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ABSTRACT: In this work, we present graph-convolutional neural networks
for the prediction of binding constants of protein−ligand complexes. We
derived the model using multi task learning, where the target variables are the
dissociation constant (Kd), inhibition constant (Ki), and half maximal
inhibitory concentration (IC50). Being rigorously trained on the PDBbind
dataset, the model achieves the Pearson correlation coefficient of 0.87 and the
RMSE value of 1.05 in pK units, outperforming recently developed 3D
convolutional neural network model Kdeep.

1. INTRODUCTION

The majority of marketed drugs act via non-covalent binding
to a macromolecular target in a human organism, such as
protein molecules or nucleic acids.1 The binding affinity is one
of the major determinants along with absorption, distribution,
metabolism, and excretion properties of the dose necessary to
achieve a biological response and, consequently, the additional
off-target impact on the organism. Many efforts are made to
develop robust and powerful binding affinity prediction
models.2 With the substantial growth of atomic structures in
the Protein Data Bank (PDB3), now it is possible to derive
reliable scoring functions.4−11 Depending on the formulation
of the optimization problem, the scoring functions aim (i) to
identify correct (near-native) binding pose amongst con-
formations of modeled putative binding candidates or (ii) to
rank a given set of chemical compounds (ligands) with respect
to its binding affinity to a particular target.12 These task-
specific SFs should combine the high speed of computation
with accuracy,13 and usually, the parameters of the recent
scoring functions were obtained without affinity information.14

SFs can be divided into three categories based on the way
parameterization: (1) force-field-based SFs were designed from
physical principles based on the theoretical representation of
interatomic potentials;15 (2) empirical SFs, which utilize force-
field based canvas with the parameter set, were tuned to
reproduce experimental affinity measurements;4,8,9 (3) knowl-
edge-based SFs trained with experimental structural data to
approximate interatomic potentials as arbitrary functions
defined by piece-wise linear interpolation or in the other
way.7,11

1.1. Machine Learning Approaches for Protein−
Ligand Scoring Functions. The majority of the mentioned
approaches basically utilize a linear regression approach to
account for different terms describing intermolecular inter-

actions such as hydrogen bonding, π−π stacking, π−cation
interactions, entropic contribution, van der Waals interactions,
and so forth4 for the sake of efficiency and are easy to interpret
because of the possibility of per atom decomposition of the
score value. Ain et al. reported2 the possible improvement in
performance when the scoring function is not constrained to a
predefined functional form. These machine learning ap-
proaches16 were applied for both classification and regression
tasks in the different areas of science and technology. One of
the most known machine learning-based SF for the evaluation
of protein−ligand interactions is the RF-score10 that utilizes
the ensemble of decision trees to approximate binding affinity
using the receptor−ligand interatomic interactions counts as
the descriptors. Some authors customized this methodology by
training target-specific scoring functions using AutoDock Vina
scoring terms as descriptors.17,18

1.2. Sampling Approaches to Binding Affinity
Estimation. It should be noted that because of the
peculiarities of the common drug discovery pipelines, hit
identification and hit to lead optimization are considered to be
separate stages, and fast scoring is used for the former and the
sophisticated molecular simulations are performed for the
latter. The free energy perturbation (FEP) technique19 is based
on the alchemical transformations and allows us to achieve in
some cases good results for the affinity ranking in a series of
closely related compounds. The end-state free energy
approaches (MM-PB(GB)SA)20 being not so demanding for
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computational resources can be considered as a cheaper but a
less accurate alternative to FEP.21 While the chemical space
exploration22,23 leads to creation of enormous virtual data-
bases, there is a strong demand to assess for better techniques
that are faster than ensemble methods (FEP, MM-PBSA) and
more accurate than scoring functions developed for virtual
screening.
1.3. Progress in Applications of Deep Learning for

Chemical Problems. Deep neural networks (DNN) are
powerful machine learning models with broad applicability to
different regression and classification tasks. Progress in
hardware and software development for large-scale training
of convolutional neural networks (CNN)24 and recurrent
neural networks (RNN)25 resulted in great achievements in
computer vision, natural language and signal processing, and
other related problems26 The promising results obtained in
computational chemistry27,28 structure generation tasks29,30

and QSPR/QSAR31,32 by means of DNN, demonstrate that
the application of DNN undoubtedly has a strong potential to
growth in the area of the computer-aided molecular design.
1.4. 3D Convolutional Neural Networks for Protein−

