models and results.

This work consists of two parts. The first part is a tuto-
rial on the most commonly used ML algorithms along with
possible data sources, good practices for ML model devel-
opment and validation, and a reproducible example. The
second part, published in a companion article, is an overview
of applications of ML in drug discovery, drug development,
and the postapproval phase.

DATA SOURCES FOR BUILDING ML MODELS

The amount of data being generated today is staggering. An
estimated 2.5 quintillion bytes are created every single day.26
However, it is not the quantity of data but it is the opportunity
to generate knowledge that matters most. Some common
examples of large data sets include chemical structure data,
gene expression and genetic data, high throughput in vitro
data, clinical trial data, and electronic medical records. Data
may be freely available public data, commercially available
data, internal companies’ data, or data shared among par-
ticipating institutions.27 The reader can refer to Conrado
et al.28 for examples of individual data-sharing initiatives.

“Big data” and advances in technologies for data science
have paved the way for the applications of ML in drug discov-
ery and development. Recent advances in ML technology,
in turn, allow us to make use of large data sets on a scale
that was previously unrealizable. A rapidly emerging field is
the use of wearable technology and sensors, which provide
a wealth of real-time data that can be leveraged to assess
patient health and detect trends for potential health risks.29
For example, wearable sensors that can be adhered directly
to patients’ body surfaces can provide detailed movement

1Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Faculty of Exact Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina; 2Statistical
& Quantitative Sciences, Takeda Pharmaceuticals, Cambridge, Massachusetts, USA; 3Quantitative Medicine, Critical Path Institute, Tucson, Arizona, USA; 4Center
for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA; 5Quantitative
Pharmacology and Pharmacometrics, Merck & Co. Inc, Kenilworth, New Jersey, USA; 6Canary Speech LLC, Provo, Utah, USA; 7Center for Drug Evaluation and
Safety, Department of Pharmaceutical Outcomes and Policy, College of Pharmacy, University of Florida, Gainesville, Florida, USA; 8e-Quantify LLC, La Jolla, California,
USA. *Correspondence: Daniela J Conrado (Dconrado@e-quantify.com; DConrado@ymail.com)
Received: July 17, 2019; accepted: December 10, 2019. doi:10.1002/psp4.12491

https://orcid.org/0000-0002-9179-0735
https://orcid.org/0000-0002-6518-5961
mailto:﻿
mailto:﻿
mailto:Dconrado@e-quantify.com
mailto:DConrado@ymail.com
https://doi.org/10.1002/psp4.12491

130

CPT: Pharmacometrics & Systems Pharmacology

ML in Drug Discovery and Development
Talevi et al.

data.30 Alternatively, small, wearable devices, such as sen-
sors embedded into a ring or wristband, enable pulse wave,
arterial blood flow, physical activity, and sleep pattern data
to be monitored continuously.31,32 Technological advances
in computer-aided diagnosis and detection systems created
the fields of radiomics and radiogenomics.33,34 These ad-
vances enable researchers to convert medical images into
quantitative data7,23,24 that can be used to develop ML mod-
els to generate hypotheses and inferences as well as support
decision making beyond visual interpretation.35 Postmarket
surveillance data such as adverse drug reaction (ADR) re-
ports from the U.S. Food and Drug Administration (FDA)
Adverse Event Reporting System36 are also vital sources
in that they can inform drug discovery and development
by back translating to the molecular mechanisms and tar-
gets of the adverse events.37 The Adverse Event Reporting
System contains rich sources of ADR information submitted
voluntarily by drug manufacturers, healthcare professionals,
and consumers in the United States. More than 9 million
ADR reports were submitted from 1969 to the present, and
the number of reports increases every year.

Data can be either structured or unstructured.28 Structured
data could occur through a user-friendly online data repository
including a description of the data, tools for data querying, a
data dictionary, summary tables, and some means of sup-
port.28 Examples of structured data are the Alzheimer’s Disease
Neuroimaging Initiative (ADNI), the Parkinson’s Progression

Markers Initiative (PPMI), and the Coalition Against Major
Diseases (CAMD) consortium database.28 Unstructured data
as the name suggests are everything else. Unfortunately,
most data are unstructured and require substantial amounts
of time and effort to curate. Within drug development, efforts
have been underway through the Clinical Data Interchange
Standards Consortium (CDISC) to standardize clinical research
data.38 The Coalition for Accelerating Standards and Therapies
(CFAST; https://c-path.org/progr​ams/cfast) was initiated in
2012 as a partnership between CDISC and the Critical Path
Institute (C-Path) to accelerate clinical research by creating and
maintaining therapeutic area data standards. Integrated and
standardized data sets can catalyze biomedical discoveries
and drug development28 as well as help the regulatory agen-
cies to review new drug applications more efficiently. These
standardized structured data sets are ideal for use as “training
data sets” (refer to the ML Algorithms section) in ML. Together,
data standardization and ML modeling could revolutionize drug
discovery and development in these and other disease areas.

ML ALGORITHMS

ML algorithms may involve fitting data to statistical models
or the algorithms may be more heuristic in nature. Unlike
traditional model fitting, the goal of an ML algorithm is usu-
ally to make accurate predictions about outcomes for new
data when the covariates are provided. The parameters
returned by the model are generally of secondary interest,
and statistical hypothesis testing is not usually performed.

Supervised ML
A supervised ML algorithm requires an input data set, which
can be split into a “training” data set and a “test” or “valida-
tion” data set. The process of fitting (or “calibrating”) the model
to the training data set is called “model training.” The “trained”
ML model can then be validated—having its predictive perfor-
mance assessed—using the test or validation data set. The
“validated” ML model can then be applied to new data sets
(i.e., not used for model development) to make predictions or
decisions based on the new data set covariates.

With supervised ML, the training data set contains both
covariates and outcomes. Such a data set is called “la-
beled”39,40 because it includes the outcomes. The outcome
may be continuous or categorical. After a supervised ML
model is trained, it can be used to predict outcomes for new
data set based on its covariates. Several widely used algo-
rithms in supervised ML are described in the next sections.

Linear and logistic regression. Multiple linear regression
is a widely used algorithm in supervised ML when a
continuous outcome varies linearly with the independent
variables or covariates. An outcome or dependent variable
can be represented as follows:

where Y is the outcome prediction, �1−n are the coefficients
and x1−n are the covariates. Ordinary least squares, which is
based on the principle of maximum likelihood, is the simplest

Y =�0+�1x1+…+�nxn

Box 1  History of AI

AI was pioneered by British mathematician Alan
Turing in the 1950s with the idea of training a machine
to think like a human. He introduced the Turing test,
which has been used to determine if a machine has
intelligence.3 The first demonstration of the funda-
mental concept of AI was introduced by American
electrical engineer Arthur Samuel. Mr. Samuel de-
veloped the self-learning Samuel Checkers-Playing
Program, which won the 1952 world championship.4,5
He also first coined the term machine learning, a sub-
group within AI, in 1959.6

In 2011, Apple Inc. (Cupertino, CA) introduced virtual
AI assistant “Siri” on iPhone 4S, which uses a natural-
language user interface to return contextual informa-
tion and performance according to users’ requests.7
Google Brain, which is an AI research team at Google
(Mountain View, CA), trained a neural network to rec-
ognize a cat from randomly selected YouTube vid-
eos in 2012.8 In 2014, a chatbot “Eugene Goostman”
passed the Turing test at a contest by convincing 33%
of the judges.9 In 2015, the first formal match occurred
between AlphaGo10, an AI-based software developed
by Google DeepMind Technologies Limited, and a
professional human Go player; AlphaGo won 5–0.
An executive order on maintaining American leader-
ship in AI was issued in early 2019.11 The American
Medical Association has supported the use of AI in
medical practice and training since mid-2019.12

https://c-path.org/programs/cfast

131

www.psp-journal.com

ML in Drug Discovery and Development
Talevi et al.

and most common way of estimating the coefficients. This
model is not designed to handle strong collinearities between
covariates. Severe multicollinearity greatly reduces the pre-
cision of the estimated coefficients. In such cases, principal
component analysis may be used to reduce the number of
features to a smaller set of unrelated components.

Logistic regression is a widely used supervised ML
method for modeling binary outcomes, such as yes/no,
success/failure, and survived/died. The logistic regression
model estimates the probability that the outcome belongs to
a particular binary category. The probability curve is sigmoid
or S-shaped and constrained between 0 and 1.

Ridge regression, least absolute shrinkage and
selection operator (LASSO), and elastic net. Some
data sets, such as genetic data sets, have large numbers of
features (covariates) relative to the number of observations,
but most features are expected to have minimal association
with the outcome. Including all of the features in a linear or
logistic regression model would add noise to the model and

potentially result in a nonidentifiable model when the number
of features is greater than the number of observations.
Instead of reducing the number of features for multiple linear
regression, we can fit a model starting with all predictors
using a technique that constrains the coefficient estimates,
or equivalently, that shrinks the coefficient estimates toward
zero. The two best-known techniques for shrinking the
regression coefficients toward zero are ridge regression and
LASSO.41 Multiple linear regression is the underlying model
used for these techniques. However, the fitting procedure is
not based on maximum likelihood. Instead, these techniques
work by applying a “penalty” to the fitting procedure that
depends on the magnitude of the coefficients. All coefficients
are usually penalized equally. Therefore, before applying
ridge regression or other shrinkage methods, the analyst will
typically rescale the covariates to prevent covariates with
numerically wider ranges from being excessively penalized.

