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Abstract

Recently, machine learning (ML) has established itself in various worldwide benchmarking 

competitions in computational biology, including Critical Assessment of Structure Prediction 

(CASP) and Drug Design Data Resource (D3R) Grand Challenges. However, the intricate 

structural complexity and high ML dimensionality of biomolecular datasets obstruct the efficient 

application of ML algorithms in the field. In addition to data and algorithm, an efficient ML 

machinery for biomolecular predictions must include structural representation as an indispensable 

component. Mathematical representations that simplify the biomolecular structural complexity and 

reduce ML dimensionality have emerged as a prime winner in D3R Grand Challenges. This review 

is devoted to the recent advances in developing low-dimensional and scalable mathematical 

representations of biomolecules in our laboratory. We discuss three classes of mathematical 

approaches, including algebraic topology, differential geometry, and graph theory. We elucidate 

how the physical and biological challenges have guided the evolution and development of these 

mathematical apparatuses for massive and diverse biomolecular data. We focus the performance 

analysis on the protein-ligand binding predictions in this review although these methods have had 

tremendous success in many other applications, such as protein classification, virtual screening, 

and the predictions of solubility, solvation free energy, toxicity, partition coefficient, protein 

folding stability changes upon mutation, etc.
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I Introduction

Recently, Google’s DeepMind has caught the world’s breath in winning the 13th Critical 

Assessment of Structure Prediction (CASP13) competition using its latest artificial 

intelligence (AI) system, AlphaFold1. The goal of the CASP is to develop and recognize the 

state-of-the-art technology in constructing protein three-dimensional (3D) structure from 

protein sequences, which are abundantly available nowadays. While many people were 
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surprised by the power of AI when AlphaGo beat humans for the first time in the highly 

intelligent Go game a few years ago, it was not clear whether AI could tackle scientific 

challenges. Since CASP has been regarded as one of the most important challenges in 

computational biophysics, AlphaFold’s dominant win of 25 out of 43 contests ushers in a 

new era of scientific discovery.

The algorithms underpinning ALphaFold’s AI system are machine learning (ML), including 

deep learning (DL). Indeed, ML is one of the most transformative technologies in history. 

The combination of big data and ML has been referred to as both the “fourth industrial 

revolution”2 and the “fourth paradigm of science”3. However, this two-element combination 

may not work very well for biological science, particularly, biomolecular systems because of 

the intricate structural complexity and the intrinsic high dimensionality of biomolecular 

datasets4. For example, a typical human protein-drug complex has so many possible 

configurations that even if a computer enumerates one possible configuration per second, it 

would still take longer than the universe has existed to reach the right configuration. The 

chemical and pharmacological spaces of drugs are so large that even all the world’s 

computers put together do not have enough power for automated de novo drug design due to 

additional requirements in solubility, partition coefficient, permeability, clearance, toxicity, 

pharmacokinetics, and pharmacodynamics, etc.

An appropriate low-dimensional representation of biomolecular structures is required4–9 to 

translate the complex structural information into machine learning feature vectors or 

mathematical representations as shown in Fig. 2. As a result, various machine learning 

algorithms, particularly relatively simple ones without complex internal structures, can work 

efficiently and robustly with biomolecular data.

Descriptors or fingerprints are indispensable even for small molecules – they play a 

fundamental role in quantitative structure-activity relationship (QSAR) and quantitative 

structure-property relationships (QSPR) analysis, virtual screening, similarity-based 

compound search, target molecule ranking, drug absorption, distribution, metabolism, and 

excretion (ADME) prediction, and other drug discovery processes. Molecular descriptors are 

property profiles of a molecule, usually in the form of vectors with each vector component 

indicating the existence, the degree or the frequency of one certain structure feature10–12. 

