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Abstract
Fusarium head blight (FHB) disease that occurs in wheat is caused by Fusarium graminearum and is a major risk to wheat 
yield. Although several research efforts focusing on FHB have been conducted in the past several decades, conditions have 
become more critical due to the increase in its virulent forms. In such a scenario, conferring complete resistance in plants 
seems to be difficult for handling this issue. The phenotyping for FHB and finding a solution for it at the genetic level com-
prises a long-term process as FHB infection is largely affected by environmental conditions. Modern molecular strategies 
have played a crucial role in revealing the host–pathogen interaction in FHB. The integration of molecular biology-based 
methods such as genome-wide association studies and marker-based genomic selection has provided potential cultivars for 
breeding programs. In this review, we aim at outlining the contemporary status of the studies conducted on FHB in wheat. 
The influence of FHB in wheat on animals and human health is also discussed. In addition, a summary of the advancement 
in the molecular technologies for identifying and developing the FHB-resistant wheat genetic resources is provided. It also 
suggests the future measures that are required to reduce the world’s vulnerability to FHB which was one of the main goals 
of the US Wheat and Barley Scab Initiative.

Keywords Association mapping · Disease resistance · Fusarium graminearum · Fusarium head blight · Molecular 
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Introduction

Wheat with more than 700 million tons of annual produc-
tion in year 2014/2015 is being used as a staple food crop 
by 35% of the world’s population (FAOSTAT). With an 

expected population of 9 billion by 2050, wheat production 
is envisaged to increase while simultaneously meeting the 
projected food demand on a global basis. There are vari-
ous threats to wheat production and among these, severe 
plant disease epidemics and climate change are considered 
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as one of the most dangerous threats for wheat production 
(Friesen et al. 2008; Gurung et al. 2012). Plant diseases such 
as Fusarium head blight (FHB) serve as an obstacle in the 
production and value of significant food stuffs. Under the 
favorable conditions for disease development, a significant 
reduction in crop yield has been observed in different parts 
of the world. FHB, which is also known as scab, head scab, 
and ear blight, caused by FHB species complex dominantly 
Fusarium graminearum is a fungal disease affecting grain 
crops such as wheat, maize, and barley; and causes severe 
reduction in the quality and quantity of grain yield (Lilleboe 
and Roth 2011; Salgado et al. 2015; McMullen et al. 2012; 
Dweba et al. 2017). The FHB species complex includes 
more than 16 species including F. chlamydosporum, F. 
boothii, F. scirpi, F. arthrosporioides, F. poae, F. avena-
ceum, F. culmorum, F. graminearum, F. verticillioides, F. 
asiaticum, and F. cortaderiae (O’Donnell et al. 2004; van 
der Lee et al. 2015; Dweba et al. 2017).

According to the International Maize and Wheat Improve-
ment Center (CIMMYT), FHB has been considered as one 
of the most destructive diseases impacting the production of 
wheat globally (Bottalico and Perrone 2002; McMullen et al. 
1997; Yi et al. 2018; Dubin et al. 1997). Apart from decreas-
ing the yield, it also affects the animal and human health. 
Thus, this review highlights the spread of FHB around the 
world and its effect on wheat production and human health. 
It also summarizes the molecular advancements that aid in 
developing FHB resistance in wheat genotypes. An outline 
of the existing research documentation on FHB is useful as it 
may facilitate future FHB control programs and also support 
the identification of novel FHB-resistant sources.

Prevalence of FHB

Considering several economic and scientific aspects, cur-
rently, ascomycetes F. graminearum, which grows in tem-
perate climate conditions, is graded among the four crucial 
plant fungal pathogens (Dean et al. 2012) and it causes seri-
ous damage to wheat (Parry et al. 1995; Xu and Nichol-
son 2009). In 1884, FHB caused by F. graminearum was 
first identified in England (Goswami and Kistler 2004); and 
in subsequent years, it developed into a major risk factor 
for barley and wheat production (Del Ponte et al. 2017). 
Though there have been so many reasons behind severe FHB 
epidemics in Canada and the United States since 1993, the 
decreased level of resistance in cultivars, changes in weather 
conditions and modifications in crop management strategies 
are basically responsible for the issue (Dill-Macky and Jones 
1997; McMullen et al. 1997). Since its evolution, different 
kinds of FHB have been destroying several wheat-growing 
regions of North America (Gilbert and Tekauz 2000; Ward 
et al. 2008). However, in recent years, FHB has become 

more prevalent in Asia, Europe, and South America, thereby 
resulting in increased economic loss (Parry et al. 1995; Bai 
and Shaner 2004; Zhu et al. 2019; O’Donnell et al. 2004; 
van der Lee et al. 2015).

The FHB epidemic has been reported to lead to a 10–70% 
of production loss during the epidemic years (Zhang et al. 
2011). In China, though a 5–10% of yield loss is common 
due to FHB, it may reach up to 100% in epidemic years and 
around 7 million hectares of wheat fields would be affected 
(Cheng et al. 2012). From 1993 to 2001, a loss of 7.6 billion 
US dollars has been reported due to the FHB epidemic in the 
United States (Windels 2000; McMullen et al. 2012). After 
the FHB outbreak in United States and Canada, which hap-
pened from 1991 to 1996, a number of publications reported 
the spreading of the disease in other regions of the world, 
including the United States, Europe, and China (Elias et al. 
2005; Oliver et al. 2007; McMullen et al. 2012; Giroux et al. 
2016). The continuously changing environment and the 
increasing threat of global warming have led to an increase 
in the FHB epidemic (Shah et al. 2014). The variation in the 
environmental temperature and humidity in the atmosphere 
are the major factors affecting the spread of FHB infection 
(Rossi et al. 2001; De Wolf et al. 2003; Xu et al. 2007). How-
ever, this effect may vary according to the pathogen causing 
FHB. Different isolates can behave differently with regard to 
their aggressiveness in lower or higher temperatures. Several 
studies have reported an increase in mycotoxin production at 
higher temperatures at the moment of initial infection (Xu 
et al. 2007). Moreover, not only a separate occurrence of 
temperature and humidity stress enhances the FHB infection 
but also a combined occurrence of both the forms of stress 
increases its occurrence (Martínez et al. 2012). In addition, 
as FHB can be caused by numerous pathogens, competitive 
interaction between these pathogens may also affect their 
response. Thus, it is required to comprehend the influence 
of environmental factors on individual pathogens. Effective 
models should be developed and employed to estimate the 
actual extent of the FHB infection under individual and com-
bined environmental stress conditions. This will direct us 
toward the dissemination of several pathogens related to the 
FHB species complex in different climatic conditions (Del 
Ponte et al. 2005; Martínez et al. 2012; Scala et al. 2016; 
Dweba et al. 2017).

