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CONSPECTUS:

Carbon is central to the chemistry of life, and in addition to its fundamental roles as a static 

component of all major biomolecules spanning proteins, nucleic acids, sugars, and lipids, 

emerging evidence shows that small and transient carbon-based metabolites, termed reactive 

carbon species (RCS), are dynamic signaling/stress agents that can influence a variety of 

biological pathways. Recent examples include the identification of carbon monoxide (CO) as an 

ion channel blocker and endogenous formaldehyde (FA) as a one-carbon metabolic unit formed 

from the spontaneous degradation of dietary folate metabolites. These findings motivate the 

development of analytical tools for transient carbon species that can achieve high specificity and 

sensitivity to further investigate RCS signaling and stress pathways at the cell, tissue, and whole-

organism levels. This Account summarizes work from our laboratory on the development of new 

chemical tools to monitor two important one-carbon RCS, CO and FA, through activity-based 

sensing (ABS), where we leverage the unique chemical reactivities of these small and transient 

analytes, rather than lock-and-key binding considerations, for selective detection. Classic 

inorganic/organometallic and organic transformations form the basis for this approach. For 

example, to distinguish CO from other biological diatomics of similar shape and size (e.g., nitric 

oxide and oxygen), we exploit palladium-mediated carbonylation as a synthetic method for CO 

sensing. The high selectivity of this carbonylation approach successfully enables imaging of 

dynamic changes in intracellular CO levels in live cells. Likewise, we apply the aza-Cope reaction 

for FA detection to provide high selectivity for this one-carbon unit over other larger biological 

aldehydes that are reactive electrophiles, such as acetaldehyde and methylglyoxal. By relying on 

an activity-based trigger as a design principle for small-molecule detection, this approach can be 

generalized to create a toolbox of selective FA imaging reagents, as illustrated by a broad range of 

FA probes spanning turn-on and ratiometric fluorescence imaging, positron emission tomography 

imaging, and chemiluminescence imaging modalities. Moreover, these chemical tools have 
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revealed new one-carbon biology through the identification of folate as a dietary source of FA and 

alcohol dehydrogenase 5 as a target for FA metabolism. Indeed, these selective RCS detection 

methods have been expanded to a wider array of imaging platforms, such as metal-complex-based 

time-gated luminescence and materials-based imaging scaffolds (e.g., nanotubes, nanoparticles, 

and carbon dots), with modalities extending to Raman and Rayleigh scattering readouts. This 

pursuit of leveraging selective chemical reactivity to develop highly specific ABS probes for 

imaging of RCS provides not only practical tools for deciphering RCS-dependent biology but also 

a general design platform for developing ABS probes for a broader range of biological analytes 

encompassing elements across the periodic table.

Graphical Abstract

1. INTRODUCTION

The periodic table organizes the elements of life,1 with carbon occupying a central place in 

the formation of fundamental biomolecules such as proteins, nucleic acids, sugars, and lipids 

that sustain living organisms. Beyond these organic building blocks that regulate 

transcription, translation, and metabolism, emerging evidence shows that transient carbon 

metabolites, such as the simplest one-carbon species like carbon monoxide (CO) and 

formaldehyde (FA), can function as dynamic signaling and/or stress molecules for a diverse 

array of biological events. Indeed, the biological activity of CO ranges from regulating 

membrane ion channel function2,3 to intracellular signaling pathways,4–6 often through 
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coordination to metalloprotein targets, including hemoglobin/myoglobin and cytochrome c 

oxidase,6 and FA contributes to one-carbon metabolism and epigenetic pathways.7–12 At the 

same time, aberrant environmental exposure to CO and FA and/or internal dysregulation of 

these reactive carbon species (RCS) is detrimental, providing motivation to develop new 

methods for monitoring CO and FA in biological settings to help decipher their native 

function. The dynamic and transient nature of these one-carbon units, including 

coordination/dissociation of CO to metal centers6 and catalytic FA production/consumption 

from pathways spanning protein and nucleic acid N-demethylation, glutathione redox 

cycling, and folate metabolism,13,14 presents a unique challenge for RCS detection, 

particularly with many competing analytes in the biological milieu that are similar in shape 

and size.

