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ABSTRACT: Polymer flooding is one of the most incipient chemical-
based enhanced oil recovery process that utilizes the injection of
polymer solutions into oil reservoirs. The presence of a polymer in water
increases the viscosity of the injected fluid, which upon injection reduces
the water-to-oil mobility ratio and the permeability of the porous media,
thereby improving oil recovery. The objective of this work is to
investigate strategies that would help increase oil recovery. For that
purpose, we have studied the effect of injection pressure and increasing
polymer concentration on flooding performance. This work emphasizes
on the development of a detailed mathematical model describing fluid
saturations, pressure, and polymer concentration during the injection
experiments and predicts oil recovery. The mathematical model
developed for simulations is a black oil model consisting of a two-
phase flow (aqueous and oleic) of polymeric solutions in one-dimensional porous media as a function of time and z-coordinate. The
mathematical model consisting of heterogeneous, nonlinear, and simultaneous partial differential equations efficiently describes the
physical process and consists of various parameters and variables that are involved in our lab-scale process to quantify and analyze
them. A dimensionless numerical solution is achieved using the finite difference method. We implement the second-order high-
accuracy central and backward finite-divided-difference formula along the z-direction that results in the discretization of the partial
differential equations into ordinary differential equations with time as an independent variable. The input parameters such as
porosity, permeability, saturation, and pore volume obtained from experimental data by polymer flooding are used in the simulation
of the developed mathematical model. The model-predicted and commercial reservoir (CMG)-simulated oil production is in good
agreement with experimental oil recoveries with a root-mean-square error (RMSE) in the range of 1.5−2.5 at a maximum constant
pressure of 3.44 MPa as well as with temporal variation of the injection pressure between 2.41 and 3.44 MPa.

1. INTRODUCTION

Enhanced oil recovery (EOR) processes endeavor to improve
the recovery of hydrocarbons from oil reservoirs following
primary production using water flooding.1 In water flooding, the
oil reservoirs are mandated to be operated at an elevated
pressure in addition to its prevailing colossal pressure conditions
subjected to its large top overburden; regulation of the same is
not only very challenging, but also it may lead to some unusual
hazards inside the geological core. However, oil recovery due to
primary production is highly inefficient, resulting in their utmost
economic thresholds of producing only 20−25% of the original
oil-in-place (OOIP).2

A large proportion of crude oil remains in the reservoir after
the application of primary recovery and secondary recovery
processes. The entrapment of residual oil is related to the porous
capillary structure of the reservoir rock. The capillary effect
becomes more dominant as the relative oil structure decreases,
resulting in the entrapment of oil in place by reducing the fluidity
ratio between oil and aqueous phases.2,3 In the present global
scenario, the development of an injection strategy having the

potential of uplifting the incremental oil recovery by more than
50% OOIP has gained considerable attention in the field of
research and technology.4 Among chemical-based enhanced oil
recovery processes, polymer flooding is highly practiced in
conventional oil reservoirs with a remarkable success rate.
Polymeric solutions with high molecular weights effectively
increase the viscosity of the displacing fluid, which upon
injection in the reservoir core aids in the diminution of water-to-
oil mobility ratio and permeability of the injected fluid.5−7 The
net result is the increase in oil displacement, reservoir sweep
efficiencies, and pressure gradient, especially in heterogeneous
oil reservoirs.8−11

Received: December 17, 2019
Accepted: February 25, 2020
Published: March 4, 2020

Articlehttp://pubs.acs.org/journal/acsodf

© 2020 American Chemical Society
5258

https://dx.doi.org/10.1021/acsomega.9b04319
ACS Omega 2020, 5, 5258−5269

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ahmad+Ali+Manzoor"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.9b04319&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b04319?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b04319?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b04319?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b04319?fig=abs1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acsomega.9b04319?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