Ridge regression shrinks the regression coefficients by
imposing a penalty on their size. Instead of minimizing only
the residual sum of squares, as ordinary least squares does,
ridge regression minimizes:

P (Y =1)=
1

1+e−(�0+�1x1+…+�nxn)
.

Y −�X2+��2.

Figure 1  Overview of the types of machine learning and algorithms. Only the most commonly used algorithms are described in this
tutorial. AdaBoost, adaptive boosting; DBSCAN, density-based spatial clustering of applications with noise; DCNN, deep convolutional
neural networks; Eclat, equivalence class transformation; FP-Growth, frequent pattern growth; GRU, gated recurrent unit; K-NN,
K-nearest neighbors; LDA, linear discriminant analysis; LightGBM, light gradient boosting machine; LSA, latent semantic analysis;
LSM, liquid state machine; LSTM, long short-term memory; MLP, multilayer perceptron; PCA, principal component analysis; seq2seq,
sequence-to-sequence; SVD, singular value decomposition; SVM, support vector machine; t-SNE, t-distributed stochastic neighbor
embedding; XGBoost, extreme gradient boosting.

132

CPT: Pharmacometrics & Systems Pharmacology

ML in Drug Discovery and Development
Talevi et al.

Here, the first term is simply the residual sum of squares.
In the second term, � is a weight factor, and �2 is the sum
of the squared coefficients. Thus, when � =0 the ordinary
least squares coefficients are returned, and when � =∞,
the coefficients will approach zero. However, a disadvan-
tage is that it includes all predictors in the final model. As
with the ridge regression, the LASSO shrinks the coeffi-
cient estimates toward zero:

Here, in the second term, � is a weight factor, and �1 is the
sum of the absolute values of the coefficients. This penalty
has the effect of forcing some of the coefficient estimates
to be exactly equal to zero. LASSO performs variable se-
lection, yielding models that involve only a subset of the
variables. As a result, models generated from the LASSO
are generally much easier to interpret than those generated
from the ridge regression. For a data set with N observa-
tions, LASSO will select at most N features.42 LASSO can
also be adapted to fit logistic regression models.

Elastic net is another shrinkage-based method that linearly
combines the penalties from ridge and LASSO to minimize:

Compared with LASSO, the elastic net can yield a model
including more features than number of observations, but
with possibly far fewer than would be selected via the ridge
penalty alone. In addition, the elastic net exhibits a grouping
effect, where highly correlated features will have similar es-
timated coefficients.

Decision trees and random forest. Decision trees41,43–45
are a commonly used group of nonlinear ML methods. Each
model is a set of rules organized in the form of a tree. Starting
at the base or “root node,” the algorithm selects a “branch”
based on the decision rule at the root node. The decision
rule is generally based on a single covariate and a specified
threshold (e.g., if the third covariate is greater than five, take
the left branch). The algorithm then reaches the next node and
follows the next decision rule. Eventually, the algorithm reaches
a “leaf node,” which represents a specific output decision,
returned as a result. Decision trees can be used for building
both classification models for making qualitative predictions
and regression models for making quantitative predictions.
One reason for the popularity of single decision trees is their
ease of interpretation and representation. However, they are
outperformed by more advanced ML algorithms, such as
random forest or gradient boosting modeling.

Random forest41,46 is a method that creates a large col-
lection of decision trees, where each decision tree makes
a prediction or “vote” for a certain outcome. For each tree,
typically one third of the training data set is randomly se-
lected and set aside, and the remaining two thirds of the
training data set is used for model development. When
these decision trees are being built, each time a split in a
tree is considered, a random sample of predictors is chosen
as split candidates from the full set of predictors. A single

predictor and a corresponding decision rule threshold are
identified that maximize the accuracy of the decision tree.
When all of the trees are completed, the model is ready to
make predictions about new data. The prediction is defined
by majority voting from this collection of decision trees. To
evaluate the accuracy of the model, the trained forest can be
used to predict the remaining one-third of the observations
and calculate the out-of-bag (OOB) error.

Random forest is a type of ensemble modeling because
it involves combining multiple ML models to improve the
overall performance of the model. Ensemble models gen-
erally combine the results by voting or taking the mode,
mean, or weighted mean of the results from different
models. More advanced techniques include bagging and
boosting. Bagging involves creating random subsamples,
or bootstrapping, of training data with replacement and
building a model for each subset. For boosting, see the
Gradient Boosting section.

Gradient boosting. Gradient boosting41,47 differs from
bagging methods in that the trees are trained and combined
sequentially. This algorithm generates models by computing
a sequence of trees in which each successive tree is built
from the prediction residuals of the preceding tree. A simple
partitioning of the data is determined at each step in the
boosting tree algorithm, and the deviations of the observed
values from the respective residuals for each partition are
computed. Given the preceding sequence of trees, the next
tree will then be fitted to the residuals to find another partition
that will further reduce the error in the model.

Neural networks (NNs). NNs48 are composed of units
called artificial neurons. Each connection between neurons
can transmit a signal to another neuron. All neurons have
multiple inputs and one output. The receiving neuron can
process the signals and then signal downstream neurons
connected to it. Each input is associated with a weight
that varies as learning proceeds, which can increase or
decrease the strength of the signal that is sent downstream.
A general formula for the output Y of a neuron is:

where f is a specified function, Xi is the ith input, and Wi is
the weight associated with the ith input. Neurons are typ-
ically organized in the following three types of layers: (i)
the input layer (i.e., the bottom layer), where the predic-
tors are entered; (ii) the hidden (middle) layers; and (iii) the
output layer (i.e., the top layer), where the predictions are
generated.

Deep NN (DNN), also known as deep learning, refers to a
model with more than one hidden (middle) layer. Recent ad-
vances of DNN-based algorithms have been implemented
in various fields from automatic speech recognition49 to
medical image recognition.50 DNNs can be further cate-
gorized based on model architectures; convolution NN,
recurrent NN, and long short-term memory-based recur-
rent NN.

Y −�X2+��1.

Y −�X2+��2+��1.

Y = f

(

∑

i

WiXi

)

.

133

www.psp-journal.com

ML in Drug Discovery and Development
Talevi et al.

Genetic algorithm. The genetic algorithm is inspired by
the process of natural selection and belongs to the larger
class of evolutionary algorithms. The genetic algorithm
works as following:22

•	 First, the solution space is defined and corresponds
to a set of models to test.

•	 The search for the best model is initialized by randomly
creating an initial population, defined as a set of indi-
viduals with a genome (model structures). These model
structures can then be fitted to the data, and the best
model is identified based on a goodness-of-fit statistic
criterion (e.g., Akaike information criterion).

•	 Then, the next generation can be created by first select-
ing sets of “parents.” Parents are selected randomly, with
replacement and probability of selection proportional to
fitness.

•	 Next, the genomes of the parents are lined up and
“crossover” occurs, i.e., some user-defined fraction of
the parent sets (e.g., 60%), at a single, random loca-
tion in the genome. For instance, if the genome contains
four genes (model characteristics: one compartment
PK model + first-order absorption + presence of lag
time + proportional residual error), then a 50% split
would generate the left part with “one compartment PK
model + first-order absorption” and the right part with
“presence of lag time + proportional residual error.”
Then, the left part of the first parent is combined with the
right part of the second parent and vice versa.

•	 Subsequently, a mutation is randomly applied based on
a prespecified small proportion. For instance, the “pres-
ence of lag time” feature is reversed to “absence of lag
time.”

•	 This process is repeated until no further improvement is
seen (i.e., a model with an improved goodness-of-fit cri-
terion is no longer obtained).

A reproducible example can be found in Bies et al.,22 where
a genetic algorithm–based, hybrid ML approach to model se-
lection has been developed and applied.

Unsupervised ML
Unsupervised ML deals with unlabeled data51 defined as
data that include the covariates, but not the outcomes. This
technique is used to identify patterns and associations be-
tween data points. Dimensionality reduction methods may
be applied as a first step in the analysis.52 Principal compo-
nent analysis is among the most widely used dimensionality
reduction techniques. In addition, the data may also be
normalized to facilitate comparison between data points.
Several widely used algorithms in unsupervised ML are de-
scribed in the next sections.

K-means. K-means groups data points with similar
properties or features into a fixed number of clusters (K).
K-means is commonly applied to gene expression or clinical
lab data to identify similar groups of samples or subjects.
The algorithm can be initialized by randomly selecting K
“centroids” from the data set. A centroid is a data point
(imaginary or real) at the center of a cluster, i.e., the mean

value of the points assigned to the cluster. Hence, “means”
in the “K-means” expression corresponds to the centroid.53
Each data point is assigned to the nearest cluster. Each
centroid is then updated (i.e., iteration) so that the total
within-cluster variation is minimized. There are several
K-means algorithms, and the standard algorithm defines
the total within-cluster variation as the sum of squared
Euclidean distances between points and the corresponding
centroid.54 Most often, a local optimum is achieved;
hence, it is suggested to run the algorithm multiple times
with randomized starting centroids for better outcome.
Systematically, the steps are the following:54

1.	 Define K, the number of clusters to be created.
2.	 Select randomly K centroids from the data set (i.e., the

initial cluster centers).
3.	 Assign each data point to the nearest centroid based

on the Euclidean distance between the point and the
centroid.