Various descriptors have been developed in the past few decades13–15. Most of them are 2D 

ones that can be extracted from molecular simplified molecular-input line-entry system 

(SMILES) strings without 3D structure information. High dimensional descriptors have also 

been developed to utilize 3D molecular structures and other chemical and physical 

information16. There are four main categories of 2D descriptors: 1) substructure keys-based 

fingerprints, 2) topological or path-based fingerprints, 3) circular fingerprints, and 4) 

pharmacophore fingerprints. Substructure keys-based fingerprints, such as molecular access 

system (MACCS)17, are bit strings representing the presence of certain substructures or 

fragments from a given list of structural keys in a molecule. Topological or path-based 

descriptors, e.g., FP218, Daylight19 and electro-topological state (Estate)20, are designed to 

analyze all the fragments of a molecule following a (usually linear) path up to a certain 

number of bonds, and then hashing every one of these paths to create fingerprints. Circular 

fingerprints, such as extended-connectivity fingerprint (ECFP)13, are also hashed topological 
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fingerprints but rather than looking for paths in a molecule, they record the environment of 

each atom up to a pre-defined radius. Pharmacophore fingerprints include the relevant 

features and interactions needed for a molecule to be active against a given target, including 

2D-pharmacophore21, 3D-pharmacophore21 and extended reduced graph (ERG)22 

fingerprints as examples.

However, typically designed for 2D SMILES strings, the aforementioned small-molecular 

descriptors do not work well for macromolecules that have complex 3D structures. The 

complexity of biomolecular structure, function, and dynamics often makes the structural 

representation inconclusive, inadequate, inefficient and sometimes intractable. These 

challenges call for innovative design strategies for the representation of macromolecules.

Popular molecular mechanics models use bonded terms for describing covalent bond 

interactions and non-bonded terms for representing long-range electrostatic and van der 

Waals effects. As a result, the early effort has been focused on exploring related physical 
descriptors to account for hydrogen bonds, electrostatic effects, van der Waals interactions, 

hydrophilicity, and hydrophobicity. These descriptors have been applied to many 

macromolecular systems, such as protein-protein interaction hot spots6,7,23,24. Similar 

physical descriptors in terms of van der Waals interaction, Coulomb interaction, electrostatic 

potential, electrostatic binding free energy, reaction field energy, surface areas, volumes, etc, 

were applied by us to predictions of protein-ligand affinity25 and solvation free energy26,27. 

However, the major limitation of physical descriptors is that they highly depend on existing 

molecular force fields, such as radii, partial charges, polarizability, dielectric constant, and 

van der Waals well depth, and thus could inherit errors from upstream physical models. As a 

result, these descriptors are often not as competitive as state-of-art force-field-free models 

based on advanced mathematics9,28.

Topology analyzes space, connectivity, dimension, and transformation. Topology offers the 

highest level of abstraction and thus could provide an efficient tool for tackling high-

dimensional biological data30–32. However, topology typically oversimplifies geometric 

information. Persistent homology is a new branch of algebraic topology that is able to bridge 

geometry and topology31,33,34. This approach has been applied to macromolecular 

analysis35–45. Nonetheless, it neglects critical chemical/biological information when it is 

directly applied to complex biomolecular structures. Recently, we have introduced element-

specific persistent homology to retain critical biological information during the topological 

abstraction, rendering a potentially revolutionary representation for biomolecular data46–49.

Graph theory studies the modeling of pairwise relations between vertices or nodes50. 

Geometric graphs admit geometric objects as graph nodes while algebraic graphs utilize 

algebraic techniques to study the relations between nodes. Both geometric graph theory and 

algebraic graph theory have been widely applied to biomolecular systems8,51–53. For 

example, spectral graph theory has been used to represent protein Cα atoms as an elastic 

massand-spring network in Gaussian network model (GNM)54 and anisotropic network 

model (ANM)55. Extremal graph theory concerns unavoidable patterns and structures in 

graphs with given density or distribution. It has potential applications to chromosome 

packing and Hi-C data. However, most graph theory methods suffer from the neglecting of 
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critical biological information and non-covalent interactions, and sometimes, inappropriate 

distance metrics for biomolecular interactions. In the past few year, we have developed 

weighted graphs56–62, multiscale graphs60,63, and colored graphs64,65 for modeling 

biomolecular systems. These new graph theory methods are found to be some of the most 

powerful representations of macromolecules64–66.