In this context, rigorous simulation studies of the
experimental profiles of polymer flooding is highly necessitated.
Additionally, the implementation of robust optimization
techniques becomes highly crucial in the milieu of achieving
maximum oil recoveries at the lowest possible capital invest-
ment. Optimization involves maximizing the objective function
(cumulative oil recovery) from a polymer-flooded oil reservoir
by manipulating multifarious input conditions like injection
concentration, injection flow rate, etc. In recent times, many
researchers have proposed mathematical models of polymer
flooding to evaluate the flow of viscoelastic polymer through a
porous medium. In these studies, some of the most important
effects and phenomena such as dispersion-diffusion, salt effects
(which reduce the injection fluid viscosity), thermal effects,
effective concentration, inaccessible pore volume, polymer
retention or adsorption on rock surface, permeability reduction
of water phase, elastic behavior of viscoelastic polymers (which
leads to pistonlike displacement of oil), equivalent shear rate in
porous media, and reduction in residual oil saturation have not
been considered or have not been fully investigated. Zhang et
al.12 studied modeling and simulation of partially hydrolyzed
polymaleic anhydride flow through porous media. The
mathematical model incorporated several important effects
such as polymer relaxation time, adsorption, permeability
reduction factor, elongation viscosity, elastic behavior, and
viscosity as a function of polymer concentration and shear rate;
the prime focus was to estimate the functionality of polymer
elasticity and relaxation time on EOR. A complete polymer
flooding flow model incorporating polymer degradation,
adsorption, elastic effects, salt effects, diffusion, inaccessible
pore volume, permeability reduction of water phase, shear
thinning behavior, and polymer rheology was presented by
Wang and Liu.13 The flow equations for aqueous, oleic, polymer,
and salt were solved by IMPES and Runge−Kutta methods for
improving convergence in scale (60 m × 60 m × 3 m) in Bohai
Bay offshore oilfield in China. To achieve better oil recovery,
polymeric solutions can be employed in conjunction with other
enhanced oil recovery processes, such as surfactant−polymer
flooding, synergetic effect of alkaline−surfactant−polymer
flooding (ASP), and polymer−alternating−gas processes in
which the polymeric phase is envisioned to play a vital role in
controlling the mobility ratio.14 To that end, more advanced and
detailed polymer flooding models incorporating pH effects are
mandated.
Numerous studies have focused on generating and calibrating

surfactant−polymer flooding simulation profiles in predictive
modeling framework that entails the computational adeptness in
terms of both validation and prediction. Alsofi et al.15 performed
a similar study by using the University of Texas Chemical Flood
Simulator: UTCHEM. The model was built using experimental
data and later on was calibrated and validated through history-
matching oil-displacement core flooding results. Their pre-
dictive SP model was more unique and robust compared to the
similar work in the literature.16−19 Recently, in 2016, Ferreira et
al.20 presented a straightforward and low-cost aiding tool that
was used to determine retention levels, inaccessible pore
volume, and in situ viscosity in a single-phase one-dimensional
(1D) polymer flooding experiments.
The simulation of experimental results of chemical flooding is

very important for designing or optimizing decision-making
variables such as cumulative oil recovery factor and net present
value (from economic perspectives). Judicial selection of a
reservoir simulator is highly significant for analyzing any relevant

real-time investigation. The simulator should have the pertinent
functionalities required not only for modeling core flooding
experiments for better understanding of the polymer flow
behavior during chemical flooding, but also for parametric
simulation, which can be effectively employed in commercial-
scale applications. Different commercial simulators utilized for
modeling complex chemical-enhanced oil recovery processes
were ECLIPSE by Schlumberger, STARS developed by CMG,
and UTCHEM that has been created at the University of Texas
at Austin for research-scale applications. UTCHEM has
attractive features such as the ability of modeling lab-scale
experiments and simulating complex chemical reactions as well
as polymer behavior. Due to its worldwide applications, it has
been used bymany researchers.21−27 ECLIPSE is a fully implicit,
three-phase, three-dimensional (rectangular coordinates) black
oil simulator and commonly practiced in the industries for field-
scale applications to model different chemical EOR processes,
including surfactant and polymer flooding. Morel et al.28

performed the feasibility study of polymer injection in Dalia
field using ECLIPSE polymer module and achieved commend-
able results about additional oil recovery and polymer injectivity.
STARS by CMG is the advanced process reservoir simulator and
has the potential to model both lab-scale and field-scale models.
Furthermore, it has the proficiency to accommodate and
simulate complex chemical-enhanced oil recovery processes
such as polymer flooding, surfactant flooding, steam flooding,
and in situ combustion. Thus, the different commercial
simulators available for predicting the EOR process have not
considered some important empirical correlations necessary for
polymer flooding. Therefore, there is a need to develop a
detailed model for predicting heavy-oil recovery using polymer
flooding. Recently, Liang et al.29 have demonstrated the thermal
stability and salinity resistance of various polymers such as
diutan gum, scleroglucan, xanthan gum, and HPAM in high-
temperature and high-salinity oil reservoirs for the EOR process.
The objective of this paper is to develop and integrate a

detailed mathematical model for the lab-scale replica of the
process in our laboratory. To that end, we carry out experiments
by injecting partially hydrolyzed polyacrylamide solutions of
concentration 1000−5000 ppm to a lab-scale, cylindrical heavy-
oil reservoir model at different pressure magnitudes (1.03−3.44
MPa). The objective is rationalized through a scaled
mathematical model and by numerically integrating a set of
nonlinear, heterogeneous, and simultaneous partial differential
equations describing fluid saturations, pressure, and polymer
concentration, respectively, in a 1D two-phase flow of polymeric
solutions across a porous media. Finally, the model-predicted
results are validated by the obtained core flooding experimental
mass. Furthermore, a computer program has been developed in
C++ environment to perform calculations and solve water-phase
saturation, pressure, and concentration equations in cylindrical
coordinates. The model can be applied to predict oil recovery of
other core flooding conditions. It is noteworthy that the
proposed model and computational interface is quite simple and
cost-effective for one-dimensional polymer flooding experimen-
tal investigations in both lab-scale and commercial-scale
applications. Additionally, the oil recoveries are also successfully
verified by comparison with both the commercial reservoir
simulator (CMG) and experimental data. Moreover, the
extended predictive control strategy with an introduction of
new PI controller tuning scheme using the closed-loop data
developed by Yadav et al.30 can be implemented to depict the
efficiency of the controller (pressure controller) with an
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integration of the developed pressure equation under process
uncertainty and compared to other well-developed control
schemes.