Infection related to FHB and life cycle of F. 
graminearum in wheat

The FHB infection prevails when humid and warm condi-
tions persist for a long duration. Plants are more sensitive 
to FHB at the flowering stage (Walter et al. 2010). The 
infection cycle of F. graminearum in wheat starts with the 
settling of airborne spores on wheat spikelets, which, after 
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germination, enter the plants via degenerated anther tissues 
or minute natural openings under the lemma. Further, the 
growth of fungus occurs between the cells and it passes from 
the xylem and the pith and colonizes with the tissue fol-
lowed by necrosis (Trail 2009). At the cellular level, the cell 
wall, mitochondria, chloroplasts, and membranes are also 
damaged (Miller and Ewen 1997). This leads to the water 
soaking in chlorenchyma tissues leading to the production 
of shriveled kernels and premature bleaching that affects 
photosynthesis (Bai and Shaner 1994). After the infection, 
genes for deoxynivalenol (DON) biosynthesis are expressed 
by the fungus and this facilitates the spreading of the fun-
gus from spikelet to rachis (Jansen et al. 2005). There is an 
association between the DON biosynthesis and the coloniza-
tion of developing tissues leading to shriveled grains (Jansen 
et al. 2005).

The life cycle of F. graminearum consists of both sex-
ual and asexual stages and haploid mycelial structures are 
formed in both stages (Ma et al. 2013; Goswami and Kis-
tler 2004) (Fig. 1). Fusarium species possess three forms 
of mitotic (asexual) spores, chlamydospores from hyphae 
and macroconidia, macroconidia from sporodochium, 
and microconidia from conidiophores. The anamorph 

(asexual stage) and teleomorph (sexual stage) of this patho-
gen are F. graminearum and Gibberella zeae, respectively. 
In F. graminearum, asexual spores are called macroconidia, 
whereas sexual spores are called ascospores. Generally, F. 
graminearum is haploid during its life cycle. It is a hemibio-
troph which spends its asexual cycle on infested crop debris 
and its sexual cycle on living wheat tissues (Gunupuru et al. 
2017). Macroconidia formed on hyphae called sporodochia 
develop on infected crop residues under humid conditions 
and are largely responsible for short-distance dispersion 
(Deacon 2005). However, their sexual lifecycle is triggered 
by warm, humid, and wet conditions. As an ascomycota, its 
sexual life cycle consists of a prolonged dikaryotic phase 
that is homothallic and the two nuclei are genetically simi-
lar. These dikaryotic cells produce coiled cells, leading to 
the formation of ascus-filled perithecia. These asci consist 
of ascospores that are released outside via the mouth of the 
perithecium (Trail et al. 2002; Hallen and Trail 2008); these 
ascospores are the main inoculum of the infection (Trail 
2009; Dweba et al. 2017).

Genetic diversity of the pathogen and its adaptive 
response to its surroundings is usually enhanced due to 
sexual reproduction as it allows genetic exchange in F. 

Fig. 1  Life cycle of Fusarium graminearum (red and blue outlined stages represent asexual and sexual growth stages, respectively)
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graminearum populations via recombination (Lee et al. 
2009; Cuomo et al. 2007). The distinct regions in the F. 
graminearum genome accompanied with a high genetic 
diversity of infection-related genes may increase the adapta-
bility of the fungus toward diverse environmental conditions 
via genetic exchange during sexual reproduction (Carter 
et al. 2002; Cuomo et al. 2007). Such facts will aid research-
ers in implementing to arrange the managing strategies and 
at minimizing the overwintering of this notorious pathogen.

Mycotoxins‑dangerous products of Fusarium

One of the major concerns associated with FHB is the 
release of the mycotoxins by the pathogens and conse-
quently, their effect on wheat grains (da Rocha et al. 2014; 
Ponts 2015). Mycotoxins affect humans by raising terato-
genic and immunological complications, and they inhibit 
weight gain in animals (Venkataramana et al. 2018). The 
consumption of FHB-infected food causes several health 
issues such as headache, food poisoning, abdominal pain, 
and diarrhea in humans as well as emaciation in animals 
(Wegulo 2012). The negative impacts of FHB-infected food 
on animals and human beings have been reported quite 
often (Darwish et al. 2014). A global assessment revealed 
36%, 54% and 55% mycotoxins of Fusarium ZEN, fumoni-
sins, and DON, respectively, infected food products, dur-
ing 2004–2011, though most of the samples were according 
to the European Commission Regulation and Recommen-
dations [(Perincherry et al. 2019); please have a look at 
Table A3 of Antonissen et al. (2014) for maximum toler-
able concentrations of mycotoxins]. Zearalenone and tri-
chothecenes exert economically negative impacts, resulting 
in agro-ecological zones in the world (Zain et al. 2012). The 
effect of FHB mycotoxins on livestock and human health 
can be monitored using chemotyping. Among the fungal 
toxins, DON, 4-acetyl nivalenol (4ANIV), 3-acetyl and 
15-acetyl DON (3ADON and 15ADON), nivalenol (NIV), 
and Type B trichothecenes pose a significant source of dam-
age to cereals. Among all, 15-acetyl DON is one of the most 
widespread and dominant FHB chemotypes (Boutigny et al. 
2012). The intake of ZEN may cause health issues in ani-
mals, such as hindered conception and abortion as well as 
and hyper-estrogenic syndrome in pigs (Reddy et al. 2010). 
Trichothecenes can be assimilated into the body via the skin 
and they inhibit the protein synthesis (Zinedine and Mañes 
2009). DON is immunosuppressive and may cause gastroin-
testinal stress, kidney issues, blood in stools, and throat and 
facial irritation (Reddy et al. 2010).