Against this backdrop, we and others have pursued an emerging approach for the design of 

chemical sensors for biological imaging, which we term activity-based sensing (ABS).15–21 

In contrast to conventional sensors that operate by lock-and-key binding and molecular 

recognition, ABS leverages the intrinsic chemical reactivity of the analyte to enable its 

highly specific and sensitive detection with spatial and temporal resolution. Indeed, the 

power of ABS lies in the development of a robust synthetic reaction method, which can then 

be exploited to create a suite of useful reagents that can be tailored for a biological 

application at hand. In this Account, we describe research from our laboratory on the 

development of ABS probes for CO and FA detection and their application to discover new 

one-carbon biology. Figure 1 and Table 1 provide a summary of key chemical probes 

developed in this ongoing program. We also refer the reader to other leading work on 

activity-based detection of larger RCS like methylglyoxal22 and ethylene.23,24

2. CARBON MONOXIDE DETECTION IN LIVE CELLS BY PALLADIUM-

MEDIATED CARBONYLATION

Detection of CO is challenging in large part because of its low abundance and relative 

chemical inertness in biological settings. In eukaryotes, endogenous CO production occurs 

mainly from enzymatic degradation of the heme cofactor by heme oxygenase, releasing CO 

at a rate of ca. 16 μmol/h in humans.3,25 Despite its well-known toxicity via coordination to 

the iron center of heme, CO is a relatively stable molecule in biological environments 

compared with nitric oxide, an isostructural compound that has radical character and 

versatile chemical reactivity.26 Our laboratory developed Carbon Monoxide Probe 1 

(COP-1), which exploits palladium-mediated carbonylation as a synthetic method for CO 

detection in an ABS mode (Figure 2).27 In the absence of CO, Pd serves as a heavy-atom 

fluorescence quencher. Binding of CO to the Pd center triggers a carbonylation reaction, in 

which C–C coupling with concomitant release of Pd leads to a fluorescence increase. 

COP-1 exhibits high selectivity for CO over other biologically relevant small molecules, 

including NO and hydrogen peroxide, with a 10-fold turn-on fluorescence response. This 

reagent is capable of detecting changes in CO levels in living cells, as shown by studies in 

human embryonic kidney (HEK) 293T cells treated with carbon monoxide releasing 

molecule-3 (CORM-3, [Ru(CO)3Cl(glycinate)]). This carbonylation approach has been 

generalized by others for CO detection,28–30 with other chemical probes expanding the 

Ohata et al. Page 3

Acc Chem Res. Author manuscript; available in PMC 2020 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



biocompatible and bioorthogonal nature of palladium chemistry to operate in living 

environments.31–33

3. FORMALDEHYDE DETECTION IN LIVE CELLS BY AZA-COPE 

CHEMISTRY

Formaldehyde is one of the most abundant aldehydes in living systems, with blood 

concentrations estimated to be in the 10–100 μM range.34,35 FA is produced endogenously 

through a diverse array of biochemical pathways spanning protein and nucleic acid N-

demethylation, one-carbon metabolism, and folate metabolism.8 Our laboratory,36 along 

with Chan’s laboratory,37 reported a synthetic ABS method for FA detection using the aza-

Cope rearrangement (Figure 3).38 The aza-Cope reaction offers a prime example showcasing 

the advantages of activity-based detection, as initial Schiff base formation can in principle 

occur with many electrophilic aldehydes,39,40 but when a homoallyl moiety is tethered onto 

the amine group, Schiff base formation with FA (but not other aldehydes because of steric 

effects) leads to a 2-aza Cope rearrangement. The first-generation FA probe FAP-1 shows a 

12-fold turn-on response to FA with high selectivity over other similar carbon electrophiles 

such as acetaldehyde and methylglyoxal, establishing the preference of the sigmatropic 

rearrangement process for FA. FAP-1 is capable of FA detection in live cells, as shown in 