2. MATHEMATICAL MODELING
The flow of polymeric solution in porous media is considered to
be a complex phenomenon; therefore, the development of a
detailed mathematical model is a prerequisite for depicting the
physics of the process in the lab-scale replica. Polymer transport
in porous media is subjected to many particular effects such as
non-Newtonian fluid flow, adsorption, inaccessible pore volume,
polymer retention, residual resistance factor, permeability
reduction factor, and the effect of polymer concentration and
shear rate on polymer solution viscosity. The aforementioned
parameters are coupled together in a differential framework to
evaluate the efficacy of a polymer flooding project in one-
dimensional injection experiments across a porous media. The
mathematical model comprising the oleic and aqueous phase
saturation and pressure and polymer concentration mass
balance is analyzed in a cylindrical differential element of
thicknessΔz (along the z-direction). During the development of
the mathematical model, the following set of assumptions are
made:

(1) Fluid flow is isothermal and energy exchange is neglected.
(2) Liquids are nonvolatile, and there are only two fluid

phases (oleic and aqueous) with three species involved
throughout the process (oil, water, and polymer).

(3) The heavy oil is insoluble in polymer solution, and
thermal equilibrium exists between oleic and aqueous
phases.

(4) No chemical and biological reaction takes place between
the species.

(5) Adsorption of polymer flooding takes place on the solid
matrix inside the cylindrical core, resulting from the bulk
flow and dispersion mechanism of the mass transport.

(6) The bulk flow is along the z-direction, and the same is
governed by Darcy’s law in a porous medium.

(7) Bulk flow (due to diffusion) across the radial direction is
neglected.

(8) The density of the heavy oil is constant throughout the
process.

(9) The porous media has uniform porosity and permeability.
Thus, gravity and capillary pressure effects are negligible.

Based on these assumptions, the conservation of mass
equations and Darcy’s law for each component can be written as
Aqueous Phase Equation
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Oil Phase Equation
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Pressure Equation
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Polymer Concentration Equation
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3. EMPIRICAL CORRELATIONS AND PARAMETERS OF
MODEL
3.1. Effect of Polymer Concentration on Solution

Viscosity. We considered the Flory−Huggins equation, which
describes the polymeric solution viscosity as a function of
polymer concentration at zero shear rate. Polymeric solutions
behave as a non-Newtonian fluid when flowing through a porous
media, and their rheological behavior is characterized by a
Newtonian plateau at lower shear rates. The apparent viscosity
of the polymeric solution depending on polymer concentration
is given as

ap C ap C ap C(1 ( ))p w 1 2
2

3
3μ μ= + + + (5)

3.2. Permeability Reduction. The viscoelastic flow of
polymeric solutions through a porous media has a strong
relationship with its retention on a rock surface. This is mainly
due to the polymer adsorption, hydrodynamic retention, and
mechanical entrapment.31 Adsorption of polymer causes the
permeability reduction of aqueous phase. Permeability reduc-
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tion factor (Rk) is often defined as the ratio of rock permeability
when water flows to the rock permeability when polymer
solution flows through porous media.32 This phenomenon is
easily observed during lab-scale injection experiments as the
pressure gradient of the postflush water increases relative to the
preflush water. In this study, eq 6 was implemented to predict
permeability reduction factor and was represented by the
following expression13

R
R b C

b C
1

( 1). .
1 .k

kmax rk
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−
+

i
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jjjjj

y
{
zzzzz (6)

3.3. Inaccessible Pore Volume. During core flooding, a
fraction of pore volume that cannot be accessed by polymer
molecules due to the difference in their molecular sizes and pore
sizes is termed as inaccessible pore volume. It ranges between 1
and 30% of pore volume depending on the size distribution of
rock and polymer. Laboratory-scale investigations indicate that
it is relatively greater than adsorption loss. Manichand and
Seright31 collected experimental data about inaccessible pore
volume and concluded that there is no relationship between
permeability and inaccessible pore volume. In this study, we
assume inaccessible pore volume to be constant and was
modeled by eq 7

fp aφ φ= (7)