How biomolecules assume complex structures and intricate shapes and why biomolecular 

complexes admit convoluted interfaces between different parts can be naturally described by 

differential geometry, a mathematical subject drawing on differential calculus, integral 

calculus, algebra, and differential equation to study problems in geometry or differentiable 

manifolds. Einstein used this approach to formulate his general theory of relativity. Curve 

and curvature analysis has been applied to the shape analysis of molecular surfaces67 and 

protein folding trajectories68,69. In the past two decades, we have developed a variety of 

differential geometry models for biomolecular surface analysis70–75, solvation 

modeling76–85, ion-channel study80–82,86,87, protein binding pocket detection88, and protein-

ligand binding affinity prediction89. Differential geometry-based representations are able to 

offer a high-level abstraction of macromolecular structures89.

We have pursued differential geometry, algebraic topology, graph theory and other 

mathematical methods, such as de Rham-Hodge theory90,91, for modeling, analysis and 

characterization of biomolecular systems for near two decades. Using these representations, 

we have studied a number of biomolecular systems and problems, including macromolecular 

electrostatics, implicit solvent models, ion channels, protein flexibility, geometric analysis, 

surface modeling, and multiscale analysis. Our mathematical representations have evolved 

and improved over time. In 2015, we proposed one of the first integration of persistent 

homology and machine learning and applied this new approach to protein classification. 

Since then, we have demonstrated the superiority of our mathematical representations over 

other existing methods in a wide variety of other applications, including the predictions of 

protein thermal fluctuations59,60,63,65, toxicity92, protein-ligand binding affinity25,47,64,66,89, 

mutation-induced protein stability changes46,48, solvation26,27,79,93, solubility94, partition 

coefficient94 and virtual screening49. As shown in Fig. 3, the aforementioned mathematical 

approaches have enabled us to win many contests in D3R Grand Challenges, a worldwide 

competition series in computer-aided drug design28.

Due to the abstract nature of mathematical representations and the fact that our results are 

scattered over a large number of subjects and topics it is difficult for the researcher who has 

no formal training in mathematics to use these methods. Therefore, there is a pressing need 

to elucidate these methods in physical terms, provide simplified representations, and 

interpret their working principles. To this end, we provide a review of our mathematical 

representations. Our goal is to offer a coherent description of these methods for protein-

ligand binding interactions so that the reader can better understand how to use advanced 

mathematics for describing macromolecules and their interaction complexes.

Like small molecular descriptors, macromolecular representations, once designed, can be 

applied to different tasks in principle. However, many different types of applications require 

specially designed macromolecular representations. For example, in protein B-factor 
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prediction, one deals with the atomic property, while in predicting protein stability changes 

upon mutation, solubility, etc. one considers molecular properties. Additionally, in protein-

ligand binding affinity predictions, one deals with the property of protein-ligand complexes. 

Therefore, different mathematical representations are required to tackle atomic, molecular, 

and molecular complex properties. Another complication is due to different systems. For 

example, representations for the binding affinity of protein-ligand interactions should differ 

from those for the binding affinity of protein-protein interactions or protein-nucleic acid 

interactions. The other hindrance arises from specific tasks. For example, protein 

classification, one concerns secondary structures and needs to design macromolecular 

representations to capture secondary structural differences. In general, macromolecules and 

their interactive complexes are inherent of multiscale, multiphysics, multi-dynamics and 

multifunction. Their descriptions can vary from cases to cases. We cannot cover all possible 

situations in this review.

Biologically, protein-ligand binding interactions are tremendously important for living 

organisms. ligand-receptor agonist binding is known to initiate a vast variety of molecular 

and/or cellular processes, from transmitter-mediated signal transduction, hormone or growth 

factor regulated metabolic pathways, stimulus-initiated gene expression, enzyme production, 

to cell secretion. Therefore, the understanding of protein-ligand binding interactions is a 

central issue in biological sciences, including drug design and discovery. Despite much 

research in the past, the molecular mechanism of protein-ligand binding interactions is still 

elusive. A prevalent view is that protein-ligand binding is initiated through protein-ligand 

molecular recognition, synergistic corporation, and conformational changes. 

Computationally, the prediction of protein-ligand binding affinity is sufficiently challenging. 

Consequently, we focus on mathematical representations for protein-ligand binding affinity 

predictions to illustrate their design and application in the present review.

II Methods

In this section, we briefly review three classes of mathematical representations, i.e., 

representations constructed from algebraic topology, graph theory, and differential geometry.