There are some groups that have cataloged FHB species 
complex distribution and the composition of their chemo-
types from several regions of the world (Przemieniecki 
et  al. 2014). The combined study of phylogenetic and 

chemophytic properties for distribution trials has provided 
an improved apprehension of the epidemiology of FHB. This 
would probably serve as a useful guide for formulating the 
disease management strategies. As a single strategy may not 
be sufficient to manage the FHB, combined implications of 
different control strategies such as chemical, cultural, and 
biological strategies, as well as the development of resistant 
host plant species, may support in coping with the issue.

The estimation of the environmental factors upholding the 
FHB pathotypes is important for their control, especially in 
developing and under-developed countries (Xu et al. 2008; 
Shin et al. 2014). FHB risk is increased when the relative 
humidity level in the atmosphere is about 70% or higher. 
The weather prediction and its precise updates should be 
provided to farmers to minimize the risk of disease man-
agement. This can greatly help to reduce the level of myco-
toxins in food materials and a significant loss of yield and 
quality due to FHB can be controlled. Several prediction 
models employing stepwise logistic regression analysis, 
boosted regression trees (BRTs), and non-parametric cor-
relation analysis have been established for the prediction 
of FHB (De Wolf et al. 2003; Shah et al. 2014). In these 
models, several factors including rainfall, relative humidity, 
and temperature combinations estimated at different peri-
ods were considered as promising predictor variables. These 
models had variable sensitivity, specificity, and prediction 
accuracy toward disease warning. However, some of these 
models were accurate up to 84% for 50 location-years (Shah 
et al. 2014; De Wolf et al. 2003). An FHB center has been 
developed in the University of Delaware: this center allows 
access to the FHB prediction tools (https ://www.wheat scab.
psu.edu/) after signing up on their website. The extent of 
Fusarium mycotoxins can also be reduced by the utilization 
of proper infrastructure such as processing, handling the 
technical issues in transportation and safe storage conditions, 
and, most importantly, skilled human resources.

In addition, as a defense strategy, plants are able to con-
vert the chemical arrangement of mycotoxins for the inhi-
bition of their xenobiotic consequences (Galaverna et al. 
2009). For example, the mycotoxins produced by Fusarium, 
ZEA, and DON can be changed into non-virulent com-
pounds, zearalenone-14-glucoside, and DON-3-glucoside, 
respectively, with the help of the enzyme glucosyltransferase 
(Berthiller et al. 2017).

Virulence in F. graminearum

Virulence is the capacity of microorganisms to cause dis-
ease. The identification of virulence factors of F. gramine-
arum is necessary to regulate their biosynthesis and for 
developing the host’s resistance towards this pathogen. It 
has been determined that there are regulatory signals in 

https://www.wheatscab.psu.edu/
https://www.wheatscab.psu.edu/
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infested plants that have an important role in triggering the 
biosynthesis of mycotoxins (Merhej et al. 2011; Mudge et al. 
2006; Voigt et al. 2005; Kazan et al. 2012). The FHB has 
a close association with DON, which is the key factor for 
virulence, and it endows the pathogen with a stealthy abil-
ity of virulence. If the biosynthesis of DON is suppressed, 
then the virulence of infection can be reduced (Maier et al. 
2006). There are several inducing or repressing agents such 
as polyamines, sugars, pH, and cobalt chloride that affect 
the virulence level of F. graminearum in culture by control-
ling the DON biosynthesis (Kazan et al. 2012). Across the 
fungoid domains, the secreted proteins also play a signifi-
cant role in virulence. Because of the redundancy, several 
of these secreted proteins are accurately associated with the 
virulence of F. graminearum [(Yang et al. 2013), please 
read this review article for details]. The F. graminearum-
secreted proteins play an important role in the degradation 
of the cell wall, starch, and proteins (Phalip et al. 2005; 
Paper et al. 2007; Yang et al. 2013; Gunnaiah et al. 2012). 
Various virulence factors have been determined by the in 
silico analysis of F. graminearum secretome (Brown et al. 
2012). FgGPMK1, mitogen-activated protein (MAP) kinase, 
is an important factor for the virulence of F. graminearum, 
especially during the early infection stage as it controls the 
stimulation of secreted lipolytic, proteolytic, xylanolytic, 
and endoglucanase activities (Jenczmionka and Schäfer 
2005; Salomon et al. 2012; Dilks et al. 2019). Filamentous 
growth, infection, stress, and sexual reproduction are the 
imperative factors that determine a wide range of virulence 
of F. graminearum. Nitrogen availability is an important 
factor affecting the virulence of pathogenic fungi (Walkow-
iak and Subramaniam 2014). Other virulence factors such 
as hydrolytic enzyme secretions are greatly responsible for 
the initial stage of infection. At the early and later infection 
stages, the biotrophic and necro-trophic life of F. gramine-
arum is controlled by trichothecene synthesis; the pulling 
out of nutrients by fungus leads to cell death (Walter et al. 
2015; Dweba et al. 2017). The efforts to find the pathways 
for manipulating the Fusarium genome with the aim of inter-
rupting the trichothecene pathways may greatly diminish 
the virulence. Further, the manipulation of the host genome 
using techniques such as InFusion HD cloning, insertional 
mutagenesis, and fungal transformations can be used to 
develop tolerance towards necrosis that occurs along with 
the overexpression of transport proteins (Walter et al. 2010, 
2015; Dweba et al. 2017).

Types of host resistance to FHB

There are five types of resistance to FHB: Type I and Type 
II are the primary and stable ones for the selection of FHB 
resistance in wheat breeding programs. Type I resistance, 

known as primary infection, is mostly estimated by scor-
ing the number of infected spikelets after 7 to 21 days of 
spray inoculation. Type II resistance starts at the time of the 
spreading of the disease, and it is identified from the infected 
spikes after the point inoculation when the host plant pre-
vents infection from spreading (Schroeder and Christensen 
1963).

The mechanisms of Type IV and Type V resistance are 
not well understood; hence, they are not widely utilized for 
identifying FHB resistance in wheat (Zhang et al. 2011; 
Eldakak et al. 2018). Type III resistance is toward the infec-
tion of the kernel, Type IV resistance is toward FHB and 
DON, and Type V resistance is toward the DON accumu-
lation when the host plant is capable of demeaning the 
involved mycotoxins (Gilbert and Tekauz 2000; Mesterházy 
et al. 1999; Mesterhazy et al. 2003; Gunupuru et al. 2017).