4. SCALING ANALYSIS ON MATHEMATICAL MODEL

Scaling of mathematical model is very essential to eliminate
relatively least significant terms from a mathematical statement.
Scaling of a process model has numerous advantages, and it
involves the chain rule for differentiation to simplify the
associated equations. With the help of scaling, one can easily
transform the dimensional variables and parameters of the real
process model into its corresponding nondimensional form.
Due to the proper scaling of equations, it is easy to understand
which terms are effectively contributing to the process and
which are less significant. In this way, size and intricacy of the

original model get reduced. The scaled version of the

mathematical model is given below:
Scaled Aqueous Phase Equation
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Here, z ̅ is the dimensionless axial coordinate, P̅ is the

dimensionless pressure, τ is the dimensionless time, and C̅ is

the dimensionless concentration.
Scaled Oil Phase Equation
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Scaled Pressure Equation

Figure 1. Physical reservoir model with differential element and the arrangement of grid points.
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Scaled Polymer Concentration Equation
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5. DISCRETIZED MATHEMATICAL MODEL
The above-mathematical model consists of a set of nonlinear,
heterogeneous, and simultaneous partial differential equations
that cannot be solved analytically or by manual calculations. In
this study, the problem is simplified numerically using the finite
difference method. We implement the second-order high-
accuracy central and backward finite-divided-difference formula
along the z-direction that results in the discretization of the
partial differential equations into ordinary differential equations
with respect to time (as the only associated independent
variable). With Nj grid points along the z-direction shown in
Figure 1, the discretized finite-differenced ordinary differential
equations are as follows:
5.1. Finite Difference for Conversion of PDE to ODE for

Oleic Phase Equation. The oleic phase equation is discretized
by the central and backward finite-divided-difference formula for
the conversion of PDE to ODE in a cylindrical porous media.
For Intermediate Grid Points:
For 0 < j < (Nj−1)
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For Axis Grid Points:

when j = 0
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when j = (Nj−1)

S

t
KK P P P P

z

K n K

S S
S S

S S

S S S

z

P P P

z

KK
C

P P P P

z

2 5 4

1 1

3 4

2

3 4

2
2 5 4

N ro N N N N

ro cw
n

N N N N N N

ro N N N N

o( )

o

( ) ( ) ( ) ( )

2

o

o ,

wc or

o or

wc or

1

o( ) o( ) o( ) ( ) ( ) ( )

o
o

( ) ( ) ( ) ( )

2

j j j j j

j j j j j j

j j j j

1 1 2 3 4

o

1 2 3 1 2 3

1 2 3 4

μ φ

μ φ

μ φ

∂

∂
=

− + −

Δ

+
− −

−
− −

− +

Δ

− +

Δ

+
− + −

Δ

−

− − − − −

− − − − − −

− − − −

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÄ

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

i
k
jjjjj

y
{
zzzzz
i
k
jjjjj

y
{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ (14)

5.2. Finite Difference for Conversion of PDE to ODE for

Aqueous Phase Equation. The aqueous phase equation is

discretized by the central and backward finite-divided-difference

formula for the conversion of PDE to ODE in a cylindrical

porous media

For Intermediate Grid Points:

For 0 < j < (Nj−1)
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For Axis Grid Points:

When j = 0
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When j = (Nj−1)
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5.3. Finite Difference for Conversion of PDE to ODE for
Pressure Equation. The pressure equation is discretized by
the central and backward finite-divided-difference formula for
the conversion of PDE to ODE in a cylindrical porous media.
For Intermediate Grid Points:
For 0 < j < (Nj−1)
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For Axis Grid Points:

When j = 0
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When j = (Nj−1)
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5.4. Finite Difference for Conversion of PDE to ODE for

Polymer Concentration Equation. The polymer concen-

tration equation is discretized by the central and backward finite-

divided-difference formula for the conversion of PDE to ODE in

a cylindrical porous media.

For Intermediate Grid Points:

For 0 < j < (Nj−1)
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For Axis Grid Points:
When j = 0

C

t
Df

C C C

z

Df C P P

z
C C

z
KK C
R

P P P

z

KC
R

n K

S S
S S

S S

S S

z

P P

z
KK C
R

P P

z

C C

z

R b b
R b C

ap ap C ap C

2

2

2

2

1 1 2

2 2 2

( )
(1 . )

2 . 3 .

a
a r R

ro
n

(0) 1 0 (inlet)
2

1 (inlet)

1 (inlet) rw

k p

1 0 (inlet)
2

k p

w rw,

wc or

w wc

wc or

1
w1 w(inlet)