4.	 Recompute the centroid for each of the K clusters by
calculating the new mean value of all the data points in
the cluster.

5.	 Iteratively minimize the sum of squared Euclidean dis-
tances. Repeat Step 3 and Step 4 until the centroids do
not change.

To select the number of clusters, the total within-cluster
distance to the centroid may be compared for increasing K
values. The point where the average within-cluster distance
to the centroid levels off may be chosen as the value of K.

K-means is relatively fast, robust, and easy to inter-
pret. It is also relatively efficient when the data set are well
separated from each other. However, some drawbacks of
K-means include (i) a priori selection of K, (ii) distinguish
data that are close or overlapping, (iii) obtain different results
produced by non-linear transformation, and (iv) inability to
handle categorical data.

Hierarchical. This algorithm creates a set of nested
clusters structured as a hierarchical tree. Unlike K-means,
hierarchical clustering starts with considering each
observation as an individual cluster. Then iterations are
performed to merge similar clusters until all the clusters
are merged. A dendrogram (i.e., a tree diagram that shows
the taxonomic relationship between covariates) is obtained
to show the hierarchical relationship between the clusters.
This technique is also known as agglomerative hierarchical
clustering. Another less commonly used hierarchical
technique is called divisive hierarchical clustering, where
all the observations are grouped into one cluster and then
successively split into multiple clusters.

Hierarchical clustering offers several advantages includ-
ing easy implementation and the lack of a need to specify the
number of clusters. However, limitations include sensitivity
to outliers and greater computation resource requirements.

Active learning
Active learning is a ML method where the algorithm can
interactively request labeled data to train themselves.
Active learning can be used when a full labeled data set

134

CPT: Pharmacometrics & Systems Pharmacology

ML in Drug Discovery and Development
Talevi et al.

has not yet been collected and cost constraints prevent full
labeling. For example, if one wishes to predict affinity to a
protein based on selected chemical features, it may be too
expensive to run experiments with a full compound library.
An active learning algorithm would design a series of ex-
periments to learn the relationship between the chemical
features and affinity. Each experiment would be designed
based on the previous data obtained. The algorithm would
select the most informative compounds for future exper-
iments. Although there are many different approaches to
active learning, these methods often use a supervised ML
algorithm to process the data that have already been col-
lected.55 To select new data for labeling, an active learning
algorithm may identify unlabeled samples that have the
greatest prediction uncertainty. These samples will be more
informative compared with samples with high prediction
certainty, thus allowing greater improvement in prediction
accuracy.

GOOD PRACTICES FOR ML MODEL DEVELOPMENT
AND VALIDATION
Data curation and preparation
Every ML experiment begins with data curation on the
data required to build a model (i.e., training data); indeed,
a common saying is that a model will be only as good as
the data from which it is derived.56,57 Modelers typically
rely on data generated (and, more recently, even compiled)
by other scientists. Therefore, data quality is often highly
dependent on the data providers. Although often an
overlooked aspect, data curation and preparation are
cornerstone to develop reliable models. Common issues
related to data curation and preparation are described in
the next sections. Good practices for the curation of chem-
ical data sets in drug discovery are presented in Box 2.

Outliers. Data entry or experimental errors can introduce
observations that appear to be inconsistent with the
rest of the data. Data curation includes identifying and
potentially removing or correcting outliers.64 The modeler
could also perform a sensitivity analysis by rerunning
the model without the outliers and comparing the model
results.

Because many data sets for ML are large, manually iden-
tifying and handling outliers may not be possible. However,
one may be able to summarize the covariate ranges and vi-
sually inspect the distributions to identify outliers or ranges
where outliers fall. Heuristic or statistical/mathematical
methods to detect and handle data outliers can be per-
formed in a semiautomated manner.65,66

Missing data. Another challenge with data preparation is
handling missing data. Missing data are not unusual, often
the result of missed data collection or entry and issues with
data processing. Although some ML algorithms, such as
random forest, can handle missing data, most algorithms
do not perform well with missing data.

There are several strategies to handle missing data. The
first step should be to find the number of the missing values
and visualize their distribution. Packages in R and Python
such as VIM67 and missingno68 can aid in this process. As

a rule of thumb, and depending on the importance of the
variable, one could consider removing variables with 70%
or more missing data, as often they do not provide infor-
mation toward predictability. For the remaining covariates,
the simplest strategy is to remove data points for which
any covariate is missing. Another simple alternative is to
replace missing values with the median value for continu-
ous variables or with the mode for categorical variables. For
time-dependent variables, similar statistical measures could
be considered across time points. Although these strategies
allow ML models to be fit by various algorithms, they may
also introduce bias.

More sophisticated approaches to handle missing
data for time-dependent variables include model-based
imputation (e.g., regression model of height and weight
in children). Another model-based imputation is the
K-nearest neighbor. The assumption with K-nearest neigh-
bor is that a missing point value can be approximated by
the values of the nonmissing points that are closest to it
based on other variables.

For established pharmacometric analyses, several effec-
tive strategies to handle missing data have been described
in the literature.69 Handling missing data is usually quite chal-
lenging, and strategies to address it need to be executed in
the context of the problem at hand. Often, a combination of
different methods might be required to effectively manage
missing data.

Overfitting
Overfitting is gaining explanatory power of the training data
by sacrificing generalizability (i.e., predictive ability for rel-
evant data sets not used in the model building). As in any
learning task, memorizing peculiarities of the training data
(i.e., fitting noise) is discouraged because the goal of learn-
ing is to envision a general principle that can be later applied
to other scenarios or cases. According to the principle of
parsimony, one should use the simplest model or method
that delivers the pursued performance level (e.g., avoid
using NN or random forest if a single linear model provides
an adequate solution). This also means to avoid including
more parameters and/or covariates than required.70 Models
that explain too well the training data usually experience
a sharp drop in performance when making predictions for
new data.

Overfitting may be addressed in a retrospective manner
(i.e., after model development) using adequate model vali-
dation procedures (refer to the Model Validation section) or
in a prospective manner (i.e., before model development).
The distinction between retrospective and prospective ap-
proaches to avoid overfitting is philosophically similar to the
distinction between quality control and quality assurance.
In the context of computer-aided drug discovery and devel-
opment of ML models, both prospective and retrospective
approaches are utilized.

Prospective avoidance of overfitting usually involves a
rule of thumb regarding the ratio of training observations
to covariates included in the model. A minimum ratio of
5:1 is often recommended for multivariate regression ap-
proaches,60,71 but a more conservative ratio of 10:1 is
safer.

135

www.psp-journal.com

ML in Drug Discovery and Development
Talevi et al.

An approach called regularization can help avoid over-
fitting when using complex, flexible ML approximations.72
Regularization techniques are neither prospective nor retro-
spective, but somewhat in the middle, as they are applied
“on the fly” while training the model. For example, dropout
is a regularization technique used in the context of DNN; it
consists of removing or ignoring randomly selected neurons
during training, resulting in a network that is capable of bet-
ter generalization.73 Moreover, for complex ML approaches
that require tuning hyperparameters (e.g., learning rate and
number of hidden units in a neural network), the models are
usually interrogated by a third data set (besides traditional
training and holdout sets), which is called a “test data set.”

Test data sets can be used for regularization by early stopping,
i.e., stopping further training when the error on the validation
data set increases, as this is a warning of overfitting.74

Overfitting can depend on the number of tested covari-
ates in the model.75 If covariates are added in an univariate
or stepwise manner, then one must consider the inflation of
the false positive rate or Type I error as a result of multiple
comparison, i.e., the larger the number of covariate mod-
els tested, the greater the probability of finding significant
covariates by chance. For instance, if one statistical test
is performed at the 0.05 α level and the null hypothesis is
true, there is a 5% chance of incorrectly rejecting the null
hypothesis (i.e., false positive or Type I error); however, if

Box 2  Good practices for curation of chemical data sets in drug discovery

The curation of chemical data sets involves removing duplicates and checking that the molecular representations
are appropriate and correct. The required degree of curation depends on the molecular predictors that will be used
in the models. For instance, if only conformation-independent descriptors are to be used, geometry optimization or
considerations on the stereochemistry of the training samples might be avoided. The opposite is true if methods that
consider molecular geometry are employed. During curation, the modeler may resort to cheminformatic tools that
perform some of the previous steps in an automated manner but complementing such automated procedures with
manual curation would be ideal. Studies show that, on average, there are two structural errors per medicinal chemistry
article.57 In 2008, Young et al.58 examined six databases (both public and private) to collect structural information on
8,530 chemicals. They observed that the databases had error rates ranging from 0.1% to 3.4% and concluded that
small errors in structural representations can lead to significant errors in predictions. Recently, Maeda et al.59 exam-
ined the database of Natural Product Updates 2010 and 2011 published by Royal Society of Chemistry. From the listed
literature, the articles reporting newly isolated or structurally updated natural products were individually investigated.
Among about 2,500 compounds requiring confirmation in the primary source, 63% showed unclear drawing and not
well-defined chiral atoms, 3.7% had the correct name but the wrong structure, and 0.4% showed discrepancies to
nuclear magnetic resonance data. The previous examples, which coincide with our experience managing data sets
from online resources, illustrate the importance of prior curation before applying ML methodologies.