Ligand Scoring Functions. Recently it was shown that 3D
convolutional neural networks (3D CNN) can be applied to
derive scoring functions for binding affinity prediction.33,34

Current approaches use voxelized representation of a
molecular complex, where voxel channels encode physico-
chemical properties, similar to the RGB channels in images.
Molecular representations for processing by 3D CNN can be
constructed in several ways: each atom or a group of atoms can
be represented either by a separate channel or a channel which
can represent some kind of superposition of atoms. For
example, one can calculate interactions with a probe atom to
construct 3D molecular field or use some physicochemical or
DFT (3D electron density) calculations as 3D filed
representations.31,35 Both of these approaches have limitations:
atom-to-channel representation leads to dramatic increase in

the number of input channels, which are crucial for memory
consumption. It is also inefficient because many channels are
empty or sparse. The use of molecular fields, in turn, results in
losing information. The balance between the quality of
representation and memory requirements is a fundamental
problem with 3D CNNs. This fact motivates us to search for
new ways and architectures for 3D deep learning in molecular
science. Kdeep

33 trained using PDBbind data and aimed at
predicting absolute binding affinities takes a set of 3D grids
representing map of certain structural features (hydrophobic,
aromatic, h-bond acceptors, and so forth.) as the input data.
Also, the model developed by Ragoza et al.34 with the goal to
improve virtual screening results act as a classification model
which operates with 3D maps defined by smina (scoring and
minimization with AutoDock Vina) atom types.36 However,
the performance of these models can still be improved. The
major drawback of 3D CNN is the enormous number of
parameters, which results in high-demand of computational
resources and GPU memory; meanwhile, GPU memory is
limited.37 Interestingly, a special architecture which is applied
simultaneously for two maps representing similar ligands was
used to predict differences in affinity to input ligands and
achieved better results compared to MM-GBSA and QSAR in
blind predictions.38

1.5. Geometric Deep Learning and Tasks of This
Work. The limitations of 3D CNN architectures motivated
researchers to search more natural ways of processing chemical
structures. Geometric deep learning is a bunch of approaches
which aim to generalize neural network to non-Euclidian
manifolds, in particular, to graphs.39 Simultaneously, molecules
can be represented as labeled and weighted graphs in
chemoinformatics, and the idea of the applications of
geometric deep learning seems to be natural and can lead to
very promising results.40,41 One of the graph convolutional
architectures (PotentialNet42) was trained on PDBBind 200743

and applied to the affinity prediction problem. Authors use

Figure 1. Results of t-SNE mapping of ligand protein interactions represented by SILIRID46
fingerprints: (left) blue color mark complexes that

consist the initial PDBbind refined set while the red one represents the additional data; (right) color scheme is based on protein functions.
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gated graph neural network architectures which utilizes RNN
for the update stage. PotentialNet can perform graph
convolution operations for both covalent and non-covalent
interactions; in other words, authors include in an initial graph
the nearby residues.
The goal of this work is the design of the scoring function

with a possibility to predict binding free energy for a diverse set
of chemical compounds and protein targets based on subclass
of graph CNNmessage passing neural networks which
demonstrated very promising results in approximation of DFT
electron energies28 for the QM9 small molecule data set.44 We
assess its performance on different data sets and compare it
with the existing tools. We showed that the message passing
neural network (MPNN) can be a very efficient tool for
modeling protein−ligand interactions.

2. RESULTS AND DISCUSSION

The thorough description of the training set properties is
necessary for the applicability domain definition of a scoring
function. The extended training set obtained by IC50 data
addition contains more druglike molecules (Figure S1) than
the initial data set. It may indicate that the optimal applicability
domains of the model are structures which fall into line with
Lipinski’s rule of five. To analyze the distributions of protein
targets, we performed a t-SNE45 mapping (by scikit-learn 0.19.1
package) of protein−ligand interaction descriptors46 into a 2D
space using an Open Drug Discovery Toolkit47 (ODDT). The
obtained distribution is shown in Figure 1. It should be noted
that the usage of the additional IC50 data improves the
representation of the known types of interactions rather than
introduce completely undescribed binding modes. The addi-

Figure 2. Illustration of the Gi
2 computation.