1 (inlet) rw

k p

1 (inlet) 1 (inlet)

kmax rk rk

k rk
2

w 1 w 2 w 3
2

p

w

φ
φ

μ φ

μ φ

μ φ

μ μ μ

μ

∂
∂

=
− +

Δ
+

−
Δ

−
Δ

+
− +

Δ

+
− −

−
− −

−
Δ

−
Δ

−
−

Δ
−

Δ

−
+

+
+ +

−

Ä

Ç

ÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÄ

Ç

ÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑ
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ

i
k
jjjjj

y
{
zzzzz
i
k
jjjjj

y
{
zzzzz

i

k

jjjjjjjj
i
k
jjjjj

y
{
zzzzz

i

k

jjjjjjj
y

{

zzzzzzz
y

{

zzzzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
(22)

When j = (Nj−1)
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where P(t, z), Sw(t, z), So(t, z), and C(t, z) represent,
respectively, the pressure, oil and aqueous phase saturation,
and concentration of the polymer solution, which is a function of
time and length of the porous media. K is the absolute
permeability of the porous medium, Kro is the oil relative
permeability, Krw is the water relative permeability, φ is the
porosity of the porous media, and μo is the viscosity of the heavy
oil. The bulk flow of polymer solution along the z-direction is

governed by the Darcy velocity. D is the diffusion coefficient of
the solvent in the porous medium and is negligible along the
radial direction. Initially, there is no polymer solution injection
inside the cylindrical core and heavy-oil production so that the
initial length of the cylindrical core is z = 0 = zo. Thus, the initial
condition at t = 0 is given below
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The boundary conditions at t ≥ 0 are
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6. RESULTS AND DISCUSSION
The performance of polymer flooding process and the effects of
pressure variations on heavy-oil recovery process were evaluated
in a homogeneous glass beads-packed physical model. For this
study, experimental investigations were carried out with polymer
solutions of concentrations 1000−5000 ppm at (i) constant
pressure of 3.44 MPa and with (ii) time-varying pressure in the
range of 1.03−3.44 MPa. For variable-pressure experiments, the
injection pressure was originally set at 1.03 MPa and was
increased to the maximum pressure of 3.44 MPa until the oil
breakthrough. Once the oil breakthrough occurred, the
temporal pressure variation was performed between 3.44 and
2.41 MPa at intervals of 1 min, using a syringe pump. All set of
experiments were conducted at the room temperature of 23 ±
0.2 °C.
This section focuses on comparing the experimentally

recovered mass of oil with the model and commercial reservoir
simulator (CMG)-predicted value of oil production. The
experiments consisted of five sequential injections of different
concentration polymer solutions in an initially oil saturated
medium. Based on the results obtained in Figure 2, it can be
observed that the oil recovery exhibits a declining trend upon
increasing polymer solution concentration at a maximum
constant pressure of 3.44 MPa. It was also observed that the
polymer solution was seeped out of the physical model prior to
the oil recovery. The high injection pressure causes the
compactness of the pore spaces inside the porous media. This
forms a narrower path for the polymer solution to flow freely and
leads to the lower oil recovery. A higher concentration of the
polymer solution is directly proportional to the viscosity, and
when these highly viscous displacing fluids pass through the
porous media, they exhibit a shear thinning behavior due to the
coil-stretched transitions of polymer chains. These polymer
chain coils deform when they pass through the narrow pore
spaces and lose their tendency to pushmore oil, resulting in poor
sweep efficiency even at the maximum constant pressure of 3.44
MPa. Additionally, the higher-concentration solutions wit-
nessed greater pressure drops during the flooding experiments
compared to the ones with lower viscosity. Higher pressure
drops indicate that there is greater resistance to flow due to an
increase in the apparent viscosity, above that expected compared
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to a purely viscous fluid. This increase in flow resistance is
referred to as an extension-thickening effect. Furthermore, the
glass beads (monodisperse) packed bed was utilized in the
flooding experiments. The level of heterogeneity in the packed
bed was very small, which led to a minimal oil recovery. Even if
the unequal heterogeneities would have been overcome, there
would still be an insignificant change in enhanced oil recovery.
Final cumulative oil production ranges from 41 to 29 g with
polymer concentration ranging from 1000 to 5000 ppm.
Moreover, to scrutinize the cumulative impact of periodic
pressure variation with different concentrations of polymer
solutions, we performed experiments by injecting the polymeric
solution at different concentrations ranging between 1000 and
5000 ppm and with periodic variation of the solution injection
pressure between 2.41 and 3.44 MPa. The overall increase in
heavy-oil recovery with a periodic pressure variation may be
attributed to the sudden change in the injection pressure of the
displacing fluid within the physical reservoir model, resulting in
altering the fluid velocity as the polymer solution passes through
the porous media. As the polymer solution passes through the
small pore areas, the velocity increases due to the periodic
variations, causing a decrease in the static pressure, thereby
leading to higher oil recovery. Furthermore, the periodic
pressure variation can give higher oil recoveries through the
viscoelastic effect. The flow of viscoelastic polymer through a
packed bed can exhibit a rapid increase in the pressure drop due
to the increase in apparent polymer viscosity. This increase in
pressure drop has been attributed to the extensional nature of
polymer flow through porous media caused by the successive
expansions and contractions in the flow channels. The periodic
pressure variations caused sudden expansion and contraction
that the polymer chain experienced when passed through the
pore throats. The pressure pulses cause the polymer to transfer
the energy to the trapped oil and “snap” the oil out of the pore
throats, thereby leading to a better sweep efficiency. It further
creates increased pressure gradients within the porous media
that provides the necessary force to keep the portion of the flow
channel open, thereby leading to the incremental oil recovery.
The trends in the collected data indicated that cumulative oil
recovery can be improved by increasing the polymer
concentration as well as increasing the injection pressure of
the polymer. In comparison to the maximum constant pressure,