When intending to build ligand-based models for virtual screening applications, the following specific considera-
tions must be taken into account: (i) Ideally, the dependent variable (i.e., the modeled biological activity) should cover
at least two or three orders of magnitude,60–62 from the least to the most active compound; (ii) the available biological
data on the training set compounds should, preferably, be uniformly distributed across the range of activity, or at least
follow a normal distribution, and the same applies to the independent variable60 (in the case of classificatory models,
a balanced training set is recommended to avoid bias toward the prediction of a particular category); and (iii) the bio-
logical activities of all the training examples should be of similar quality. Preferably, they should have been measured
in the same laboratory using the same conditions61,62 so that the variability in the measured biological activity only
reflects treatment differences. To mitigate the influence of noisy data points associated to large experimental errors
or variability, data sources should be sensibly examined, disposing of training examples extracted from inadequate or
dubious experimental protocols. Some public databases flag bioassay data to warn the user on possible reliability is-
sues. For instance, ChEMBL (https://en.wikip​edia.org/wiki/ChEMBL) has incorporated a “Data Validity” column to the
interface, which warns from potential or confirmed author errors and bioactivity values outside usual range and miss-
ing data, among other issues. Lastly, classification models can be used to lessen the impact of data heterogeneity.

A wide coverage of the activity space allows the model not only to capture essential molecular features needed to elicit
the desired activity but also to identify those characteristics that reduce activity and sometimes to detect nonlinear be-
havior. Data distribution should be studied to avoid poorly populated regions within the examined chemical and biological
space as well as densely populated narrow intervals.60 It is often stated that data extrapolation should be avoided; however,
interpolation could also be dangerous if too sparsely populated regions exist within the task space. Histograms can be of
help for visualizing the distribution of the dependent and the independent variables; however, examination of the multivari-
ate space can reveal empty or poorly occupied regions that a separate analysis of the independent variables may not.63

Concerning data set size, historically it has been said that the number of compounds in the training data set should
be at least 20 (in the case of classifiers, at least 10 compounds of each class are required), and at least 10, in each
of the test and external evaluation data sets (with a minimum of 5 compounds per class for classifiers). Therefore,
the total minimum number of compounds is recommended to be at least 40.57 Nevertheless, a minimum of 150 com-
pounds is preferred when available.

https://en.wikipedia.org/wiki/ChEMBL

136

CPT: Pharmacometrics & Systems Pharmacology

ML in Drug Discovery and Development
Talevi et al.

10 independent statistical tests are performed and the null
hypotheses are true, the family-wise error rate is 40%. If
these “false positive” covariates are then included in model,
this will contribute to overfitting. We have observed that the
use of small random subsets of descriptors (a “random sub-
space” approximation) is a useful strategy to mitigate the
chance of spurious correlations.76 Ensemble learning, which
is the combination of individuals models into a meta-model
(e.g., random forest), can also improve model robustness.

Model validation
Model validation is performed to assess the model’s pre-
dictive performance when it is used to make predictions
for relevant data that were not used for model building. A
validated model is expected to make sufficiently accurate
predictions for the intended use (i.e., to have sufficient pre-
dictive performance). Model validation includes a series
of techniques for quantitative assessment of the model
stability and predictive power;77,78 it serves to detect the
occurrence of overfitting and chance correlations (when
no cause–effect relationship is encoded in the correlation).
Validation techniques can be roughly classified into internal
and external validation approaches.

External validation. External validation is the most
stringent type of model validation.77,79 Here, the validation
data set should be completely independent from the training
data set—e.g., a different study altogether. For instance,
a model was developed using a sample of subjects with
disease X (training data set), and the intended use for the
model is to make predictions of any sample of subjects
with disease X outside of the training data set. A successful
external validation may rely on the following assumptions:
(i) the training data set is representative of the general
population with disease X, and (ii) the validation data set is
a sample of the population with disease X, consequently, a
sample of the training data set.

The validation data set must not be used at any stage of
the model development or selection. If this condition is not
met, then an additional external validation data set would be
required as a more definitive proof of the model predictive
ability.57 For instance, if multiple models are built and the
best models are selected based on the predictive perfor-
mance for the validation data set, then this is not an external
validation. Something similar occurs when a model ensem-
ble is built using a selective ensemble procedure based
on the performance on a holdout set; in this case, a third
validation sample should be included as solid proof of the
ensemble predictive power.

Internal validation. Cross-validation is one of the most
frequently used internal validation procedures. It can
be used when an external validation data set is not
available or is prohibitively expensive to obtain. However,
it is important to understand that internal validation
methods can be considered overoptimistic in the sense
that a successful internal validation does not guarantee
transportability.

The simplest type of cross-validation is the holdout
method.80 The analysis data set is split into two subsets

called the training subset and the holdout subset. The
model is developed using the training subset only and
used to make predictions for the holdout subset. Then, at
the minimum, a measure of the residuals (e.g., difference
between the observed and model predicted values) could
be used to evaluate the model performance. However,
evaluation results can have a high variability, depending
on which data points end up in the training vs. the test
subset.80 Ensuring that the data set is split randomly and
relevant variables are balanced among the subsets can
help mitigate this issue.

K-fold cross-validation is an improvement of the hold-
out method.80 The training data set is randomly divided into
K equal or nearly equal subsets (also called “folds”) and
then K-1 parts of it are systematically used for model de-
velopment and the remaining fraction is reserved for model
evaluation. The process is repeated until each part has
been once removed from the training data set. Averaging
the predictive performance on the folds allows computing
a confidence interval for the parameter estimates, for in-
stance. Although the training data set should be randomly
divided into K parts, one may want to ensure that relevant
variables are balanced among the K parts. The advantage
of this method is that the variability in evaluation results
as a result of the splits of the data set is attenuated, with
the reduction magnitude being directly proportion to the
size of K.80 Leave-one-out cross-validation is a K-fold
cross-validation with K equal to N, where N is the number
of independent experimental units (i.e., subjects within a
study). Although K-fold cross-validation methods are more
computationally intensive, they can be automated using
packages such as caret (refer to the Resources section).
Cross-validation has also been implemented in Perl-speaks
NONMEM as part of the stepwise covariate modeling
procedure.81

Data leakage
Data leakage is a common and critical mistake when de-
veloping ML models. Definitions for data leakage include
the following: (i) it is “when information from outside the
training data set is used to create the model”82 or (ii)
“when the data you are using to train a ML algorithm hap-
pen to have the information you are trying to predict.”83
Data leakage may reduce the generalization of the model
(overfitting), overestimate model performance, and/or
completely invalidate the model. A common example of
data leakage is leaking data from the test or validation
data set into the training set:82–84

•	 Perform data preparation (e.g., variables normalization)
or featuring engineer in the whole data set before
splitting into training and validation data sets

•	 In time-series data:

a	 Sample time points instead of experimental units
(e.g., subjects) when setting aside the validation
data set

b	 Include time-varying predictors that are correlated
with time and have a similar distribution between the
training and validation data sets

137

www.psp-journal.com

ML in Drug Discovery and Development
Talevi et al.

Other examples are:82–84

•	 Leaking the correct prediction into the test data (e.g.,
use the response itself as a predictor)

•	 Leaking of information from the future into the past
•	 Reversing randomization or anonymization of data that

were intentionally included
•	 Include information from data that is outside of the ap-

plication scope for the model

Recommendations to avoid data leakage include:82–84

•	 Remove incremental identification fields from the
data set

•	 When possible, remove predictors that are correlated
with time from time-series data sets

•	 Conduct data preparation and feature engineering sepa-
rately for the training and validation data sets. In the case
of cross-validation, this should be done within the cross-
validation folds

•	 In time-series data, perform nested cross-validation to
evaluate performance: select a particular time value (t)
and, for instance, establish that all data points lower than
(or equal to) t will be part of the training set, and all data
points greater than (or equal to) t will be part of the valida-
tion data set

•	 Use an unseen validation data set as a final check

A REPRODUCIBLE EXAMPLE
ML model to guide drug repurposing: Searching for
novel inhibitors of putrescine uptake in Trypanosoma
cruzi (T. cruzi)
This example is an adaptation of the work of Alberca et al.76
to obtain a ML model for the subsequent search for drugs
against T. cruzi, i.e., putrescine uptake inhibitors. T. cruzi is a
parasite that is transmitted to animals and people by insect
vectors and causes Chagas disease, a neglected tropical in-
fectious disease endemic to Latin America.85 Putrescine is a
low-molecular-weight polyamine with crucial importance for
the parasite survival.76 Different from humans, T. cruzi cannot
synthesize putrescine and must uptake it from the human
host via a high-affinity putrescine transporter; this makes
putrescine uptake an attractive target for drugs against
T. cruzi.76

Alberca et al.76 developed a linear regression model
using small random subsets of descriptors (a random
subspace approximation) followed by an ensemble-
learning procedure to combine the results (Supplementary
Material S1).76 Although we follow the data set pre-
processing (i.e., creation of the training and validation
data sets) of Alberca et al., a random forest model
and a LASSO model are developed for demonstration
(Supplementary Material S2).