Figure 3. General description of the MPNN forward pass with interaction net architecture.
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tional data, in general, describe the interaction with transferase

and hydrolase enzymes, which appeared to be the most

representative class of proteins in the current data set.

The trained MPNN scoring function demonstrates very
good results for the CASF2016 test set composed of the X-ray
structures significantly outperforming both Kdeep and RF score
in terms of Pearson R. Unfortunately, it is difficult to accurately

Table 1. Network Architecture of Message, Update, and Readout Functionsa

message function update function readout function

T layer in out BN in out BN in out BN

1 1 751 200 yes 473 200 yes
2 200 100 yes 200 100 yes
3 100 100 no 100 100 no

2 1 205 200 yes 200 200 yes
2 200 100 yes 200 100 yes
3 100 100 no 100 100 no

3 1 205 200 yes 200 200 yes 1100 300 yes
2 200 100 yes 200 100 yes 300 200 yes
3 100 100 no 100 100 no 200 100 yes
4 100 2 no

a“In” and “Out” means the number of input and output neurons in the current layer, and “BN” denotes the application of the batch normalization
layer.

Table 2. Results of graphDelta Evaluation on the CSAR Data Compared to Kdeep and RF-Scorea

graphDelta Kdeep
33 RF-score33

dataset epochs MT/ST r RMSE r RMSE r RMSE

CASP2016 500 true 0.82 1.22 0.82 1.27 0.80 1.39
500 false 0.84 1.17
1000 true 0.86 1.11
1000 false 0.84 1.16
2000 true 0.84 1.17
2000 false 0.87 1.05

CSAR NRC HiQ set1 500 true 0.74 1.67 0.72 2.08 0.77 1.99
500 false 0.64 1.81
1000 true 0.71 1.70
1000 false 0.71 1.66
2000 true 0.74 1.59
2000 false 0.74 1.59

CSAR NRC HiQ set2 500 true 0.60 1.86 0.65 1.91 0.75 1.66
500 false 0.59 1.72
1000 true 0.56 1.92
1000 false 0.71 1.52
2000 true 0.64 1.73
2000 false 0.71 1.53

CSAR12 500 true 0.52 1.16 0.37 1.59 0.46 1.00
500 false 0.41 1.37
1000 true 0.59 0.94
1000 false 0.54 1.11
2000 true 0.52 1.10
2000 false 0.48 1.14

CSAR14 500 true 0.72 1.40 0.61 1.75 0.80 0.87
500 false 0.66 1.51
1000 true 0.65 1.34
1000 false 0.59 1.67
2000 true 0.70 1.32
2000 false 0.74 1.22

average 500 true 0.68 1.46 0.62 1.72 0.72 1.38
500 false 0.63 1.52
1000 true 0.67 1.40
1000 false 0.68 1.42
2000 true 0.69 1.38
2000 false 0.71 1.31

aBold font is used to stress the best correlation coefficient and RMSE for the selected data set.
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compare RMSE because of the unavailability of the raw data
from Kdeep and RF-score. The authors of the Kdeep mentioned
that the inclusion of the low-quality data to the training set did
not improve the results, probably because of the excessive
noise contribution to the model. In this work, we showed that
the inclusion of the IC50 subset with a similar structural quality
can improve the model and speed up model training when
multi task learning is used. The neural network can predict a
set of properties simultaneously, and the prediction of IC50 and
Kd, which are strongly correlated but still slightly differs,
significantly improves the CASF2016 prediction results at 1000
epochs of training. At the same time, the multi task model
trained for 2000 epochs appeared to be slightly overtrained
compared to the single task model, which demonstrated the
best performance for CASP2016 among all the used models.
The results are presented in Table 2. The distribution of
Pearson correlation coefficients computed for each target from
CASF2016 demonstrates the improvement compared to Kdeep:
the number of Pearson r < 0.75 is 14 for graphDelta and is 32
(more than the half of targets) for Kdeep and the number of
Pearson r < 0.0 is zero for graphDelta and is six for Kdeep
(Figure 4). graphDelta (single task, 2000 epochs) demon-
strates the best prediction rates for CASF2016 compared to
the RF-score (one-tailed, z = −2.78, P = 0.0027) and Kdeep
(one-tailed, z = −2.09, P = 0.018) in terms of Pearson

