Skip to main content
. Author manuscript; available in PMC: 2022 May 1.
Published in final edited form as: J Am Psychiatr Nurses Assoc. 2019 Jul 10:1078390319862029. doi: 10.1177/1078390319862029

Table 2.

Model Fit Statistics for Latent Class Analyses, Factor Analyses, and Factor Mixture Analyses.

Model Log L Parameters AIC cAIC BIC aBIC Entropy
Latent class analyses
 2 Class −6901.84 34 13871.67 14016.60 13982.60 13874.90 .99
 3 Class −6829.06 46 13750.12 13946.20 13900.20 13754.49 .99
 4 Class −6751.02 58 13618.04 13865.27 13807.27 13623.54 .99
Factor analyses
 1 Dimension −6250.61 26 12553.23 12664.06 12638.06 12555.70
 2 Dimension −6929.63 46 13951.26 14147.34 14101.34 13955.62
Factor mixture analyses
 1 Dimension
  2 Class −6811.46 48 13718.92 13923.53 13875.53 13723.48 .99
  3 Class −6615.28 61 13352.53 13612.56 13551.56 13358.33 .92
  4 Class −6363.23 74 12874.45 13189.89 13115.89 12881.48 .99
 2 Dimension
  2 Class −6695.34 59 13508.69 13760.18 13701.18 13514.29 .98
  3 Class −6636.97 72 13417.94 13724.86 13652.86 13424.78 .96

Note. AIC = Akaike information criterion; aBIC = adjusted BIC; BIC = Bayesian information criterion; cAIC = consistent AIC; Log L = log likelihood. Bold indicates the best-fitting model.