Type III resistance is a quantitative method that is based 
on the measurement of DON concentration. It is not based 
on the observation of symptoms. However, the DON con-
centration can be the result of pathogen invasion as well 
(Eudes et al. 2001). Association between the DON, disease 
development, and pathogen invasion is highly variable and 
complex (Jansen et al. 2005). With the aim of screening 
for the resistant germplasm, the formation of a quantitative 
strategy that is dependent on the establishment of a marker 
at the host–pathogen interface stage would largely facilitate 
the process.

Molecular strategies in developing the FHB 
resistance in wheat

Molecular marker‑based studies on FHB

Marker-assisted selection is an advantageous strategy due 
to its quantitative nature and complex breeding for FHB 
resistance. After the discovery of FHB in England in 1884, 
several efforts have been made for the establishment of 
molecular markers for the disease. After the first mapping 
of QTL in Chinese spring wheat accession (Anderson et al. 
2001; Buerstmayr et al. 2003), FHB-resistant genes were 
introgressed into adapted germplasm (Miedaner et al. 2006; 
Anderson et al. 2007; Salameh et al. 2011). Bai et al. (1999) 
determined a significant linkage between AFLP markers 
and scab resistance using recombinant inbred wheat lines 
(RILs) grown in greenhouse conditions. They found a 60% 
association between scab resistance and a major quantitative 
trait locus and emphasized the utility of AFLP markers in 
marker-assisted breeding to ameliorate wheat resistance to 
scab. Several chromosomal regions other than 3BS, such as 
2AS and 2BL that are associated with scab resistance, were 
detected using microsatellite and AFLP markers (Zhou et al. 
2002). In 2003, Liu and Anderson identified two Sequence 
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Tagged Sites (STS) markers, two novel Simple Sequence 
Repeats (SSR), and one Restriction Fragment Length Poly-
morphism (RFLP) marker mapped on Fhb1, a major QTL 
for FHB resistance. However, their study was directed 
toward the presence of some other novel FHB resistance 
genes in the tested genotypes.

A large number of studies have been focused on vali-
dating Fhb1 gene on chromosome 3BS for FHB resistance. 
Throughout the world, SSR markers have been used to 
launch Fhb1 in wheat breeding cultivars (Del Blanco et al. 
2003; Miedaner et al. 2006; Pumphrey et al. 2007). Although 
the detection of the major quantitative trait locus (QTL) 
related to FHB resistance on chromosome 3BS facilitated 
the research in this direction, the marker density of SSRs 
(Xgwm493 and Xgwm533) in the QTL region is compara-
tively lesser than that required for the marker-assisted selec-
tion (MAS) and map-based cloning. Focusing on this, Yu 
et al. (2008a) identified single-strand conformational poly-
morphism (SSCP) markers derived from wheat-expressed 
sequence tags (ESTs) on 3BS to increase this marker density. 
They have suggested three potential SSCP markers, Xsscp6, 
Xsscp20, and Xsscp21, that showed a higher coefficient of 
determination than the used SSR markers and that can be 
used further for map-based cloning and marker-assisted 
assortment in breeding for FHB resistance.

The combined usage of marker-based selection and phe-
notypic selection for the incorporation of positive alleles for 
FHB resistance has been stressed by a number of research-
ers (Buerstmayr et al. 2009; Wilde et al. 2007). Yang et al. 
(2003) employed microsatellite markers from 3BS and 6B 
chromosome arms and determined up to 36% and 21% of 
phenotypic variation, respectively, in two double-haploid 
populations. Liu et al. (2019b) utilized SNP markers and 
determined that QTL Fhb1 was associated with a 3.1% phe-
notypic variation. Haberle et al. (2007) determined 27% 
individual influence and 36% combined influence of two 
QTL on 6AL and 7BS on FHB resistance in European winter 
wheat cultivars.

Bernardo et al. (2009) identified a novel microarray-
based type of marker, single feature polymorphism (SFP) 
associated with the FHB1 region in 3BS. Though these 
EST-based markers efficiently identify the DNA sequence 
variation, these are not frequently used in MAS due to the 
difficulty in discovering these markers (Bernardo et al. 
2012). However, SNP markers linked to these SFP mark-
ers can be developed to simplify the association mapping 
and MAS approach (Bernardo et al. 2012). The association 
genetics approach can also be beneficial for the detection of 
FHB resistance in wheat (Miedaner et al. 2011). In 2012, 
Bernardo et al. mapped seven Wheat EST-derived SNPs 
markers near Fhb1. Most of them accounted for about 50% 
of phenotypic variation for FHB resistance. An association 
between the 90 K SNP markers and phenotypic data for FHB 

resistance in Norwegian spring and winter wheat lines has 
also been determined (Jansen 2015). More than 100,000 
SNP markers were determined by genotyping-by-sequencing 
(GBS) of more than 400 spring wheat breeding lines and 
the marker linked to QTL Fhb1 described only 3.1% of the 
total phenotypic variation (Liu et al. 2019b). The associa-
tion of Fhb1 markers with Fusarium head blight resistance 
in wheat varies according to the type of inoculation, experi-
mental environments, genetic context, and resistance level 
of the assessed genotypes (Bokore et al. 2017; Zhao et al. 
2018; Liu et al. 2019b; Herter et al. 2019b; Miedaner et al. 
2019). An analysis based on the number of SNP markers 
has been conducted to identify the QTLs and novel locus 
associated with FHB resistance (Petersen et al. 2017; Zhao 
et al. 2018; Yi et al. 2018; Liu et al. 2019b; Hu et al. 2020). 
These marker-based studies led to the identification of sev-
eral wheat sources with Fhb1 and provided high-resistance 
toward FHB. Fhb1 has been introduced into several com-
mercial cultivars especially in China, the United States, and 
Canada. Modern cultivars such as AAC Brandon, Prosper, 
and Alsen are obtained from the implication of the gene-
pyramiding technique combining various resources of FHB 
resistance and high yield (Zhu et al. 2019).