correlation coefficients. The single task graphDelta model
trained for 2000 epochs outperforms Kdeep or yields the similar
results in terms of RMSE and Pearson correlation coefficients
for CASF2016 and CSAR sets, except CSAR NRC HiQ set2,
while RF-score yields better results than graphDelta in CSAR
NRC HiQ set2 and CSAR14 (RMSE) and for CSAR NRC
HiQ set1, CSAR NRC HiQ set2, CSAR14 (Pearson r). In
average, graphDelta outperforms Kdeep for these four data sets
and yields practically similar results as the RF-score in terms of
Pearson r and outperforms it in terms RMSE (Table 2).
To compare the obtained results with PotentialNet,42 we

trained our model on PDBbind v.2007 which is about eight
times less in size compared to the initial training set.
PotentialNet for the smaller training sets yields better results
(r = 0.82) than GraphDelta (r = 0.38) possibly because of the
small size of the training set. It should be noted that the
learning procedure was accompanied by fast overtraining and
leaps to the prediction of the mean value.
The graphDelta evaluation on the FEP and MM-PBSA data

sets demonstrated worse results compared to the other SF
where Kdeep demonstrated the best results in terms of the
Pearson correlation coefficient and RF-score shows the best
RMSE (Table 3). The application of the MPNN scoring
function (multi task, 2000 epochs of training) yields better
results among ML scoring functions only for two subsets of the

Figure 4. Results of prediction (graphDelta, 2000 epochs, single task) for the CASF2016 data set: (left) histogram of correlation coefficients
computed for all targets from CASF2016, (right) the depiction of the prediction results with the trend line.

Table 3. Results of graphDelta Evaluation on the Data Set Used for FEP and MM-PBSA Evaluation (graphDelta, 2000 Epochs,
Multi Task)a

graphDelta Kdeep RF-score FEP or MM-PBSA

subset r RMSE r RMSE r RMSE r RMSE

p38 0.64 1.56 0.36 1.57 0.48 0.9 0.6 1.03
PTP1B 0.46 1.22 0.58 0.93 0.26 0.9 0.80 1.22
thrombin 0.39 0.74 0.58 0.44 0.08 0.71 0.71 0.93
Tyk2 0.17 1.08 0.05 1.23 0.41 0.94 0.89 0.93
Bace 0.65 0.78 −0.06 0.84 −0.14 0.65 0.78 1.03
CDK2 0.19 1.94 0.69 1.26 −0.23 1.05 0.48 0.91
JNK1 0.33 1.53 0.69 1.18 0.61 0.5 0.85 1.00
MCL1 0.22 1.12 0.34 1.04 0.52 0.99 0.77 1.41
AMPA 0.39 1.37 0.74 1.32 0.38 1.71 0.78 0.62
average 0.35 1.31 0.41 1.07 0.26 0.92 0.75 1.00

aBold font is used to stress the best correlation coefficient and RMSE for the selected data set. MM-PBSA data are provided for AMPA receptor
ligands, while FEP data are provided for other targets.
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FEP data set: p38 and BACE. This dataset consists presumably
of hydrolase (PTP1B, thrombin, Bace) and kinase (Tyk2, Jnk1,
p38, CDK2) targets, and multi task demonstrated better results
because of the extended training set by these types of proteins.
The other graphDelta models yielded even worse results in
terms of RMSE and Pearson r (see Table S1 and Figures S7−
S11; Supporting Information). However, it should be noted
that all examined SF gave poor results for this set of closely
related structures.
In this work, our goal was to develop a novel tool for scoring

of protein−ligand interactions based on graph-CNN. Despite
the performance improvement in CASF2016 and some other
X-ray data sets, both the RMSE and correlation coefficient
decreases for some data sets obtained by docking. We believe
that the performance improvement is caused by the addition of
high-quality IC50 data to the training set which allowed the
increase of the training set size in more than two times. This
data set extension allowed us to train the model obtaining
similar results faster (1000 epochs vs 2000 for Single task
model). Noteworthy, the additional IC50 data may introduce a
skew performing better on kinases and hydrolases which are
the main content of the cleaned IC50 data set. This fact may be
confirmed by the better performance of the multi task model
on the docked data (Tables 3 and S1). At the same time, the
performance of the examined models is still worse than
trajectory-based approaches (FEP, MM-PBSA). Although
trajectory-based approaches work well for some systems,
sometimes, deep-learning-based models surpass their results.38