II.A Algebraic topology-based methods

II.A.1 Background—Topology dramatically simplifies geometric 

complexity23,30–32,95–98. The study of topology deals with the connectivity of different 

components in space and characterizes independent entities, rings, and higher dimensional 

faces within the space99. For example, simplicial homology, a type of algebraic topology, 

concerns the identification of topological invariants from a set of discrete node coordinates 

such as atomic coordinates in a protein. For a given (protein) configuration, independent 

components, rings, and cavities are topological invariants and their numbers are called 

Betti-0, Betti-1, and Betti-2, respectively, see Fig. 4. To study topological invariants in a 

discrete dataset, simplicial complexes are constructed by gluing simplices under various 

settings, such as the Vietoris-Rips (VR) complex, Čech complex or alpha complex. 

Specifically, a 0-simplex is a vertex, a 1-simplex an edge, a 2-simplex a triangle, and a 3-

simplex a tetrahedron, as illustrated in Fig. 4. Algebraic groups built on these simplicial 
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complexes are used in simplicial homology to systematically compute various Betti 

numbers. There is also cubical complex99 built upon volumetric data, including those from 

biomolecules44.

However, conventional topology or homology is truly free of metrics or coordinates, and 

thus retains too little geometric information to be practically useful. Persistent homology is a 

relatively new branch of algebraic topology that embeds multiscale geometric information 

into topological invariants to achieve a topological description of geometric details31,33. It 

creates a sequence of topological spaces of a given object by varying a filtration parameter, 

such as the radius of a ball or the level set of a surface function as shown in Fig. 4. As a 

result, persistent homology can capture topological structures continuously over a range of 

spatial scales. Unlike commonly used computational homology which results in truly metric 

free representations, persistent homology embeds essential geometric information in 

topological invariants, e.g., topological representations or barcodes100 shown in Fig. 4, so 

that “birth” and “death” of isolated components, circles, rings, voids or cavities can be 

monitored at all geometric scales by topological measurements. A schematic illustration of 

our persistent homology-based machine learning predictions is given in Fig. 6. Key concepts 

are briefly discussed below. More mathematical detail can be found in the literature31, 

including ours37,38.

Simplicial complex: A simplicial complex is a topological space consisting of vertices 

(points), edges (line segments), triangles, and their high dimensional counterparts. Based on 

the simplicial complex, simplicial homology can be defined and used to analyze topological 

invariants. The essential building blocks of geometry induced simplicial complex are 

simplices. Specifically, let v0, v1, v2, … , vk be k +1 affinely independent points; a 

(geometric) k-simplex σk = {v0, v1, v2, … , vk} is the convex hull of these points in 

ℝN (N ≥ k), and can be expressed as

σk = λ0v0 + λ1v1 + ⋯ + λkvk | ∑
i = 0

k
λi = 1; 0 ≤ λi ≤ 1, i = 0, 1, ⋯, k .

An i-dimensional face of σk is defined as the convex hull formed by the subset of i+1 

vertices from σk (k ≥ i). Geometrically, a 0,1,2, and 3-simplex corresponds to a vertex, an 

edge, a triangle, and a tetrahedron, respectively. A simplicial complex K is a finite set of 

simplices such that any face of a simplex from K is also in K and the intersection of any two 

simplices in K is either empty or a face of both. The underlying space |K| is a union of all the 

simplices of K, i.e., |K | = ∪σ ∈ Kσ.

Homology: The basic algebraic structure, chain groups, are defined for simplicial complexes 

so that homology can be characterized. A k-chain [σk] is a formal sum ∑iαiσik of k-simplices 

σik. The coefficients αi are often chosen in an algebraic field (typically, ℤ2). The set of all k-

chains of the simplicial complex K together with addition operation forms an abelian group 

Ck K, ℤ2 . The homology of a topological space is represented also by a series of abelian 

groups, constructed based on these spaces of chains connected by boundary operators. The 
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boundary operator on chains ∂k : Ck → Ck−1 are defined by linear extension from the 

boundary operators on simplices. The boundary of a k-simplex σk = {v0, v1, v2, … , vk} is 

defined to be the alternating sum of its codimension-1 faces, 

∂kσk = ∑i = 0
k ( − 1)i v0, v1, ⋯, vi, ⋯, vk , where v0, v1, ⋯, vi, ⋯, vk  is the (k−1)-simplex 

excluding vi from the vertex set. A key property of the boundary operator is that ∂k−1∂k = Ø 

and ∂0 = Ø. The k-cycle group Zk and the k-boundary group Bk are the subgroups of Ck 

defined as, Zk = Ker∂k = c ∈ Ck | ∂kc = Ø , Bk = Im∂k + 1 = ∂k + 1c |c ∈ Ck + 1 .