periodic pressure variations enhanced oil recovery more than
100% with a final value of 77−58 g with polymer concentrations
ranging from 1000 to 5000 ppm.
The computation was performed for the physical model of 1.5

D with respect to heavy oil. Equations 8−11 were solved
simultaneously at the (j) node corresponding to the z
coordinate, to obtain the calculated mass of produced oil.
Equations were numerically integrated using adaptive step-size
control, and the analytical jacobians of the above-mentioned
equations were employed for integration. The algorithm was
programmed to generate calculated mass (mcalculated) at the
experimental time instants for a direct comparison with its
experimental counterpart, (mexperimental). The computational
algorithm was programmed in C++ interface and was executed
on Itanium quad processor (64 bit, 1.5 GHz, 15.9 GB of RAM).
The input parameters used in the extensive simulation study of
the mathematical model of polymer flooding are presented in
Table 1. With the utilization of the listed parameter values in the

mathematical model, simulation profiles depicted that predicted
oil production follows experimental oil recovery very close
during the operation time of 18 min for a maximum constant
pressure of 3.44 MPa as well as with periodic pressure variations
between 2.41 and 3.44 MPa by varying FLOPAAM 3630s
concentration in the range of 1000−5000 ppm. Root-mean-
square error values were obtained by solving the scaled eqs 8−11
with various values of polymer solution concentration and with
different pressure magnitudes used in this study. Figure 2
effectively illustrates the experimental and model-predicted
cumulative mass of oil recovered (g) with respect to time (min)
at a maximum constant pressure of 3.44 MPa. It can be further
analyzed that the root-mean-square error (RMSE) was
estimated to be in the range of 1.1683−1.318. In comparison,
the RMSE between the experimental and commercial reservoir
simulator (CMG) was calculated to be in the span of 1.51−2.36
at a constant maximum pressure of 3.44 MPa. The close
agreement between the experimental, model-predicted, and
CMG-predicted oil production values attests to the accuracy of
the pressure variations and increasing concentration used in this
work, as given in Table 2.

Figure 2. Comparison of experimental, model-predicted, and numeri-
cally simulated (commercial reservoir simulator, CMG) oil recoveries
using 1000−5000 ppm polymer concentration solution at a constant
injection pressure of 3.44 MPa. Table 1. Input Data for Integrated Mathematical Model for

Polymer Flooding

parameter value parameter value

Nj 8 brk 0.2
φ 0.38 Rkmax 1.15
K 1.41e−10 μw 0.458e−4
μo (Pa s) 14.5 ap1 15.426
ρoil (kg/m

3) 977 ap2 0.4228
So 0.743 ap3 0.2749
Sw 0.257 CT (1/Pa) 4.8e−12
Z (m) 0.3 D (m2/s) 5e−12
R (m) 0.125 fa 1
A (m2) 4.9e−4 Bw 1
Kro 0.66 a 30
no 2 b 3800
Krocw 0.9 ρr (kg/m

3) 2720
Swc 0.22 Cfw (1/Pa) 1.22e−11
Sor 0.25 Ccap 1, 2, 3, 4, 5
Co 5e−12 Crp (1/Pa) 1.57e−11
Krw 1.017e−3 CR (1/Pa) 9.38e−12
Rk 1.016 nw 2.3447
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In contrast to the constant injection pressure, it can be
analyzed from Figures 3−7 that the oil production increased

monotonically from 40 g to the maximum of 77 g. The
improvement was significant with increasing polymer concen-
tration and with periodic pressure variation between 2.41 and
3.44MPa. The deviation values (RMSE and% relative error) are
shown in Table 3, which corroborates the accuracy of prediction
even with periodic pressure variations. In these studies, the

incremental oil recoveries with periodic pressure variations may
be attributed to the sudden change in the injection pressure for a

Table 2. Experimental and Calculated Oil Production at a
Constant Injection Pressure of 3.44 MPa versus Time

oil production (g)

polymer
concentration

(ppm) experimental calculated
numerical
software RMSE

relative
error
(%)

1000 40.66 39.47 37.81 1.257 2.91
2000 37.07 36.89 34.53 1.274 0.49
3000 30.15 28.03 26.71 1.168 7.03
4000 28.17 27.41 24.53 1.218 2.70
5000 28.60 26.81 23.56 1.318 6.16

Figure 3. Comparison of experimental, mathematical model-predicted,
and commercial reservoir-simulated (CMG) oil recoveries using 1000
ppm polymer concentration solution with varying injection pressure in
the range of 1.03−3.44 MPa.