It should be noted that trajectory-based affinity prediction
methods works in the case of sufficient sampling which may be
tricky for some types of proteins.48 Modest results obtained for
the complexes obtained by docking suggest the necessity of
model improvement. We suggest two ways to accomplish this

task. The first one is the application of this model to molecular
dynamics trajectories or Monte-Carlo ensembles of structures
which may be even slower than the trajectory-based
approaches. The other possible approach is to apply proper
data augmentation scheme which is not a straightforward task.
Augmentation techniques which are often for 3D-CNN such as
a shift of the box center and random rotations around are not
suitable for graph CNN. We made available this scoring
function at http://mpnn.syntelly.com/.

3. COMPUTATIONAL METHODS
3.1. Data Sets. The main source of data for the current

work was PDBbind49 (v.2018) containing 16151 protein−
ligand complexes derived from Protein Data Bank (PDB)
accompanied with their binding data in terms of dissociation
(Kd) and inhibition (Ki) constants and half maximal inhibitory
concentration (IC50). A smaller “refined” set (4463 complexes)
was compiled based on the following rules: the structure
resolution less than 2.5 Å, an R-factor less than 0.25, ligand
should be bound noncovalently and without steric clashes (any
distance between pairs of ligand−protein atoms is more than
2.0 Å), pK is inside the range from 2 to 12, and complexes
labeled only by IC50 are eliminated. The reason for the latter
action is the substrate concentration dependence of IC50
(Cheng−Prusoff eq 1, where [S] and Km are the substrate
concentration in the experiment and Michaelis constant,
respectively) and cannot be in union with the Ki/Kd subset.
However, in practice, the pIC50 values (logarithmically
transformed IC50) are usually less and within one logarithmic
value compared to pKi/pKd. This bias can be easily learned
using the model in the multi task learning mode50 when the
last layer simultaneously predicts both pK and pIC50. Thus, we
prepared a novel subset containing both pIC50 and pK in all

Figure 5. Results of prediction (graphDelta, 2000 epochs, single task) for CSAR data sets.
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other quality criteria identical to the mentioned “refined”
subset yielding 8766 complex structures. The idea to extend
PDBbind refined set by low-quality data was also reported by
Li et al.51 A core set (285 items) used for critical assessment of
scoring12 (CASF) 2016 was not changed compared to the
previous version of the database, facilitating the performance
matching with the other scoring functions. Additional test sets
were used for comparison with other available models: two
subsets of CSAR NRC-HiQ containing after removing
intersections with training data 53 and 49 complexes
(csardock.org), and CSAR12 and CSAR14 sets downloaded
from D3R (drugdesigndata.org) were prepared according to
Jimeńez et al.33 Finally, we considered a bunch of data set
serving as benchmarks52,53 for the ensemble methods (FEP,
MM-PB(GB)SA) developed for binding free energy estima-
tion.
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3.2. Descriptors. The choice of the descriptor set which
reflects the atomic environment in the relevant manner was
influenced by a success of electron energy approximation by
neural network potentials. The good representation of an
atomic environment should be invariant to the permutation,
rotational, reflection, and translation symmetries. It is worth
mentioning that Behler−Parrinello symmetric functions
(BPS)54 made a basis for the first transferable NN potential
and smooth overlap of atomic positions,55 which defines a
similarity metric for direct comparison of atomic environ-
ments. In this work, we employed BPS to describe the atomic
environment in a binding site.
It is natural to prioritize local environment defining a cut-off

function fc(rij) (eq 2)56 which smoothly decreases the weights
of atoms outside the proximal environment and assigns the
zero weight for atoms outside the cut-off distance. In the
present work, a cutoff of 12 Å had been used. Table S2
(Supporting Information) lists the parameters defining BPS
descriptors used in this study.
BPSF contains terms which depend only on the distance to

the neighboring atoms and terms which are based on angles

formed by all atom pairs in the environment and the central
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It is to be noted that that radial symmetry functions take
into account only pair-wise atom interactions. We illustrated
the Gi