For model development and validation, a data set com-
posed of 256 polyamine analogs (previously assayed against
T. cruzi) was compiled from literature.76 The 256 compounds
were labeled as “active” or “inactive” according to their
half-maximal effective concentrations against T. cruzi. The
active group were compounds with half-maximal effective

concentrations of less than 20 µM (n = 116), and the remain-
ing compounds were considered inactive (n = 140).

For reproducibility, Supplementary Material S3 carries
the data set with the 256 compounds (polyamines_data-
set.csv). The first column of the data set contains a code
for each compound, with the compounds labeled as
“AXXX” belonging to the active class, and the compounds
labeled as “IXXX” belonging to the inactive class. The
second column is a binary dependent variable (named
“ActivityClass”) that takes values of 0 for the inactive com-
pounds and values of 1 for the active compounds. Other
data set columns are the 3,668 molecular descriptors that
were computed with Dragon 6.0 (commercial software,
Milano Chemometrics & QSAR Research Group, Syracuse,
Italy); these descriptors can be used to evaluate molecular
structure-activity relationships as well as high-throughput
screening of molecule databases.86 Common examples of
molecular descriptors are molecular weight and number
of atoms.

The procedure for the analysis is the following:

1.	 A series of packages required for data analysis pur-
poses are installed

2.	 Working directory is set
3.	 Data set with the 256 compounds is read
4.	 A random and balanced training data set with 87 active

and 87 inactive compounds is obtained. The data set
consisting of 256 polyamine analogs was divided into
two groups using a representative sampling proce-
dure: (i) training data set, which was used to develop
or “train” the models, and (ii) test data set, which was
used to internally validate the models. Of the com-
pounds, 75% (n = 87) in the active group were kept for
the training data set; an equal number of compounds
(n = 87) were taken from the inactive group (62.1% of the
inactive group). To obtain a balanced training data set,
we have undersampled the inactive group. A balanced
training data set prevents model bias toward predict-
ing a specific category (i.e., active vs. inactive). In the
original article, Alberca et al.76 sampled the 87 com-
pounds from the active and inactive groups through a
two-step clustering approach (hierarchical clustering
followed by K-means) to ensure representativity. For
simplicity, we have omitted this sampling approach in
this example.

Obtain a random and balanced training data set

with 87 active

and 87 inactive compounds

set.seed(123)

random _ sample <- strata(data = data set, strata-

names = "ActivityClass",

size = c(87, 87), method = "srswor")

training _ set <- data set[random _ sample$ID _ unit,]

5.	 Columns (i.e., variables) with missing values or scarcely
informative descriptors (constant or almost constant
values) are then removed to yield the final training
data set with 1,608 predictors:

138

CPT: Pharmacometrics & Systems Pharmacology

ML in Drug Discovery and Development
Talevi et al.

Columns containing non-available descriptor

values for at

least one compound are removed (i.e., keep only

descriptor

with information available for all compounds)

training _ set <- training _ set[, apply(train-

ing _ set, 2,

function(x) !any(is.na(x)))]

Columns displaying no variance (sd = 0) or al-

most no variance

are indexed. Applied to numeric columns only.

index _ low _ variance <- nearZeroVar(x = train-

ing _ set)

Remove the previously indexed columns

training _ set <- training _ set[,

-index _ low _ variance]

6.	 The remaining 29 active and 53 inactive compounds
were assigned to the validation data set. For simplicity,
a holdout cross-validation (internal validation) is being
used.

Create the validation set

testing _ set <- data set[-random _ sample$ID _ unit,]

testing _ set <- subset(testing _ set, select =

names(training _ set))

7.	 Then we develop a random forest model using default
parameters. Among the “randomForest” arguments are
“mtry” and “ntree”: (i) mtry is the number of variables
tried at each split. The default values are different for
classification (sqrt(p) where p is number of predictors)
and regression (p/3). (ii) ntree is the number of trees
to grow with a default of 500. Note that this should
be set to a reasonable large number to ensure that
every input row gets predicted at least a few times.

Develop a random forest model using default pa-

rameters

set.seed(123)

rf _ model <- randomForest(ActivityClass ~ ., data

= training _ set,

importance = TRUE)

rf _ model

Call:

randomForest(formula = ActivityClass ~ ., data =

training _ set, importance = TRUE)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 40

OOB estimate of error rate: 23.56%

Confusion matrix:

0 1 class.error

0 72 15 0.1724138

1 26 61 0.2988506

Predicting on validation set and check classi-

fication accuracy

pred _ testing _ rf <- predict(rf _ model, testing _

set, type = "class")

mean(pred _ testing _ rf == testing _ set$Activity-

Class)

0.804878

table(pred _ testing _ rf, testing _ set$Activity-

Class)

pred _ testing _ rf 0 1

0 43 6

1 10 23

8.	 In the previous model, a few metrics can be looked at
to evaluate this forest classification model, such as OOB
estimate of error rate (23.6%) for the training data set
and the classification accuracy (80.5%) and confusion
matrix for the validation data set—(i) OOB error rate: for
each tree, one third of the training data set is randomly
selected and set aside (do not confuse it with the vali-
dation or holdout data set), hence the trained forest
model makes predictions on the remaining one third of
the observations and calculate the OOB error; (ii) clas-
sification accuracy is the proportion in which the model
predicted the correct classification of the validation
data set (i.e., the number of correct predictions divided
by the total number of predictions); and (iii) the output-
ted confusion matrix can be interpreted as following:

True classification

0 1

Predicted classification

0 True negative (TN) False negative (FN)

1 False positive (FP) True positive (TP)

where 0 and 1 correspond to the inactive and active clas-
sifications, respectively. From this, the positive predictive
value (PPV) and the negative predictive value (NPV) can be
derived:

Hence, PPV is the proportion of positive predictions that
are true positives, and NPV is the proportion of negative pre-
dictions that are true negatives.

As we mentioned previously, random forest is a type of
ensemble modeling in that it combines multiple ML models
to improve the overall performance of the model. This along

PPV =
TP

TP+FP
=

23

23+6
=0.793 or 79.3%.

NPV =
TN

TN+FN
=

43

43+10
=0.811 or 81.1%.

139

www.psp-journal.com

ML in Drug Discovery and Development
Talevi et al.

with the fact that the random forest model is interrogated "on
the fly" by a test data set (one third of the training data set)
make for a powerful ML algorithm. In this example, however,
interpreting an ensemble of 500 trees with more than a thou-
sand predictors is rather cumbersome, and the modeler may
want to investigate the performance of a simpler model.

Therefore, we also developed a logistic regression model:

10-fold cross-validation

set.seed(123)

fitControl <- trainControl(

method = "cv",

number = 10)

Logistic regression model training

logistic _ model <-train(ActivityClass ~ .,

data = training _ set,

method = "glm",

family = "binomial",

maxit = 100,

trControl = fitControl)

Predicting on training set and checking clas-

sification accuracy

pred _ training _ logistic <- predict(logistic _

model, training _ set)

mean(pred _ training _ logistic == training _

set$ActivityClass)

1

table(pred _ training _ logistic, training _ set$Ac-

tivityClass)

pred _ training _ logistic 0 1

0 87 0

1 0 87

Predicting on testing set and checking classi-

fication accuracy

pred _ testing _ logistic <- predict(logistic _

model, testing _ set)

mean(pred _ testing _ logistic == testing _ set$Ac-

tivityClass)

0.5609756

table(pred _ testing _ logistic, testing _ set$Ac-

tivityClass)

pred _ testing _ logistic 0 1

0 31 14

1 22 15

As we expected, the accuracy of the logistic model in
predicting the training data set (100%) is higher than that
of the random forest model. However, it performs poorly in
predicting the validation data set (i.e., close to a random
classification). This is an example of overfitting, as logistic
regression cannot handle a large number of covariates.

We then perform a multiple linear regression model with
the LASSO algorithm, a relative simple model that can work
with many covariates by performing variable selection:

Format x and y variables as required (x as a

matrix, y as a list of # values)

x <- as.matrix(training _ set[, -1]) # Removes

ActivityClass

y <- as.double(as.matrix(training _ set[, 1])) #

Only ActivityClass

x _ test <- as.matrix(testing _ set[, -1]) #

Removes ActivityClass

y _ test <- as.double(as.matrix(testing _ set[, 1]))

Only ActivityClass

Use default parameters

alpha=1 is the lasso penalty, and alpha=0 the

ridge penalty.