HEK293T and MCF-7 models, and can be used to monitor changes in basal FA levels 

through decreased lysine demethylation induced by small-molecule inhibition of lysine-

specific demethylase 1 (LSD1) (Figure 3c). Patel and co-workers applied FAP-1 to help 

discover spontaneous generation of FA from folate metabolism and showed that oxidation-

sensitive folate derivatives such as dihydrofolate (DHF), tetrahydrofolate (THF), and 5,10-

dimethyltetrahydrofolate (5,10-me-THF) have differing FA-release capacities, connecting 

dietary folate and its regulation to endogenous FA production (Figure 3d).14

4. ACTIVITY-BASED DETECTION OF FORMALDEHYDE IN LIVE ANIMALS 

BY POSITRON EMISSION TOMOGRAPHY

We reported the first example of in vivo FA imaging in live animals through the 

development of Formaldehyde Caged Fluorodeoxyglucose 1 (FAC-FDG-1), a positron 

emission tomography (PET) tracer where the acyclic form of 18F-fluorodeoxyglucose (FDG) 

is masked with a FA-reactive homoallylamine moiety for the 2-aza-Cope reaction (Figure 

4a).41 This strategy complements work from our laboratory on activity-based 18F PET 

probes for H2O2 and hypoxia,42,43 where the FA-triggered uncaging process generates the 

known18F PET tracer FDG.44 FAC-FDG-1 can be used to monitor changes in FA levels in 

PC3 prostate cancer cells as well as in living mice with PC3-derived tumor xenografts. FAC-
FDG-1 detects uptake of FA exclusively in tumor over other healthy organs such as brain, 

heart, and muscle (Figure 4b) upon FA exposure.

5. DESIGN OF A MODULAR ACTIVITY-BASED FORMALDEHYDE TRIGGER

Although the first-generation reagent FAP-1 was capable of selective and sensitive detection 

of endogenous FA levels in cells, its spirocyclization-dependent fluorescence modulation 
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requires this motif to be directly incorporated into the fluorophore scaffold. To expand the 

utility of aza-Cope reactivity for FA detection, we sought to design a new FA-dependent 

reaction trigger that could be more generally applied to multiple types of platforms (Figure 

5).45 To this end, we created a homoallylamine trigger with a self-immolative two-carbon 

linker to cage phenols, where FA would induce imine formation, aza-Cope rearrangement, 

imine hydrolysis, and β-elimination in a stepwise fashion. Further structural optimization of 

the trigger moiety by introduction of two methyl groups at the allylic position dramatically 

promoted the aza-Cope reaction as a result of the Thorpe–Ingold effect.46 Indeed, the 

development of this new activity-based trigger enables late-stage functionalization of 

phenol-containing fluorophores like coumarin, fluorescein, rhodol, and resorufin to furnish a 

panel of FA-reactive fluorophores covering the entire visible color region (Figure 5a). Green 

(FAP498), orange (FAP555), and red (FAP573) probes can be used to monitor changes in 

FA levels in live cells upon exogenous FA exposure. Moreover, FAP573 imaging can detect 

aberrant elevations in FA by genetic knockout of the FA-metabolizing enzyme alcohol 

dehydrogenase 5 (ADH5), identifying a role for this enzyme in regulating cellular FA pools 

(Figures 5b,c), akin to the enzymes superoxide dismutase47 and catalase48 that regulate and 

detoxify the reactive oxygen species superoxide and hydrogen peroxide, respectively.

6. RATIOMETRIC FORMALDEHYDE DETECTION BY AZA-COPE 

CHEMISTRY

Fluorescent probes that operate by an intensity-based turn-on response are of utility, but 

ratiometric probes that can leverage a ratio change of fluorescence excitation and/or 

emission wavelengths upon analyte detection can potentially provide even more quantitative 

information by minimizing potential experimental artifacts derived from variations in probe 

loading, light intensity, and sample thickness.18 To this end, we designed Ratiometric 

Formaldehyde Probes 1 and 2 (RFAP-1 and RFAP-2), a first-generation set of indicators 

based on a coumarin scaffold where the FA-mediated transformation of homoallylamine into 

an aldehyde through aza-Cope chemistry results in a change in the excitation wavelength 

from 420 to 470 nm (Figure 6a,b).49 Our design exploited the electronic change in the 

donor–acceptor properties of the coumarin scaffold when the electron-rich homoallylamine 

group is converted to the more electron-poor aldehyde moiety after the aza-Cope 

rearrangement and hydrolysis. RFAP-2, bearing a chloroalkylether chain, shows 

substantially enhanced FA-sensing ability in a variety of cell lines (HeLa, MCF-7, 

MCF-10A, RKO, SH-SY5Y, and U-2OS), presumably due to better cellular retention and 

staining. Finally, RFAP-2 can also be used to detect changes in basal FA levels with genetic 

disruption of ADH5 (Figure 6c).