An element in the k-th cycle group Zk (or the k-th boundary group Bk) is called a k-cycle (or 

the k-boundary, resp.). As the boundary of a boundary is always empty ∂k−1∂k = Ø, one has 

Bk ⊆ Zk ⊆ Ck. Topologically, a k-cycle is a union of k dimensional loops (or closed 

membranes). The k-th homology group Hk is the quotient group generated by the k-cycle 

group Zk and k-boundary group Bk: Hk = Zk/Bk. Two k-cycles are called homologous if they 

differ by a k-boundary element. From the fundamental theorem of finitely generated abelian 

groups, the k-th homology group Hk can be expressed as a direct sum, 

Hk = Z ⊕ ⋯ ⊕ Z ⊕ Zp1 ⊕ ⋯ ⊕ Zpn = Zβk ⊕ Zp1 ⊕ ⋯ ⊕ Zpn, where βk, the rank of the free 

subgroup, is the k-th Betti number. Here Zpi is torsion subgroup with torsion coefficients {pi|

i = 1, 2, … , n}, powers of prime numbers. The Betti number can be simply calculated by βk 

= rank Hk = rank Zk−rank Bk. The geometric interpretations of Betti numbers in ℝ3 are as 

follows: β0 represents the number of isolated components, β1 is the number of independent 

one-dimensional loops (or circles), and β2 describes the number of independent two-

dimensional voids (or cavities). Together, the Betti numbers {β0, β1, β2,…} describes the 

intrinsic topological property of a system.

Persistent homology: For a simplicial complex K, a filtration is defined as a nested 

sequence of subcomplexes, Ø = K0 ⊆ K1 ⊆ … ⊆ Km = K. Generally speaking, abstract 

simplicial complexes generated from a filtration give a multiscale topological representation 

of the original space, from which related homology groups can be evaluated to reveal 

topological features. Specifically, upon passing the previous sequence to homology, we 

obtain a sequence of vector spaces connected by homomorphisms: H*(K0) → H*(K1) → … 

→ H*(Km). Following this sequence of homology groups, sometimes new homology classes 

are created (i.e., without pre-image under the map H*(Ki) → H*(Ki+1)), and sometimes 

certain homology classes are destroyed (i.e., they have trivial image under H*(Kj) → 
H*(Kj+1)). The concept of persistence is introduced to measure the “life-time” of such 

homological features. The results can be summarized in the persistence barcodes (or 

equivalently persistence diagrams), consisting of a set of intervals [x, y) with the beginning 

and ending values representing the birth and death of homology classes. The introduction of 

filtration is of essential importance and directly leads to the invention of persistent 

homology. Generally speaking, abstract simplicial complexes generated from a filtration 

give a multiscale representation of the corresponding topological space, from which related 

homology groups can be evaluated to reveal topological features. Furthermore, the concept 

of persistence is introduced for long-lasting topological features. However, we have shown 

that short-lived topological features are also important for biomolecular systems37. The p-

persistent of k-th homology group, Ki, is
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Hk
i, p = Zk

i / Bk
i + p⋂Zk

i . (1)

Through the study of the persistence pattern of these topological features, the so-called 

persistent homology is capable of capturing the intrinsic properties of the underlying space 

solely from a discrete point set.

Filtration: Given a set of discrete sample points, there are different ways to construct 

simplicial complexes. Typical constructions are based on the intersection patterns of the set 

of expanding balls centered at the sample points, such as Čech complex, (Vietoris-)Rips 

complex and alpha complex101,102. The corresponding topological invariants, e.g., the Betti 

numbers, could be different depending on the choice of simplicial complexes. A common 

filtration for a set of atomistic data of a macromolecule is constructed by enlarging a 

common atomic radius r from 0. As the value of r increases, the solid balls will grow and 

new simplices can be defined through the overlaps among the set of balls. In Figure 4, we 

illustrate this process by a set of points. In Fig. 5, we demonstrate the persistent homology 

analysis of different aspects of a protein-ligand complex using the barcode representation.