QTLs associated with FHB resistance

The development of resistance against FHB in wheat geno-
types can be largely performed by the association of molecu-
lar techniques with classical breeding methods. A number of 
QTLs have also been determined to be involved in providing 
resistance to FHB. Fhb1 located on chromosome 3BS is a 
well-recognized QTL identified in different wheat cultivars, 
including the Chinese wheat cultivar and the line ‘Sumai 
3’ and W14, respectively (Cuthbert et al. 2006; Chen et al. 
2007; Zhao et al. 2018; Waldron et al. 1999).

For FHB resistance, another QTL on chromosome 3AS 
has been considered crucial with regard to wheat (Otto et al. 
2002). Fhb2 and Fhb4 located on chromosome 6B and 
chromosome 4B, respectively, also regulate FHB resistance 
(Yang et al. 2003; Cuthbert et al. 2007; Xue et al. 2010). 
Another QTL, Fhb5 located on chromosome 5A directs 
Type I resistance to FHB (Xue et al. 2011). In different 
alien species, Leymus racemosus and Elymus tsukushiensis, 
FHB resistance gene, Fhb3, and Fhb6 were discovered on 
the short chromosome 7Lr#1 and 1EIS#1S, respectively (Qi 
et al. 2008; Cainong et al. 2015). In addition, a phenotypic 
variation of 22% and 24% for Type II and Type III resistance 
was determined in Fhb7AC QTL located on chromosome 7A 
(Jayatilake et al. 2011). A major QTL for FHB resistance 
was determined on 2DLc that overlapped with other QTLs 
for plant height and days to heading in synthetic hexaploid 
wheat Soru#1 (He et al. 2016).



3 Biotech (2020) 10:172 

1 3

Page 7 of 17 172

Identifying major QTLs for FHB resistance in resistant 
cultivars and transferring them into susceptible cultivars 
comprise a major strategy for developing resistance toward 
FHB in wheat genotypes (Suzuki et al. 2012) (Table 1). A 
number of studies have reported the importance of 3B chro-
mosome in providing Type II and DON resistance toward 
FHB in both durum and hexaploid wheat (Anderson et al. 
2001; Buerstmayr et al. 2002; Somers et al. 2003; Cuthbert 

et al. 2006). Though hexaploid wheat has many better exam-
ples for FHB resistance (Bai and Shaner 2004; Mesterházy 
1997; Ban and Suenaga 2000; Rudd et al. 2001; Singh et al. 
1995; Mentewab et al. 2000), now durum wheat with FHB 
resistance has also been developed (Giancaspro et al. 2016). 
Recently, a major QTL Qfhs.ifa-5A associated with FHB 
resistance has been found to be linked with anther extrusion 
(Steiner et al. 2019). The studies reporting the overlapping 

Table 1  Sources of FHB resistance and the location of the involved QTLs have been included in the article

Source Chromosome References

Sumai 3 7A, 3BS, 6BS (Anderson et al. 2001; Liu and Anderson 2003; Liu 
et al. 2006; Cuthbert et al. 2006, 2007; Jayatilake 
et al. 2011; Waldron et al. 1999)

Stoa 2AL, 4BS (Anderson et al. 2001; Waldron et al. 1999)
ND2603 3AL, 6AS, 3BS (Anderson et al. 2001)
Ning 7840 2AS, 2BL, 3BS (Bai et al. 1999; Zhou et al. 2002; Guo et al. 2003)
CM-82036 5A, 1B, 3BS (Buerstmayr et al. 2002, 2003; Lemmens et al. 2005)
Ning 894037 3BS, 6BS (Shen et al. 2003b)
Alondra 2DS (Shen et al. 2003b)
Huapei 57-2 3AS, 3BS, 3BL (Bourdoncle and Ohm 2003)
Patterson 5BL, 3D (Bourdoncle and Ohm 2003; Shen et al. 2003a)
Wuhan 1 4BS, 2DL (Somers et al. 2003)
Nyu Bai 5AS, 3BS, 2D (Somers et al. 2003)
DH181 5AS, 3BS, 6BS, 7BL, 1DL, 2DS, 4DL (Yang et al. 2005b)
W14 5A, 3BS (Chen et al. 2006)
CS-SM3-7ADS 3BS, 2D, 4D (Ma et al. 2006a)
CJ 9306 1AS, 5AS, 3BS, 7BS, 2DL (Jiang et al. 2007b, a)
Gamenya 2DS (Handa et al. 2008)
Wangshuibai 2A, 3AS, 5A, 7A, 1B, 2D, 3BS, 4B, 5B, 6B, 

2DL, 3DL, 5DL
(Lin et al. 2004, 2006; Zhang et al. 2004; Zhou et al. 

2004; Jia et al. 2005; Mardi et al. 2005; Ma et al. 
2006b; Yu et al. 2008b)

Frontana 3A, 5A, 7AS 2B, 6B (Steiner et al. 2004)
Remus 2A, 1B (Steiner et al. 2004)
Seri82 1BL (Mardi et al. 2006)
Chokwang 3BS, 4BL, 5DL (Yang et al. 2005a)
Sincron 1DS (Ittu et al. 2000)
Renan 2A, 5AL, 2BS (Gervais et al. 2003)
Goldfield 2B, 7B (Gilsinger et al. 2005)
Arina 4AL, 5AL, 1BL, 3BL, 6BL, 6BS, 4DS, 6DL (Paillard et al. 2004; Semagn et al. 2007)
Forno 3AL, 5BL, 3DS (Paillard et al. 2004)
NK93604 1AL, 2AS, 7AL (Semagn et al. 2007)
Dream 6AL, 2BL, 7BS (Schmolke et al. 2005)
Ernie 2B, 3B, 4BL, 5A (Liu et al. 2007)
Triticum macha 4AS (Steed et al. 2005)
Thinopyrum ponticum 7el2 7el (Shen and Ohm 2007)
Triticum dicoccoides FA-15-3 3AS (Chen et al. 2007)
Triticum durum cv. Strongfield 2BS (Somers et al. 2006)
Triticum carthlicum cv. Blackbird 6BS (Somers et al. 2006)
Triticum dicoccoides: PI478742 7AL (Kumar et al. 2007)
Leymus racemosus 7Lr#1 (Qi et al. 2008)
Elymus tsukushiensis 1EIS#1S (Cainong et al. 2015)
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of QTLs for FHB resistance with the QTLs of other traits 
revealed that FHB resistance is regulated by many underly-
ing genetic factors and involves pleiotropy. The identifica-
tion of other components may facilitate the understanding of 
resistance of FHB and support the gene cloning and actual 
breeding programs. Additionally, the association of modern 
genetic tools such as gene editing and genomic selection 
with the available high-quality reference wheat genome may 
open new avenues for the development of FHB-resistant 
cultivars.