7. CHEMILUMINESCENT ACTIVITY-BASED SENSING OF 

FORMALDEHYDE IN LIVE CELLS AND ANIMALS

With a growing toolbox of chemical probes for FA detection in cells and animals, we 

initiated a collaboration with Shabat and co-workers to develop chemiluminescent reagents 

that could operate in both cells and animals.50 Specifically, we functionalized a Schaap’s 

dioxetane-based chemiluminescent platform bearing a phenol moiety51,52 with the same 
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general FA-responsive trigger we utilized for fluorescence imaging (Figure 7). Through 

tandem aza-Cope rearrangement and β-elimination steps upon interaction with the FA 

analyte, the released phenol undergoes chemiexcitation through liberation of an emissive 

methyl ester compound from the dioxetane scaffold (Figure 7a). Modulation of the π-

conjugation system of the dioxetane moiety facilitated creation of green (CFAP540) and red 

(CFAP700) chemiluminescence with high FA sensitivity and selectivity. CFAP540 and 

CFAP700 are effective probes for visualizing FA levels in live cells and mice, respectively. 

In particular, CFAP700 identified elevations in FA levels upon treatment of live mice with 

tetrahydrofolate (THF), establishing the susceptibility of folate derivatives to release FA in 

vivo (Figure 7b).

8. CONCLUDING REMARKS

In this Account, we have described the development of activity-based sensing (ABS) 

methods for advancing studies of reactive carbon species (RCS), focusing on carbon 

monoxide (CO) and formaldehyde (FA) as emerging one-carbon metabolites in biology. 

Leveraging the unique structures and reactivities of these transient analytes provides 

opportunities to take a synthetic methods approach for biological discovery. Indeed, we have 

utilized classic palladium-mediated carbonylation and aza-Cope rearrangement reactions to 

form the basis for selective activity-based detection of CO and FA, respectively, and these 

versatile sensing mechanisms have been generalized and expanded into a variety of different 

imaging platforms,28–30,38,53,54 including multicolor and ratiometric fluorescence,49,55,56 

positron emission tomography-based detection,41 and chemiluminescence.50 New biological 

principles of one-carbon biology learned include the identification of folate derivatives as a 

dietary FA source and specific folate metabolites that release FA during metabolism, as well 

as alcohol dehydrogenase 5 as a regulator of FA fluxes, akin to the enzymes superoxide 

dismutase and catalase that regulate superoxide and hydrogen peroxide, respectively. In 

addition to new synthetic opportunities to refine signal-to-noise responses and push the 

limits of spatial and temporal resolution to the subcellular organelle and single-molecule 

levels as well as expanding RCS imaging to a wider range of imaging modalities for 

translational studies, application of these imaging probes and related activity-based chemical 

tools can help identify the targets and underlying biochemical pathways of these transient 

one-carbon metabolites and larger RCS,57–59 which will certainly be a worthwhile field of 

study. Recent examples that expand this aza-Cope ABS method to other platforms and 

modalities include ruthenium(II) complex-based time-gated luminescence imaging60 and 

material-based sensors such as carbon dots,53,61 which offer promising emerging approaches 

for the study of FA in biological systems. In a broader sense, the expansion of ABS methods 

to study and utilize elements across the periodic table offers a powerful approach for 

biological discovery.20,16,21
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Figure 1. 
Development of activity-based sensing (ABS) probes for carbon monoxide (CO) and 

formaldehyde (FA).
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Figure 2. 
Activity-based sensing of CO through palladium-mediated carbonylation. (a) CO detection 

with the BODIPY-based palladium complex COP-1. (b) Fluorescence spectra of 1 μM 

COP-1 in the presence of 50 μM CORM-3 over 120 min (red trace). (c) Confocal images of 

HEK293T cells stained with 1 μM COP-1 at 37 °C for 30 min. The bar graph presents mean 

fluorescence intensities, with error bars representing the standard error of the mean (SEM) 

(n = 3). Adapted from ref 27. Copyright 2012 American Chemical Society.