Logistic regression (family=’binomial’), as we

have a

binary response. Here, we already perform 10-

fold cross

validation to choose the best λ.
set.seed(123)

cv _ lasso <- cv.glmnet(x, y, family = 'binomial',

alpha = 1,

type.measure = 'class')

lengthy output suppressed

best lambda

cv _ lasso$lambda.min

0.02904885

extract only non-zero coefficients

extract.coef(cv _ lasso)

or equivalent

coef(cv _ lasso, s = "lambda.min")[which(coef(cv _

lasso,

s = "lambda.min") != 0)]

results 44 non-zero coefficients

Predicting on validation set and check classi-

fication accuracy

pred _ testing _ lasso <- predict(cv _ lasso, newx

= x _ test,

type = "class",

s = "lambda.min")

mean(pred _ testing _ lasso == y _ test)

0.7682927

table(pred _ testing _ lasso, y _ test)

y _ test

pred _ testing _ lasso 0 1

0 44 10

1 9 19

LASSO selected 40 predictors for the final model. For the
validation data set, the classification accuracy, PPV, and
NPV are 76.8%, 65.5% and 83.0%, respectively. Although
the classification accuracy and NPV are comparable with
those of the random forest model, the PPV is lower (65.5%

140

CPT: Pharmacometrics & Systems Pharmacology

ML in Drug Discovery and Development
Talevi et al.

vs. 79.3%). Whether the percent reduction in PPV with
LASSO justifies the choice of the random forest model
though will depend of the context in which the model will
be applied. Herein, the fit-for-purpose context goes be-
yond knowing that the model will be applied to screen for
potential drug candidates to treat against T. cruzi. For in-
stance, let us assume that an “active” classification from
the model will be the gold standard on deciding whether
to translate the compound to a clinical trial in the disease
population. In this case, having a model with a higher PPV
is probably warranted. On the other hand, if the model will
be used to generate a short list of compounds (i.e., get-
ting rid of probable inactive compounds) to be tested in
a series of more definitive in vitro tests, then the LASSO
would be expected to perform similarly to the random for-
est model (NPV of 83% and 81% for LASSO and random
forest, respectively). In summary, there is no absolute best
ML algorithm.

RESOURCES

The popularity and widespread adoption of ML across in-
dustry has helped create versatile tools and resources for
researchers to build a variety of ML models. For the ben-
efit of our readers, we have compiled a list of open source
tools and learning resources related to ML (Table 1).
Although the list is not exhaustive, it contains a useful col-
lection of tools based on our experience with building ML
models.

ADDITIONAL CONSIDERATIONS

Models used by ML algorithms may be much more complex
than traditional statistical models, thus limiting interpret-
ability. In some cases, the model could be interpreted
based on the relative importance of the covariates. This
could be determined, for example, by refitting the model
without a given covariate and computing the reduction in
model accuracy. Another way of interpreting the effect of a
covariate is to plot the predicted outcome vs. the covariate,
setting the other covariates equal to their medians within
the data set.

In pharmacometric analysis, models are often used to sim-
ulate new data. However, many ML models do not describe
the variability in the outcome as a model parameter, thus
making the simulation process more difficult. If new simulated
outcome data are required, and the covariates are provided,
one approach is to start with the model predictions and add
random noise with a variance determined by the model accu-
racy for the test or validation data set. However, this approach
may not work when there are repeated measurements within
subjects because model accuracy alone does not distinguish
between intersubject and intrasubject variability.

This first part of our work presented a tutorial on ML
concepts and technical aspects. With such knowledge, the
reader will be able to follow the second part of our work,
which is an overview on applications of ML in drug discov-
ery, drug development, and the postapproval phase.

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology
website (www.psp-journal.com).

Supplementary Material S1.
Supplementary Material S2.
Supplementary Material S3.

Funding.  No funding was received for this work.

Conflict of Interest.  The authors declared no competing interests
for this work.

	 1.	 Fleming, N. How artificial intelligence is changing drug discovery. Nature 557,
S55–S57 (2018).

	 2.	 Counting the cost of failure in drug development. Pharmaceutical Technology
<https://www.pharm​aceut​ical-techn​ology.com/featu​res/featu​recou​nting-
the-cost-of-failu​re-in-drug-devel​opment-58130​46/> (2017).

	 3.	 Turing, A.M.I. Computing machinery and intelligence. Mind LIX, 433–460 (1950).
	 4.	 Samuel, A.L.Memorial resolution <https://web.archi​ve.org/web/20110​52619​

5107/http://hists​oc.stanf​ord.edu/pdfme​m/Samue​lA.pdf> (2011).
	 5.	 Thota, S.The evolution of machine learning. <https://smdi.com/the-evolu​tion-

of-machi​ne-learn​ing/>.
	 6.	 Samuel, A.L. Some studies in machine learning using the game of checkers. IBM J.

Res. Dev. 3, 210–229 (1959).
	 7.	 Dormehl, L. Today in Apple history: Siri debuts on iPhone 4s <https://www.culto​

fmac.com/44778​3/today-in-apple-histo​ry-siri-makes-its-public-debut-on-ip-
hone-4s/> (2018).

	 8.	 Markoff, J. In a big network of computers. Evidence of machine learning. The New
York Times (2012).

Table 1  Open source tools and learning resources on ML

Resource name Description What is this good for? Reference

Machine Learning in R for
beginners

A short tutorial that introduces you to
implementing ML using R

To get started with ML using R 87

Stanford ML Tips and Tricks A quick reference guide to ML concepts
and algorithms

A cheat sheet for understanding the concepts and
algorithms in ML

88

Kaggle Data sets A repository of data sets to build ML
model

It contains numerous data sets that can be used
to build ML models

89

WEKA An open source user interface ML tools A great tool to get started with ML 90

Google Colaboratory It’s an online Python Jupyter notebook
environment that requires no setup
to use

An easy-to-use online tool with no installation
necessary on your local machine. It is also a
great tool for ML education

91

Caret R package R package for ML analysis For researchers comfortable with R who want to
perform ML analysis

92

ML, machine learning.

https://www.pharmaceutical-technology.com/features/featurecounting-the-cost-of-failure-in-drug-development-5813046/
https://www.pharmaceutical-technology.com/features/featurecounting-the-cost-of-failure-in-drug-development-5813046/
https://web.archive.org/web/20110526195107/http://histsoc.stanford.edu/pdfmem/SamuelA.pdf
https://web.archive.org/web/20110526195107/http://histsoc.stanford.edu/pdfmem/SamuelA.pdf
https://smdi.com/the-evolution-of-machine-learning/
https://smdi.com/the-evolution-of-machine-learning/
https://www.cultofmac.com/447783/today-in-apple-history-siri-makes-its-public-debut-on-iphone-4s/
https://www.cultofmac.com/447783/today-in-apple-history-siri-makes-its-public-debut-on-iphone-4s/
https://www.cultofmac.com/447783/today-in-apple-history-siri-makes-its-public-debut-on-iphone-4s/

141

www.psp-journal.com

ML in Drug Discovery and Development
Talevi et al.

	 9.	 University of Reading. Turing test success marks milestone in computing history
<http://www.readi​ng.ac.uk/news-archi​ve/press-relea​ses/pr583​836.html>.

	 10.	 AlphaGo. DeepMind <https://deepm​ind.com/resea​rch/alpha​go/> (2016).
	 11.	 The White House. Executive order on maintaining American leadership in artificial

intelligence <https://www.white​house.gov/presi​denti​al-actio​ns/execu​tive-order-
maint​aining-ameri​can-leade​rship-artif​icial-intel​ligen​ce/> (2019).

	 12.	 HealthITAnalytics. Artificial intelligence news and resources for healthcare
<https://healt​hitan​alyti​cs.com/tag/artif​icial-intel​ligence>. Accessed February 13,
2020.

	 13.	 SAS Institute. Machine learning: What it is and why it matters <https://www.sas.
com/en_us/insig​hts/analy​tics/machi​ne-learn​ing.html>. Accessed February 13,
2020.

	 14.	 Palmer, D.S., O’Boyle, N.M., Glen, R.C. & Mitchell, J.B.O. Random forest models to
predict aqueous solubility. J. Chem. Inf. Model. 47, 150–158 (2007).

	 15.	 Yamashita, F. et al. An evolutionary search algorithm for covariate models in popu-
lation pharmacokinetic analysis. J. Pharm. Sci. 106, 2407–2411 (2017).

	 16.	 Gayvert, K.M., Madhukar, N.S. & Elemento, O. A data-driven approach to predicting
successes and failures of clinical trials. Cell Chem. Biol. 23, 1294–1301 (2016).

	 17.	 Sun, R. et al. A radiomics approach to assess tumour-infiltrating CD8 cells and
response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retro-
spective multicohort study. Lancet Oncol. 19, 1180–1191 (2018).

	 18.	 Zhao, K. & So, H.-C. Drug repositioning for schizophrenia and depression/anxi-
ety disorders: A machine learning approach leveraging expression data. IEEE J.
Biomed. Health Inform. 23, 1304–1315 (2018).

	 19.	 Korolev, D. et al. Modeling of human cytochrome p450-mediated drug metabolism
using unsupervised machine learning approach. J. Med. Chem. 46, 3631–3643
(2003).

	 20.	 Wang, Y.-H., Li, Y., Yang, S.-L. & Yang, L. Classification of substrates and inhibi-
tors of P-glycoprotein using unsupervised machine learning approach. J. Chem. Inf.
Model. 45, 750–757 (2005).

	 21.	 Lowe, E.W. et al. Comparative analysis of machine learning techniques for the pre-
diction of the DMPK parameters intrinsic clearance and plasma protein binding.
4th International Conference on Bioinformatics and Computational Biology 2012,
BICoB 2012, 25–30 (2012).