2 computation procedure as a simple example (Figures 2,
3, 5 and 6) which shows nicotinic acid amide schematically
surrounded by three amino acid residues (Ser, Lys, and Ile),
and the descriptors are computed for its oxygen atom. The
BPS functions are denoted by concentric circles with
decreasing intensity which is caused by the fc function
application. The bar plot on the left part of Figure 2 shows
the number of atoms which contribute to the GO−amide

i values
for different rs parameter values; taking into account triplewise
interactions, we compute the angular dependent function (eq
4)

G f r f r

f r

2 (1 cos ) e ( ) ( )

( )

i
j k i

jik
r r r

ij ik

jk

3 1

,

all
( )

c c

c

ij jk ik
2 2 2∑ λ θ= +ζ ζ η−

≠

− + +

(4)

where rij corresponds to the distance between i and j atoms. All
angles θjik are defined with atom i as the central one and atoms
j and k are the atoms from the environment. The η value
control the guassian sharpness, while the role of parameter ζ is
to provide angular resolution. High ζ values produce a
narrower range of nonzero symmetry function values. The
parameter λ can take values +1 or −1 allows to shift the
maximum value of the cosine part from π (+1) to 0 (−1) and

Figure 6. Results of prediction (graphDelta, 2000 epochs, multi task) for data sets used to assess FEP52 and MM-PBSA53 performance.
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describe the atomic environment in a better way. It should be
noted that Gi

2 and Gi
3 represent two-body and three-body

interactions and can be expanded to high-order terms, but they
are not used in the current work.
The parameter set used to compute descriptors can be found

in Table S2 (Supporting Information), and all possible
combinations of parameters yielded 52 descriptors of the
atomic environment. We defined several atom types represent-
ing the most common elements which can be found in the
protein structure: C, O, N, S, P, M1, M2, where M1 and M2
represent single charged metal ions and metal ions in the other
charged state, respectively. BPS computed for each atom type
of the protein environment leads to 364 environmental
descriptors and combined with one-hot encoded ligand atom
type gives 373 descriptors calculated for each atom of the
ligand molecule. Ligand atom types (C, O, N, S, P, F, Cl, Br, I)
were selected by their relative occurrence in the data set.
Hydrogen atoms were ignored to reduce the memory
requirements. It should be noted that boron atoms were
considered to be included in this set, but the majority of
boron-containing ligands contain carborane substructures
difficult to describe using the standard valence model or
boronic acids which usually form a covalent bond with certain
protein atoms.
3.3. Neural Network Architecture. Chemical structures

are naturally represented as undirected graphs, where nodes
and edges correspond to atoms and bonds, respectively.
Recently Gilmer et al. designed the MPNN framework,57 that
operates with chemical graphs, and which is invariant to graph
isomorphism.28,41,58 In this study, we consider a chemical
graph G with node features xv and edge features evw where v
and w are node indexes. According to Gilmer et al., the forward
pass consists of two main stages: (i) the message passing phase
and (ii) the readout phase. The message passing phase can be
divided into T stages, which are performed sequentially, and at
each time step, two functions are carried out on the graph
elements: message function (Mt) and update function (Ut).
The message and update functions are learned differentiable
functions with fixed length input and output. To perform the
message phase, first, for each node v of graph G, we select
neighboring nodes of v and denote them N(v). Then, for each
pair v and w, where w ∈ N(v), we concatenate two node
descriptor vectors hv

t and hw
t with edge descriptor vector evw,

and the obtained vector of fixed length becomes an input for a
message function Mt. Then, we summarize all these outputs
(eq 5), yielding the mv

t+1 vector of the fixed length finishing the
message phase. The update phase is performed for each node v
as a result of application of an update function (eq 6) to the
concatenation of the hidden state vector hv

t and the newly
computed message vector mv

t+1.
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w N v
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t

w
t

vw
1
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∈ (5)

h U h m( , )v
t

v
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t
1=+ +

(6)

y R h v G( )v
t̂ = { | ∈ } (7)

One can imagine this iterative process as information
flooding across the graph from node to node. It should be
noted that in our implementation vector, hv