Figure 4. Comparison of experimental, mathematical model-predicted,
and commercial reservoir-simulated (CMG) oil recoveries using 2000
ppm polymer concentration solution with varying injection pressure in
the range of 1.03−3.44 MPa.

Figure 5.Comparison of experimental, mathematical model-predicted,
and commercial reservoir-simulated (CMG) oil recoveries using 3000
ppm polymer concentration solution with time-varying injection
pressure in the range of 1.03−3.44 MPa.

Figure 6.Comparison of experimental, mathematical model-predicted,
and commercial reservoir-simulated (CMG) oil recoveries using 4000
ppm polymer concentration solution with temporal injection pressure
varying in the range of 1.03−3.44 MPa.

Figure 7.Comparison of experimental, mathematical model-predicted,
and commercial reservoir-simulated (CMG) oil recoveries using 5000
ppm polymer concentration solution with temporal injection pressure
variation in the range of 1.03−3.44 MPa.
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short time duration (or blips) within the physical reservoir
model. Each such blip in pressure results in altering the fluid
velocity as the polymer solution passes through the porous
media. Due to the periodic variations, the velocity of the
polymer solution increases as they pass through small pore areas,
which eventually gets reflected in a higher oil recovery.
Additionally, the periodic pressure variation can lead to higher
oil recovery through the viscoelastic effect or in the process of
viscoelastic polymer injection. The applicability of the proposed
numerical model was validated to ensure consistent numerical
results before being used to predict the oil production through
comparison with core flooding experiments. The system of
discretized differential equations was solved using the Runge−
Kutta−Fehlberg explicit integration technique with an improved
error estimation of O(h5). For the accuracy and stability of this
numerical method, the time step was selected to be 0.5 s.32,33

Finally, the notion of sensitivity analysis was also introduced
to investigate the robustness of the prescribed mathematical
model in the presence of disparity in the magnitudes of the
associated parameters. The effect of implementing 5% variation
in the magnitudes of permeability, porosity, density, diffusion
coefficient, and number of grid points was analyzed at a time by
keeping others constant with respect to the original computation
geometry. The basis for selecting these parameters was invoked
from the assumptions of considering permeability, porosity,
density, and diffusion coefficient constant while developing the
mathematical model. On the other hand, number of grid points
for the simulation study was adjusted from the user end with the
objective of enhancing the accuracy in simulation profile as well
as minimizing the computation time. Additionally, the
perceptions of root-mean-square error (RMSE) and mean
absolute percentage error (MAPE) served to aggregate the
magnitudes of the errors in predictions at different points of
time. RMSE was evaluated using the following formula

X X

n
RMSE

( )i
n

i i1 obs, model,
2

=
∑ −=

Similarly, MAPE was estimated using the following relation
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X X
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where Xobs,i = experimental values andXmodel,i =model-predicted
values at the ith point of time. Table 3 depicts the impact of
parameter variation on model-predicted final mass of oil and
deviations in the simulation profile with respect to theoretically
calculated values of RMSE and MAPE.
For a +5% deviation in permeability and porosity, there is no

significant change in the final value of the recovered mass, as
Table 4 shows 0.805% deviation with respect to the originally
obtained mass compared to actual value under the prevailing
conditions of pressure and temperature. Similarly, a −5%
variation in density does not reflect major deviation (0.1449%)
in the final recovered mass. On the other hand, a −5% variation
in permeability, porosity, and diffusion coefficient and a +5%
deviation in density register relatively greater deviation with
respect to the final actual value of recovered mass; as the
deviations are within 15% of the original profile, the model can
be considered as highly applicable when simulated with respect
to similar input conditions. Therefore, it can be concluded that
the mathematical model is less sensitive toward the variations in
the parameter values and assumptions of treating the same as
constant can be accepted with a 95% confidence level.
It is also noteworthy that for all of the induced perturbations,

the overall fitness of the model is quite impressive as all of these
cases register significantly low values of RMSE. For all of them,
estimated root-mean-square deviations are significantly less than
10, which essentially validates the suitability of the simulation
profile in real-time scaffold. Besides, all of these cases display
mean absolute percentage deviation less than 20%, which
suffices the suitability of the assumptions under existing state.
Contrarily, a change in the number of grid points (with

keeping other parameters at their predefined values) heavily
affects the simulation profile. The accuracy of the simulation
profile gets diminished as it conveys higher magnitudes of RMSE
(30 with 9 grid points and 14 with 7 grid points) and MAPE
(91% with 9 grid points and 31% with 7 grid points).
Additionally, it delineates a high deviation in the final predicted
value of mass of oil (73% with 9 grid points and 37% with 7 grid
points). Besides, high computation time and low prediction
accuracy in comparison to the experimental profile are recorded
when the simulation study is navigated with a higher number of