Proteomics‑based studies on FHB resistance

Due to the devastating effects of Fusarium throughout the 
world, scientists are trying to understand its evolution, 
pathogenicity, population biology, and genetic basis of 
its life cycle. Several “omic” techniques are used to study 
the effects of Fusarium and their interactions with the host 
plants. Proteomics is the core technology that allows the 
interpretation of the function of genes, locations, interac-
tions, modifications, determination of the abundance of 
proteins, and implications. Over the past few years, the 
analysis of the proteome of phytopathogenic fungi and their 
interactions with host species has increased (Perlikowski 
et al. 2016; Eldakak et al. 2018; Gunnaiah et al. 2012; Liu 
et al. 2019a). This interest in proteome analysis is due to an 
increase in the number of sequenced fungal genomes with 
the advancement in bioinformatics tools.

The main inquisitions in this field are the estimation of 
conidial, mycelial secreted proteins in the wide array of 
fungal species by the establishment of fungal structures 
from reference proteome maps. Proteome profiles of differ-
ent races, mutants, species, developmental stages, growth 
stages, and different growth conditions are compared (Yang 
et al. 2013). These proteome profiles are mostly studied dur-
ing the hyphal penetration, spore germination, toxin produc-
tion, appressorium formation, and secretion (van Kan 2006). 
These are used to understand plant–fungal interactions of 
major crops such as maize, rice, wheat, and barley as well 
as to study the infection cycles and for the identification of 
pathogenicity factors that are responsible for the defense 
responses of plants (González-Fernández et al. 2010). The 
post-translational modifications (PTMs) can be investigated 
by employing proteomics. Some post-translational modifica-
tions such as glycosylation, phenylation, phosphorylation, 
acetylation, ubiquitylation, and S-nitrosylation are involved 
in transducing the signals during the interface of plants 
and microbes that have been examined by the proteomics 
(Jayaraman et al. 2012). Gunnaiah et al. (2012) implemented 
the combined metabolomics and proteomics techniques and 
revealed that the FHB resistance mechanism in the Nyubai 
wheat genotype can be due to the accumulation of phenolic 
glucosides, flavonoids, and hydroxycinnamic acid amides 

that lead to the thickening of the cell wall. As proteomics 
open new avenues for identifying differentially accumulated 
proteins (DAP) during host–pathogen interactions, several 
researchers conducted the proteome profiling to determine 
the FHB resistance mechanism in wheat (Wang et al. 2005; 
Zhou et al. 2005, 2006; Eggert et al. 2011; Zhang et al. 2013; 
Eldakak et al. 2018). Eldakak et al. (2018) determined the 
proteomic changes in spikelets of two contrasting wheat lines 
(with and without Qfhb1) during early infection of FHB. 
Employing 2D-DIGE and MALDI-MS/MS techniques, they 
identified 80 DAP that was involved in several mechanisms 
such as sucrose metabolism, photosynthesis, translation, and 
repairing of signaling molecules. In a similar study, Liu et al. 
(2019a) confirmed the presence of purple acid phosphatase 
and late embryogenesis abundant proteins in inoculated 
wheat accessions in response to F. graminearum. Proteom-
ics requires the consequent functional investigation of the 
corresponding genes for the identification of fungal effectors 
of FHB that possibly either facilitate the infection or trigger 
the plant defense. Kazan et al. (2012) summarized about the 
F. graminearum genes which are related to the production 
of mycotoxins, metabolism, growth, and signal transduction. 
These genes have been studied in detail to understand their 
contribution toward pathogenicity and virulence using the 
proteomics. By following the proteomics-based techniques, 
the resistance to the FHB can be greatly improved. However, 
due to the dynamics and complexity of the proteome and 
the expensive nature of the technique, conducting an entire 
characterization is still challenging.

Gene silencing and transgenic studies on FHB 
resistance

Though various techniques have been developed to control 
the FHB, still its control is partially effective. The expres-
sion of harmful FHB genes can be regulated using the RNA 
interference method (Hu et al. 2015; Song et al. 2018; Wer-
ner et al. 2019; Koch et al. 2016; Majumdar et al. 2017; 
Machado et al. 2018). RNA silencing or RNA interference 
is a gene silencing mechanism that is post-transcriptional 
in nature. It involves the degradation of mRNA, which is 
sequence specific using small molecules of RNA (Fire et al. 
1998). Host-induced gene silencing (HIGS) is employed in 
plants to silence the fungal genes so that both the chances 
and the level of the disease are reduced. The capacity of the 
host plant to produce small interfering RNA molecules that 
are complementary to the fungal genes and that are devel-
oped from the long double-stranded RNA may vary (Lin 
et al. 2010). In F. graminearum, Dicer protein (FgDicer2) 
and Argonaute protein (FgAgo1) are involved in (hairpin) 
hpRNA-induced gene silencing (Chen et al. 2015). HIGS 
can develop resistance in wheat to both FHB and Fusarium 
seedling blight (FSB) with regard to natural field infections 
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and also under controlled environmental conditions (Cheng 
et al. 2015). It directly affects the biosynthesis of chitin 
which is synthesized by chitin synthase enzymes and is 
an indispensable constituent of the fungal cell wall. Thus, 
employing the gene silencing of chitin synthase genes, chitin 
synthesis can be reduced and fungal growth can be con-
trolled. It is predicted that F. graminearum genome contains 
eight genes for chitin synthesis Chs1, Chs2, Chs3a, Chs3b, 
Chs4, Chs5, Chs6 and Chs7. Among these genes, Chs3b had 
shown the highest expression level during the infection to 
the heads of wheat and the deletion of this gene was toxic 
to F. graminearum (Cheng et al. 2015). Fan et al. (2019) 
employed virus-induced gene silencing (VIGS) to determine 
that three genes engaged in the jasmonic acid (JA) signal-
ing pathway, TaAOC, TaAOS, and TaOPR3 positively con-
trol FHB resistance. Kage et al. (2017) confirmed the role 
of gene-encoding agmatine coumaroyl transferase, TaACT  
located on wheat-FHB QTL‐2DL in the fortification of the 
cell wall using VIGS methods.