	 22.	 Bies, R.R. et al. A genetic algorithm-based, hybrid machine learning approach to
model selection. J. Pharmacokinet. Pharmacodyn. 33, 195–221 (2006).

	 23.	 Sherer, E.A. et al. Application of a single-objective, hybrid genetic algorithm ap-
proach to pharmacokinetic model building. J. Pharmacokinet. Pharmacodyn. 39,
393–414 (2012).

	 24.	 Bies, R.R., Sale, M.E., Muldoon, M., Manuck, S. & Pollock, B.G. Automated machine
learning: a new method for studying inter-individual pharmacokinetic variation.
J. Psychopharmacol. 20, S108 (2006).

	 25.	 Sale, M.E. Unsupervised machine learning-based mathematical model selection.
U.S. Patent No. 7,085,690 (2006).

	 26.	 Marr, B. How much data do we create every day? The mind-blowing stats everyone
should read. Forbes <https://www.forbes.com/sites/​berna​rdmar​r/2018/05/21/
how-much-data-do-we-create-every-day-the-mind-blowi​ng-stats-every​one-
should-read/> (2018).

	 27.	 Raghupathi, W. & Raghupathi, V. Big data analytics in healthcare: promise and po-
tential. Health Inf. Sci. Syst. 2, 3 (2014).

	 28.	 Conrado, D.J., Karlsson, M.O., Romero, K., Sarr, C. & Wilkins, J.J. Open innovation:
Towards sharing of data, models and workflows. Eur. J. Pharm. Sci. Off. J. Eur. Fed.
Pharm. Sci. 109S, S65–71 (2017).

	 29.	 Mesh, J. How wearables are changing the healthcare industry <https://www.healt​
hcare​itlea​ders.com/blog/how-weara​bles-are-chang​ing-the-healt​hcare-indus​
try/> (2018).

	 30.	 Owens, S. Wearable devices in clinical trials: the opportunities and challenges.
Neurol. Today 17, 24 (2017).

	 31.	 Yang, B.-H. & Rhee, S. Development of the ring sensor for healthcare automation.
Robot. Auton. Syst. 30, 273–281 (2000).

	 32.	 Jean-Louis, G., Kripke, D.F., Mason, W.J., Elliott, J.A. & Youngstedt, S.D. Sleep
estimation from wrist movement quantified by different actigraphic modalities. J.
Neurosci. Methods 105, 185–191 (2001).

	 33.	 Gillies, R.J., Kinahan, P.E. & Hricak, H. Radiomics: images are more than pictures,
they are data. Radiology 278, 563–577 (2015).

	 34.	 Mazurowski, M.A. Radiogenomics: what it is and why it is important. J. Am. Coll.
Radiol. JACR 12, 862–866 (2015).

	 35.	 Bresnick, J. Top 5 use cases for artificial intelligence in medical imaging <https://
healt​hitan​alyti​cs.com/news/top-5-use-cases-for-artif​icial-intel​ligen​ce-in-medic​
al-imaging> (2018).

	 36.	 US Food and Drug Administration. FDA Adverse Event Reporting System (FAERS)
public dashboard <https://www.fda.gov/Drugs/​Guida​nceCo​mplia​nceRe​gulat​oryIn​
forma​tion/Surve​illan​ce/Adver​seDru​gEffe​cts/ucm07​0093.htm>.

	 37.	 Kim, S., Lahu, G., Vakilynejad, M., Lesko, L. & Trame, M. Using a systems phar-
macology approach to understand mechanisms of adverse drug reactions
of immune checkpoint inhibitors. ASCPT Quantitative Pharmacology (QP)
Hot Topic Commentary <https://www.ascpt.org/Porta​ls/28/docs/Membe​rship/​

Netwo​rksan​dComm​uniti​es/QP/Comme​ntary_v2_01092​018.pdf?ver=2018-
05-09-065630-600> (2018).

	 38.	 Babre, D.K. Clinical data interchange standards consortium: a bridge to overcome
data standardisation. Perspect. Clin. Res. 4, 115–116 (2013).

	 39.	 Kotsiantis, S.B. Supervised machine learning: a review of classification techniques.
Informatica (Ljubljana) 31, 249–268 (2007).

	 40.	 Shetty, B. Supervised machine learning: classification. Towards data science <https://
towar​dsdat​ascie​nce.com/super​vised-machi​ne-learn​ing-class​ifica​tion-5e685​
fe18a6d> (2018).

	 41.	 James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical
Learning: With Applications in R (Springer-Verlag, New York, NY, 2013).

	 42.	 Marafino, B.J., Boscardin, W.J. & Dudley, R.A. Efficient and sparse feature selec-
tion for biomedical text classification via the elastic net: Application to ICU risk
stratification from nursing notes. J. Biomed. Inform. 54, 114–120 (2015).

	 43.	 Schwaighofer, A., Schroeter, T., Mika, S. & Blanchard, G. How wrong can we
get? A review of machine learning approaches and error bars. Comb. Chem. High
Throughput Screen. 12, 453–468 (2009).

	 44.	 Baskin, I.I. Machine learning methods in computational toxicology. In Methods in
Molecular Biology, Vol. 1800, 119–139 (Humana Press, New York, NY, 2018).

	 45.	 Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. Classification and regres-
sion trees. (Routledge, New York, 2017). https://doi.org/10.1201/97813​15139470

	 46.	 Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
	 47.	 Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann.

Stat. 29, 1189–1232 (2001).
	 48.	 Ma, J., Sheridan, R.P., Liaw, A., Dahl, G.E. & Svetnik, V. Deep neural Nets as a

method for quantitative structure-activity relationships. J. Chem. Inf. Model. 55,
263–274 (2015).

	 49.	 Hinton, G. et al. Deep neural networks for acoustic modeling in speech recognition:
the shared views of four research groups. IEEE Signal Process. Mag. 29, 82–97
(2012).

	 50.	 Han, Y. et al. Deep learning with domain adaptation for accelerated projection-
reconstruction MR. Magn. Reson. Med. 80, 1189–1205 (2018).

	 51.	 Saslow, E. Unsupervised machine learning <https://towar​dsdat​ascie​nce.com/
unsup​ervis​ed-machi​ne-learn​ing-9329c​97d6d9f> (2018).

	 52.	 Roman, V. Unsupervised learning: dimensionality reduction <https://towar​dsdat​
ascie​nce.com/unsup​ervis​ed-learn​ing-dimen​siona​lity-reduc​tion-ddb4d​55e0757>
(2019).

	 53.	 Garbade, D.M.J. Understanding K-means clustering in machine learning <https://
towar​dsdat​ascie​nce.com/under​stand​ing-k-means-clust​ering-in-machi​ne-learn​
ing-6a6e6​7336aa1> (2018).

	 54.	 DataCamp Community. K-means clustering in R tutorial <https://www.datac​amp.
com/commu​nity/tutor​ials/k-means-clust​ering-r> (2018).

	 55.	 Reker, D. & Schneider, G. Active-learning strategies in computer-assisted drug dis-
covery. Drug Discov. Today 20, 458–465 (2015).

	 56.	 Nantasenamat, C., Isarankura-Na-Ayudhya, C. & Prachayasittikul, V. Advances in
computational methods to predict the biological activity of compounds. Expert Opin.
Drug Discov. 5, 633-654 (2010).

	 57.	 Tropsha, A. Best practices for QSAR model development, validation, and exploita-
tion. Mol Inform. 29, 476–488 (2010).

	 58.	 Young, D., Martin, T., Venkatapathy, R. & Harten, P. Are the chemical structures in
your QSAR correct? QSAR Comb. Sci. 27, 1337–1345 (2008).

	 59.	 Maeda, M.H., Yonezawa, T. & Komaba, T. Chemical curation to improve data ac-
curacy: recent development of the 3DMET database. Biophys. Physicobiology 15,
87–93 (2018).

	 60.	 Kiralj, R. & Ferreira, M.M.C. Basic validation procedures for regression models in
QSAR and QSPR studies: theory and application. J. Braz. Chem. Soc. 20, 770–787
(2009).

	 61.	 Langer, T. & Bryant, S.D. Quantitative structure-property relationships. In The
Practice of Medicinal Chemistry, 3rd edn (ed. Wermuth, C.G.) 587–604 (Academic
Press, 2008).

	 62.	 Sippl, W. 3D-QSAR–Applications, Recent Advances, and Limitations. In Recent
Advances in QSAR Studies Methods and Applications (eds. Puzyn, T., Leszczynski,
J. & Cronin, M.T.D.) 103–119 (Springer, Dordrecht, 2010).

	 63.	 Jaworska, J., Nikolova-Jeliazkova, N. & Aldenberg, T. QSAR applicabilty domain
estimation by projection of the training set descriptor space: a review. Altern. Lab.
Anim. ATLA 33, 445–459 (2005).