Table 3. Experimental and Calculated Oil Production with
Time-Varying Injection Pressure between 3.44 and 2.41MPa
versus Time

oil production (g)

polymer
concentration

(ppm) experimental calculated
numerical
software RMSE

relative
error
(%)

1000 77.05 75.90 52.54 2.347 1.46
2000 76.80 77.76 61.98 1.381 3.89
3000 60.85 59.85 49.14 2.343 1.63
4000 57.34 55.72 48.36 2.375 2.82
5000 56.62 57.78 45.76 1.552 2.05

Table 4. Sensitivity Analysis by Variation in Parameters

parameters of interest original magnitude induced variation RMSE MAPE % change in final recovered mass

permeability (K) 1.41 × 10−10 +5% 2.8335 10.566 0.8053
−5% 2.2526 9.5923 4.4536

porosity (φ) 0.38 +5% 2.8335 13.228 0.8053
−5% 6.1022 23.967 10.5298

density of oil (ρ) 977 +5% 6.1878 24.242 10.6865
−5% 2.6572 12.432 0.1449

diffusion coefficient (D) 5 × 10−12 +5% 4.2473 18.326 5.4157
−5% 2.3134 9.587 5.1257

number of grid points (Nj) 8 9 30.679 91.339 73.4692
7 13.946 31.431 37.6258

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.9b04319
ACS Omega 2020, 5, 5258−5269

5267

http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.9b04319?ref=pdf


grid points (more than 12). Thus, the selection of eight grid
points is quite judicial in the context of deciphering the desired
predictive modeling framework with equitable computation
time.

7. CONCLUSIONS
In this research endeavor, we proposed a mathematical model
incorporating coupled effects of polymer concentration on
solution viscosity, permeability reduction, and inaccessible pore
volume to enhance heavy-oil production in polymer flooding
using constant and time-varying injection pressure as well as
solvent concentration. A numerical solution of this model can be
effectively employed to signify the flow of viscoelastic polymeric
solutions in porous media in a lab-scale setup. The proposed
mathematical model was able to tally experimentally obtained oil
recovery using (1000−5000 ppm) polymer concentration,
maximum constant injection pressure of 3.44 MPa, and with
periodic pressure variations between 2.41 and 3.44 MPa. The
model-predicted, maximized oil production yielded by the
computational algorithm displayed a root-mean-square error
(RMSE) in the range of 1.257−1.318 at a constant injection
pressure of 3.44 MPa. On the other hand, root-mean-square
error with periodic pressure variations was in the span of 1.381−
2.375. Additionally, we have also successfully verified the
experimental oil production with the commercial reservoir
simulator (CMG) both at maximum constant pressure and with
temporal pressure variation. Moreover, we performed a
thorough sensitivity investigation using the scaled numerical
model on important input parameters such as permeability,
porosity, diffusion coefficient of polymer, number of grid points,
and heavy-oil density. The sensitivity results underscore the level
of uncertainty equitable for these input parameters and the
overall confidence in this mathematical model and simulation
study. Numerical results were extremely sensitive to the number
of grid points along the axial direction (z-direction). Overall,
mathematical model, computational algorithm, and simulation
results indicate that solvent injection pressure (maximum
constant pressure and periodic pressure variations between
2.41−3.44 MPa) has considerable potential to enhance heavy-
oil recovery in a laboratory-scale polymer flooding project.
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■ NOMENCLATURE AND UNITS
K absolute permeability of the medium, m2

Kro oil relative permeability
Krw water relative permeability

Rk permeability reduction factor
μp viscosity of polymer, Pa s
φ porosity of the media
nw index of water relative permeability (dimensionless)
Krwro oil relative permeability at irreducible water saturation
Sor residual oil saturation (fraction)
Swc residual water saturation (fraction)
Sw water saturation
Cw compressibility factor of water, 1/Pa
Rkmax permeability reduction parameter
brk permeability reduction parameter
μw viscosity of aqueous solution, Pa s
ap1 viscosity parameter
ap2 viscosity parameter
ap3 viscosity parameter
μo viscosity of oil, Pa s
no index of oil relative permeability
Krocw water relative permeability at residual oil saturation
So oil saturation
Co compressibility factor of oil, 1/Pa
CT total compressibility, 1/Pa
D diffusion coefficient of polymer in free solution, m2/s
fa effective pore volume coefficient
φr porosity under the condition of reference pressure
CR compressibility factor of rock, 1/Pa
C polymer concentration
P injection pressure, MPa
to scaled time, s
Z length of the cylindrical core, m
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