Though RNAi is a favorable substitute to the fungicides 
via the development of FHB-resistant wheat cultivars, it 
will not help in controlling the disease after the post-harvest 
stages, such as in dried seeds, fruits, roots, and leaves. It is 
due to the lesser metabolic and physiological activities in 
the desiccated parts of the plants. There is a public debate 
for the probability that dsRNA or siRNA could enter the 
bodies of mammals through the food chain and may affect 
the gene expression in animals and human beings. Specific 
studies have reported that siRNA could be delivered to the 
internal system of mammals via the digestive tract (Zhang 
et al. 2012). There is a need for a series of studies to sort 
out this issue.

It is likely to attain significant levels of resistance to FHB 
by the introduction of extraneous genes with remarkable 
effects that are transformed into elite genotypes (Makandar 
et al. 2006). Owing to the unlimited capacity for encoding 
the proteins, several genes have been suggested for their con-
tribution to FHB resistance (Xue et al. 2011). The expression 
of the AtNPR1 gene of Arabidopsis thaliana developed her-
itable, type II FHB resistance in susceptible wheat cultivar, 
Bobwhite and was found to activate the systemic acquired 
resistance (Makandar et al. 2006). A few genes that have 
been inserted from the non-Triticum genomes have exerted 
negative influences on wheat physiology when expressed in 
the genome of Triticum sp. (Han et al. 2012). Even the incor-
poration of the NPR1 gene of Arabidopsis in the Yangmai 11 
cultivar leads to enhanced susceptibility toward FHB (Gao 
et al. 2013). It has been suggested that the pathogen attack at 
different wheat development stages affects the functioning of 
the NPR1 gene (Gao et al. 2013). Thus, before recommend-
ing alien genes, specific differential effects depending on 
growth stages should be first confirmed. Mackintosh et al. 
(2007) revealed that overexpression of β-1, 3-glucanase gene 

increased the resistance of wheat cultivars towards FHB with 
a lesser DON concentration. For genetic engineering, some 
targeted genes that encode the enzymes for DON detoxifica-
tion and responsible genes for the biosynthesis of antifun-
gal proteins or possessing inhibitory actions for FHB are 
under special consideration (Ferrari et al. 2012; Hou et al. 
2015; Mandalà et al. 2019). The barley HvUGT13248 gene 
involved in the glycosylation when expressed in durum and 
bread wheat plants led to enhanced DON-detoxification 
(Mandalà et al. 2019). Under the pathogen attack, some 
resistant genes may be overexpressed in the wheat genome, 
including the ones that encode the stress-responding hor-
mones such as salicylic acid, ethylene, and methyl jasmonate 
(Makandar et al. 2012). This overexpression of genes pos-
sesses great potential to increase FHB resistance by affecting 
the signaling molecules and important transcription factors 
in plants (Bahrini et al. 2011). Numerous transgenic under-
takings designate that foreign genes can possibly enhance 
the options to tackle the disease and genomic diversity. In 
addition, there are available tools for tracking the accounting 
genes for differential responses in cereals to the Fusarium 
attack. Using these tools, the influence and compatibility of 
such genes in wheat can be tested.

Genome‑wide association studies (GWAS)

Genome-wide association studies (GWAS) facilitate the 
mapping of the potential genes so that the efficient mark-
ers tightly associated with a specific trait can be developed 
(Wang et al. 2014; Liu et al. 2019b). The development in 
high-throughput genotyping and genome sequencing meth-
ods has enabled the GWAS in large genome-size species 
such as wheat [International Wheat Genome Sequencing 
Consortium (IWGSC), 2018]. Several researchers have per-
formed GWAS for FHB resistance in wheat and revealed 
important findings regarding the complex genetic mecha-
nism (Mirdita et al. 2015b; Arruda et al. 2016b; Wang et al. 
2017). It has been determined that a number of genes with 
variable effects add to FHB resistance in wheat besides 
well-defined QTLs. A number of studies emphasized the 
efficiency of genome-wide markers over the statistical mark-
ers for genomic selection (Rutkoski et al. 2012; Jiang et al. 
2015, 2017; Mirdita et al. 2015a; Mamo and Steffenson 
2015; Arruda et al. 2016a; Herter et al. 2019a). Arruda et al. 
(2016b) performed genotyping-by-sequencing (GBS) of 273 
winter wheat breeding lines and identified that more than 
19,000 SNPs lying on all 21 wheat chromosomes elucidated 
8% of phenotypic variation. Tessmann and Van Sanford 
(2018) estimated the phenotypic response of 238 soft winter 
wheat lines grown during two different years in control and 
warmed conditions and determined 19 and 10 significant 
SNPs by employing the GWAS method. Wu et al. (2019) 
identified three and six loci linked with DON accumulation 
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and FHB resistance by GWAS performed on 213 Chinese 
accessions grown in four different environments.

FHB resistance associated with alien species

The usage of resistant cultivars is one of the effectual, eco-
nomic, and environmental friendly strategies that can be 
employed to control FHB. Resistance to FHB is a quantita-
tive trait that is regulated by multiple genes. As a result, 
breeding for resistant cultivars is not an easy task. In wheat, 
the QTLs for FHB were found to be present on all the chro-
mosomes except the 7D (Buerstmayr et al. 2009). It has 
been determined that various wheat relatives are resistant 
to FHB. A high FHB resistance is found in Aegilops, Agro-
pyron, Elymus, Hystrix, Kengyilia, Thinopyrum ponticum, 
Th. elongatum, Th. intermedium, Dasypyrum, Leymus, and 
Roegneria (Mujeeb-Kazi 1983; Cai et al. 2005; Wan et al. 
1997; Yong-Fang et al. 1997; Oliver et al. 2005; Cai et al. 
2008; Qi et al. 2008; Cainong et al. 2015).