1 is initialized as the
BPS node descriptor vector calculated to represent the atomic
environment. Vector evw is added for all time steps without
changes. The readout phase consists of an application of the

readout function (eq 7) to a set of hidden states hv
t obtained at

the final update step yielding the target variable. The readout
function is constructed to be invariant to the node
permutations which make the designed MPNN invariant to
chemical graph isomorphisms. The simplest way to achieve this
property is to summarize all hidden state vectors reducing N
(number of nodes) vectors of length L (number of resulting
features) to one vector of length L. Unfortunately, this
approach leads to the significant information loss. That is why
we followed Kearnes et el.41 and applied a fuzzy histogram
approach59 to capture the distribution of each L features.
To construct histograms, we apply a set of membership

functions of length equals to the number of predefined bins to
the data. Each membership function returns one, if the data
element is in the current bin and zero otherwise. For the fuzzy
histogram approach, the normalized Gaussian membership
function (eq 8) was used where i is a bin index and K is the
number of bins, respectively. Each fuzzy membership function
is defined by the bin center xi where x denotes the current data
element. In this work, 11 fuzzy membership functions centered
at −2.75, −2.0, −1.35, −0.8, −0.35, 0, 0.35, 0.8, 1.35, 2.0, and
2.75 were used with all σi

2 equals to 0.5. Then, the summation
performed over all nodes yields 11 × L permutationally
invariant descriptors.

GM
e

e
i

x x

i K
x x

( ) /
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i i
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2 2=
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σ

σ

− −
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The choice of message, update, and readout functional forms
were inspired by Battaglia et al.,58 where each of the function is
a multilayer fully connected perceptron with a specific
architecture defined in Table 1. Batch normalization60 was
applied for each layer of all neural networks except the output
layer. We found that the dropout technique significantly
increased the training time; thus, we did not use it to obtain
the final model.

3.4. Error Metrics and Training Details. We used the
Pytorch 0.4 framework for DNN training and networkx 2.1 and
rdkit 2018.03.1 for molecular graph processing and chemo-
informatics routines. It should be noted that reading of some
sdf files in database yields an error by rdkit. The most common
issue is the lack of positive charge on tertiary amine nitrogen
atoms. These structures were corrected manually using
MarvinSketch 18.10 (http://www.chemaxon.com). The de-
tailed description of the training procedure is given in the
Supporting Information. Because scoring function training was
reformulated as a multi task learning problem, we should
describe in more detail the loss function and quality metrics.
The loss function is the modified MSE loss (eq 9), where N
and T are the number of complex in a batch multiplied by two
(for both pIC50 and pK predictions) and the number of
available activities for the batch, respectively. The root-mean-
square error (RMSE) and the mean average error, as well as
the Pearson correlation coefficient (r) and the Spearman rank
correlation coefficient (ρ) were computed for the performance
comparison.
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It was stressed in the literature that the usage of the train
and test split provided by the PDBbind tends to provide too
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optimistic results.61,62 Thus, we performed fivefold cross-
validation, selecting the best pool of models and subsequently
assessing their performance on the selected test sets by
averaging the prediction results from all of the five models. Our
scoring model is available at http://mpnn.syntelly.com.
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(33) Jimeńez, J.; Škalic,̌ M.; Martínez-Rosell, G.; De Fabritiis, G.
KDEEP: Protein−Ligand Absolute Binding Affinity Prediction via
3D-Convolutional Neural Networks. J. Chem. Inf. Model. 2018, 58,
287−296.
(34) Ragoza, M.; Hochuli, J.; Idrobo, E.; Sunseri, J.; Koes, D. R.
Protein−Ligand Scoring with Convolutional Neural Networks. J.
Chem. Inf. Model. 2017, 57, 942−957.
(35) Golkov, V.; Skwark, M. J.; Mirchev, A.; Dikov, G.; Geanes, A.
R.; Mendenhall, J.; Meiler, J.; Cremers, D. 3D Deep Learning for
Biological Function Prediction from Physical Fields. 2017,
arXiv:1704.04039.
(36) Koes, D. R.; Baumgartner, M. P.; Camacho, C. J. Lessons
Learned in Empirical Scoring with smina from the CSAR 2011
Benchmarking Exercise. J. Chem. Inf. Model. 2013, 53, 1893−1904.
(37) Wallach, I.; Dzamba, M.; Heifets, A. AtomNet: A Deep
Convolutional Neural Network for Bioactivity Prediction in Structure-
based Drug Discovery. 2015, arXiv:1510.02855.
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