	 64.	 Hodge, V.J. & Austin, J. A survey of outlier detection methodologies. Artif. Intell.
Rev. 22, 85–126 (2004).

	 65.	 Smith, M.R. & Martinez, T. Improving classification accuracy by identifying and
removing instances that should be misclassified. The 2011 International Joint
Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011 (2011)

	 66.	 Singh, K. & Upadhyaya, S. Outlier detection: applications and techniques. Int. J.
Comput. Sci. 9, 307–323 (2012).

	 67.	 Kowarik, A. & Templ, M. Imputation with the R Package VIM. J. Stat. Softw. 74,
1–16 (2016).

	 68.	 Bilogur, A. Missingno: a missing data visualization suite J. Open Source Softw. 3,
547 (2018).

http://www.reading.ac.uk/news-archive/press-releases/pr583836.html
https://deepmind.com/research/alphago/
https://www.whitehouse.gov/presidential-actions/executive-order-maintaining-american-leadership-artificial-intelligence/
https://www.whitehouse.gov/presidential-actions/executive-order-maintaining-american-leadership-artificial-intelligence/
https://healthitanalytics.com/tag/artificial-intelligence
https://www.sas.com/en_us/insights/analytics/machine-learning.html
https://www.sas.com/en_us/insights/analytics/machine-learning.html
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
https://www.healthcareitleaders.com/blog/how-wearables-are-changing-the-healthcare-industry/
https://www.healthcareitleaders.com/blog/how-wearables-are-changing-the-healthcare-industry/
https://www.healthcareitleaders.com/blog/how-wearables-are-changing-the-healthcare-industry/
https://healthitanalytics.com/news/top-5-use-cases-for-artificial-intelligence-in-medical-imaging
https://healthitanalytics.com/news/top-5-use-cases-for-artificial-intelligence-in-medical-imaging
https://healthitanalytics.com/news/top-5-use-cases-for-artificial-intelligence-in-medical-imaging
https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/ucm070093.htm
https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/ucm070093.htm
https://www.ascpt.org/Portals/28/docs/Membership/NetworksandCommunities/QP/Commentary_v2_01092018.pdf?ver=2018-05-09-065630-600
https://www.ascpt.org/Portals/28/docs/Membership/NetworksandCommunities/QP/Commentary_v2_01092018.pdf?ver=2018-05-09-065630-600
https://www.ascpt.org/Portals/28/docs/Membership/NetworksandCommunities/QP/Commentary_v2_01092018.pdf?ver=2018-05-09-065630-600
https://towardsdatascience.com/supervised-machine-learning-classification-5e685fe18a6d
https://towardsdatascience.com/supervised-machine-learning-classification-5e685fe18a6d
https://towardsdatascience.com/supervised-machine-learning-classification-5e685fe18a6d
https://doi.org/10.1201/9781315139470
https://towardsdatascience.com/unsupervised-machine-learning-9329c97d6d9f
https://towardsdatascience.com/unsupervised-machine-learning-9329c97d6d9f
https://towardsdatascience.com/unsupervised-learning-dimensionality-reduction-ddb4d55e0757
https://towardsdatascience.com/unsupervised-learning-dimensionality-reduction-ddb4d55e0757
https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1
https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1
https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1
https://www.datacamp.com/community/tutorials/k-means-clustering-r
https://www.datacamp.com/community/tutorials/k-means-clustering-r

142

CPT: Pharmacometrics & Systems Pharmacology

ML in Drug Discovery and Development
Talevi et al.

	 69.	 Ette, E.I., Chu, H.-M. & Ahmad, A. Data imputation. In Pharmacometrics (eds. Ette,
E.I., & Williams, P.J.) 245–262 (John Wiley & Sons, Inc., Hoboken, NJ, 2007).

	 70.	 Hawkins, D.M. The problem of overfitting. J. Chem. Inf. Comput. Sci. 44, 1–12
(2004).

	 71.	 Cronin, M.T.D. Quantitative structure–activity relationships (QSARs)–applications
and methodology. In Recent Advances in QSAR Studies: Methods and Applications
(eds. Puzyn, T., Leszczynski, J., & Cronin, M.T.) 3–11 (Springer, New York, 2010).

	 72.	 Müller, K.-R. Regularization techniques to improve generalization. In Neural
Networks: Tricks of the Trade: Second Edition (eds. Montavon, G., Orr, G.B. & Müller,
K.-R.), 49–51 (Springer, Berlin Heidelberg, 2012).

	 73.	 Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout:
a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15,
1929–1958 (2014).

	 74.	 Prechelt, L. Early stopping—But when? In Neural Networks: Tricks of the Trade:
Second Edition (eds. Montavon, G., Orr, G.B. & Müller, K.-R.) 53–67 (Springer,
Berlin Heidelberg, 2012).

	 75.	 Topliss, J.G. & Costello, R.J. Chance correlations in structure-activity studies using
multiple regression analysis. J. Med. Chem. 15, 1066–1068 (1972).

	 76.	 Alberca, L.N. et al. Cascade ligand- and structure-based virtual screening to iden-
tify new trypanocidal compounds inhibiting putrescine uptake. Front. Cell. Infect.
Microbiol. 8, 173 (2018).

	 77.	 Tropsha, A., Gramatica, P. & Gombar, V.K. The Importance of being earnest:
Validation is the absolute essential for successful application and interpretation of
QSPR models. QSAR Comb. Sci. 22, 69–77 (2003).

	 78.	 Roy, K. & Mitra, K.R. On various metrics used for validation of predictive QSAR
models with applications in virtual screening and focused library design. Comb.
Chem. High Throughput Screen. 14, 450–474 (2011).

	 79.	 Gramatica, P. Principles of QSAR models validation: internal and external. QSAR
Comb. Sci. 26, 694–701 (2007).

	 80.	 Schneider, J. Cross validation <https://www.cs.cmu.edu/~schne​ide/tut5/node42.
html> (1997).

	 81.	 Katsube, T., Khandelwal, A., Hooker, A.C., Jonsson, E.N. & Karlsson, M.O.
Characterization of stepwise covariate model building combined with cross-
validation. PAGE. Abstracts of the Annual Meeting of the Population Approach
Group in Europe. (2012).

	 82.	 Brownlee, J. Data leakage in machine learning. Machine learning mastery <https://
machi​nelea​rning​maste​ry.com/data-leaka​ge-machi​ne-learn​ing/> (2016).

	 83.	 Gutierrez, D. Ask a data scientist: data leakage. insideBIGDATA <https://insid​ebigd​
ata.com/2014/11/26/ask-data-scien​tist-data-leaka​ge/> (2014).

	 84.	 Pierre, R. Data leakage, part I: think you have a great machine learning model?
<https://towar​dsdat​ascie​nce.com/data-leaka​ge-part-i-think-you-have-a-great-
machi​ne-learn​ing-model-think-again-ad449​21fbf34> (2019)

	 85.	 Centers for Disease Control and Prevention. Chagas disease <https://www.cdc.
gov/paras​ites/chaga​s/index.html> (2019).

	 86.	 Todeschini, R. & Consonni, V. Molecular Descriptors for Chemoinformatics.
Molecular Descriptors for Chemoinformatics, Vol. 2 (Wiley, Darmstadt, 2010).

	 87.	 DataCamp Community. Machine learning in R for beginners <https://www.datac​
amp.com/commu​nity/tutor​ials/machi​ne-learn​ing-in-r> (2018)

	 88.	 Amidi, A. & Amidi, S. CS 229—machine learning tips and tricks cheatsheet
<https://stanf​ord.edu/~sherv​ine/teach​ing/cs-229/cheat​sheet-machi​ne-learn​
ing-tips-and-tricks>.

	 89.	 Kaggle Inc. Kaggle Datasets <https://www.kaggle.com/datasets> (2018).
	 90.	 Hall, M. et al. The WEKA data mining software. ACM SIGKDD Explor. Newsl. 11, 10

(2009).
	 91.	 Google Inc. Google Colaboratory <https://colab.resea​rch.google.com/noteb​ooks/

welco​me.ipynb>.
	 92.	 Kuhn, M. The Caret Package.

© 2020 The Authors. CPT: Pharmacometrics & Systems
Pharmacology published by Wiley Periodicals, Inc. on
behalf of the American Society for Clinical Pharmacology
and Therapeutics. This is an open access article
under the terms of the Creative Commons Attribution-
NonCommercial License, which permits use, distribution
and reproduction in any medium, provided the original
work is properly cited and is not used for commercial
purposes.

https://www.cs.cmu.edu/~schneide/tut5/node42.html
https://www.cs.cmu.edu/~schneide/tut5/node42.html
https://machinelearningmastery.com/data-leakage-machine-learning/
https://machinelearningmastery.com/data-leakage-machine-learning/
https://insidebigdata.com/2014/11/26/ask-data-scientist-data-leakage/
https://insidebigdata.com/2014/11/26/ask-data-scientist-data-leakage/
https://towardsdatascience.com/data-leakage-part-i-think-you-have-a-great-machine-learning-model-think-again-ad44921fbf34
https://towardsdatascience.com/data-leakage-part-i-think-you-have-a-great-machine-learning-model-think-again-ad44921fbf34
https://www.cdc.gov/parasites/chagas/index.html
https://www.cdc.gov/parasites/chagas/index.html
https://www.datacamp.com/community/tutorials/machine-learning-in-r
https://www.datacamp.com/community/tutorials/machine-learning-in-r
https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks
https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks
https://www.kaggle.com/datasets
https://colab.research.google.com/notebooks/welcome.ipynb
https://colab.research.google.com/notebooks/welcome.ipynb
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