These resistant wheat relatives having different ploidy 
levels extending from 2 to 10 × could be used as an impor-
tant source to obtain FHB-resistant genes. As wheat is 
allopolyploid, the alien chromatin genes could be incorpo-
rated into the cultivated wheat by employing cytogenetic 
strategies and substitution, addition, translocation, and 
recombinant lines; these can also be developed via back-
crossing with wheat cultivars (Oliver 2005; Bai et al. 2018). 
A high level of resistance has been developed in wheat culti-
vars by transferring FHB-resistant regions, Fhb3, Fhb6, and 
Fhb7 from Leymus racemosus, 1Ets#1S of Elymus tsukush-
iensis, and Thinopyrum ponticum (Qi et al. 2008; Cainong 
et al. 2015; Guo et al. 2015). However, a pyramiding of Fhb3 
with Fhb1 employing marker-assisted selection did not show 
FHB resistance in developed cultivars, thus, emphasizing 
that the efficiency of transferred alien genes in providing 
FHB resistance should be tested in different environments 
(Bai et al. 2018).

This transfer of FHB-resistant alien genes can signifi-
cantly increase the genetic diversity of wheat genotypes 
toward FHB resistance (Han et al. 2012). In wheat, more 
than 100 fragments of alien chromosomes from Roegneria 
kamoji, Triticum macha, T. ponticum, Elytrigia intermedia, 
Elymus racemifar, and Leymus racemosus related to FHB 
resistance have been efficaciously integrated (Oliver et al. 
2005). In a detailed screening of 293 lines obtained from 
the crosses of wheat and its relatives, 74 lines showed poten-
tial significance toward FHB (Oliver et al. 2005). However, 
meiotic lines, linkage drag, and chromosome instability 
on the discrete alien chromosomes limit the utilization of 
substitution and addition lines (Cai et al. 2005; Bai et al. 
2018). Thus, it is problematic for breeders to rightly utilize 
the substitutional, addition or amphiploid lines in breeding 
programs.

To reduce the chances of linkage drag, wheat alien trans-
location can be used as it only conveys the alien chromo-
somal segment associated with the wheat chromosome. 
Thus, alien translocation in wheat can be considered an 
effective approach toward introducing the FHB-resistant 
genes that have been extracted from the alien species (Cai 
et al. 2005). More alien genes that are resistant to FHB 
should be identified by the breeders and cryptic translo-
cation techniques should be utilized for the integration of 
these genes into wheat genomes for higher FHB resistance. 
Moreover, genomic and phenotypic selection and gene edit-
ing techniques can facilitate the combining of several QTLs 
to develop FHB-resistant cultivars.

Status of FHB‑resistant genetic resources 
and developed cultivars

To date, a number of differentially FHB-resistant wheat lan-
draces around the world have been selected by local farm-
ers (Talas et al. 2011; Zhu et al. 2019; Li et al. 2011, 2016; 
Jia et al. 2018). FHB resistance in several cultivars such as 
‘Wangshuibai’, ‘Sumai 3’, ‘Gamenya’, ‘Alondra’, ‘Nyubai’, 
‘Romanus’, ‘Frontana’, ‘Spark’, ‘Wangshuibai’, ‘Arina’ and 
‘F201R’ has been determined using specific locus markers 
such as Xgdm35-2DS and Xbarc19-3AS (Buerstmayr et al. 
2009) (Table 1). Mapping has played a crucial role in iden-
tifying the QTL Fhb1, which is one of the most important 
loci known for FHB resistance and is found to be located on 
the 3BS chromosome of the Chinese cultivar Sumai 3 for 
the first time (Bernardo et al. 2012; Gunnaiah et al. 2012; 
Rawat et al. 2016). Many cultivars such as Glenn, Wanshu-
ibai, Frontana, and L699 have been identified to be FHB 
resistant due to the presence of loci other than Fhb1, such 
as Fhb2, Fhb4, and Fhb5 (Zhang et al. 2011; Yang et al. 
2016; Liu et al. 2015; Lin et al. 2006; Mergoum et al. 2006; 
Bokore et al. 2017; Cai et al. 2016; Steiner et al. 2004). 
ND2710 is one of the initially developed FHB-resistant lines 
that evolved from Sumai 3 via the NDSU breeding program 
(Frohberg et al. 2004).

Future perspectives for FHB

By controlling FHB, major destructions in terms of both 
quality and quantity of wheat can be controlled to a very 
great extent. The utilization of gene-derived markers and 
diagnostic features can be effective for developing superior 
cultivars that can tolerate FHB. Management practices for 
host plant resistance can be promising to control the FHB 
pathogen. A few strategies will not help to completely 
cover up the losses arising due to the virulence shifts of F. 
graminearum, so there is a need for international collabora-
tion to control the existing species and to tap the genetic and 
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genomic resources to manage the FHB. The need for this 
collaboration was recognized by the US Wheat and Barley 
Scab Initiative (USWBSI) where a prediction center for FHB 
was developed so that growers may understand the risk of 
FHB outbreak in their region (https ://www.wheat scab.psu.
edu/riskT ool.html). In 2005, the International Maize and 
Wheat Improvement Centre (CIMMYT), started research 
on FHB that significantly assisted international communica-
tion via the Japan-CIMMYT FHB project. By taking such 
initiatives, the exchange of synthetic derivatives of wheat for 
genetic characterization and identification of FHB-resistant 
sources from the accessions available in gene banks will be 
easier. It may also facilitate the evaluation of the incidence 
and the distribution of notorious pathogens so that farm-
ers may stay alert for the upcoming FHB outbreak. Sev-
eral efforts have been made to understand the evolution of 
virulence, the effect of the changing environment, and toxin 
biosynthesis related to FHB to develop some strategies for 
disease control. If all the available information can be inte-
grated with genetic engineering and plant pathology, there 
can be significant chances to develop much more reliable 
strategies for disease prevention and, consequently, food pro-
duction and quality can be enhanced. In addition, the identi-
fication of novel loci that are responsible for FHB resistance 
and the development of SNP-based diagnostic markers for 
these regions to be used in marker-assisted breeding can 
prove to be potential techniques. The integration of speed 
breeding and molecular markers into conventional breeding 
programs may open new avenues in this direction.
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