Ohata et al. Page 12

Acc Chem Res. Author manuscript; available in PMC 2020 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
First-generation ABS fluorescence probes for FA based on the aza-Cope rearrangement 

reaction. (a) Reaction scheme for FA detection with the silicon rhodamine-based dye FAP-1. 

(b) Fluorescence response of 10 μM FAP-1 to 100 μM FA over 120 min (red trace). (c) 

Confocal microscopy images of MCF7 cells stained with 10 μM FAP-1 at 37 °C for 60 min: 

(left) vehicle (Ctrl) with no additive; (right) 20 μM tranylcypromine (TCP), an inhibitor of 

the demethylase enzyme lysine-specific demethylase 1 (LSD1). The bar graph presents 

fluorescence intensities (mean ± SEM, n = 6; *, P ≤ 0.005). (d) FA-dependent fluorescence 

responses of folate derivatives analyzed by FAP-1, showing that THF, DHF, and 5,10-me-

THF derivatives are high folate producers. The bar graph presents fluorescence intensities 

(mean ± SEM, n = 3). Adapted from refs 14 and 36. Copyright 2015 American Chemical 

Society.
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Figure 4. 
ABS probe for in vivo FA imaging using positron emission tomography (PET). (a) 

Mechanism for the detection of FA using the [18F]fluorodeoxyglucose probe FAC-FDG-1. 

(b) (left) 18F PET images of xenograft mice treated with FAC-FDG-1 and (right) bar graphs 

presenting quantification of 18F uptake in different organs (mean ± SEM, n = 3). Statistical 

analyses were performed with a two-tailed Student’s t test (*, P < 0.05). Panel (b) adapted 

from ref 41. Published by The Royal Society of Chemistry.
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Figure 5. 
Next-generation ABS fluorescence probes for FA that share a general activity-based trigger 

operating through tandem aza-Cope rearrangement and β-elimination reactions. (a) (top) 

Reaction scheme for the detection of FA by the generalizable FA trigger and (bottom) 

structures of a color palette of FA probes. (b) Confocal microscopy images of wild-type 

(WT) HEK293T cells stained with FAP573 (10 μM) for 60 min in the presence (1000 μM) 

or absence of FA. (c) Confocal microscopy images of near-haploid (HAP-1) alcohol 

dehydrogenase knockout (Adh5 −/−) cells stained with FAP573 (10 μM) for 60 min in the 

presence (100 μM) or absence of FA. In (b) and (c), bar graphs present fluorescence 

intensities (mean ± SEM, n = 3; ***, P < 5 × 10−5). Adapted from ref 45. Copyright 2017 

American Chemical Society.
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Figure 6. 
Ratiometric ABS probes for FA. (a) Reaction scheme for FA detection by ratiometric probes 

RFAP-1 and RFAP-2. (b) Excitation spectra for 10 μM RFAP-2 responding to 100 μM FA 

at 0, 30, 60, 90, and 120 min (red, yellow, green, blue, and purple curves, respectively). (c) 

Confocal microscopy images of near-haploid (HAP-1) cells stained with 0.5 μM RFAP-2 for 

60 min. WT, wild type; ADH5 −/−, alcohol dehydrogenase 5 knockout cells. Bar graphs 

present normalized excitation ratios (mean ± SEM, n = 5; *, P < 0.05). Adapted from ref 49. 

Published by The Royal Society of Chemistry.
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Figure 7. 
Chemiluminescent ABS probes for FA. (a) Reaction scheme for the detection of FA by 

chemiluminescent probes CFAP540 and CFAP700. (b) Chemiluminescence imaging of 

mice injected with 100 μM CFAP700 in the presence of FA or tetrahydrofolate (THF) at the 

indicated concentrations compared with vehicle. Bar graphs present total photon fluxes 

integrated from 0 to 25 min postinjection (mean ± SEM, n = 3–4). Statistical analyses were 

performed with a two-tailed Student’s t test (*, P ≤ 0.05; **, P ≤ 0.01). Adapted with 

permission from ref 50. Copyright 2018 Wiley-VCH.
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