II.A.2 Challenge—Conventional topology and homology are independent of metrics or 

coordinates and thus retain too little geometric information to be practically useful in most 

biomolecular systems. While persistent homology incorporates more geometric information, 

it typically treats all atoms in a macromolecule indifferently, which fails to recognize 

detailed chemical, physical, and biological information35,36. We introduced persistent 

homology as a quantitative tool for analyzing biomolecular systems37–42,44,45. In particular, 

we introduced one of the first topology-based machine learning algorithms for protein 

classification in 201543. We further introduced element specific persistent homology, i.e., 

element-induced topology, to deal with massive and diverse bimolecular datasets43,45–48. 

Moreover, we introduced multi-level persistent homology to extract non-covalent-bond 

interactions49. Furthermore, physics-embedded persistent homology was proposed to 

incorporate physical laws into topological invariants49. These new topological tools are 

potentially revolutionary for complex biomolecular data analysis9.

II.A.3 Element specific persistent homology—Many types of interactions exist in a 

protein-ligand complex, for example, hydrophobic effects, hydrogen bonds, and 

electrostatics. Due to the mechanisms of these interactions, they happen under different 

geometric distances. Persistent homology, when applied to all the atoms, however, will 

mostly capture the interactions among nearest neighbors and hinder the detection of long-

range interactions. Additionally, it does not distinguish the difference between different 

element types and their combinations and thus, neglects important chemistry and biology. 

Element specific persistent homology provides a simple yet effective solution to these 

issues. Instead of computing persistent homology for the whole molecule once, we perform 

persistent homology computations on a collection of subsets of atoms. For example, 

persistent homology on only carbon atoms characterizes the hydrophobic interaction 

network and the hydrogen bond interactions can be described by persistent homology on the 

set of nitrogen and oxygen atoms. Although different types of interactions have different 
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characteristics, they may also influence each other. This encourages the iteration over all 

combinations of atom types which may result in large computation cost. Fortunately, as 

Vietoris-Rips filtration is often used to characterize the interaction networks, we only need 

to generate the filtered simplicial complex once for all atoms and perform persistent 

homology computation on the subcomplexes of the filtered simplicial complex.

II.A.4 Multi-level persistent homology—Vietoris-Rips complex based only on 

pairwise distance is a widely used realization of filtration. When directly feeding the 

Euclidean distance between atoms to Rips complex construction, the interactions of interest 

such as electrostatic interactions can be flushed away by covalent bonds which usually have 

shorter lengths. This motivates us to incorporate a simple yet effective strategy to recover 

these important interactions by masking the original Euclidean distance matrix. Specifically, 

we keep only the entries corresponding to the interaction of interest and set every other entry 

to infinity in the distance matrix. For example, we set distances between atoms from the 

same component (protein or ligand) to infinity to focus on the interactions between the 

protein and ligand. This strategy was found especially useful when dealing with ligands 

alone which often have a much simpler structure than the proteins or the protein-ligand 

complexes. We call this approach to small molecules multi-level persistent homology of 

level n where we set the distance between two atoms to infinity if the shortest path between 

them through the covalent bond network is at most of the length n. This treatment has led to 

powerful predictive tools in tasks only explicitly involving small molecules49,92.

II.A.5 Physics-embedded persistent homology—All the topological methods 

discussed above are force-field-free approaches. In other words, they depend only on atomic 

coordinates and types without the need for molecular force field information. However, 

despite being insufficient, non-unique, and subject to errors, many biophysical models offer 

important approximations to the ground truth of biological science and reflect some of our 

best understandings of the biological world. Therefore, it is crucial to develop the so-called 

“physics-embedded” topology which incorporates physical models into topological 

invariants.

We are particularly interested in physical models that quantify the interaction strengths and 

directions. To characterize electrostatics interactions, we can construct a Rips filtration based 

on the Coulomb’s potential,

Fele(i, j) = 1
1 + exp −cqiqj/dij

, (2)

where the filtration value Fele(i, j) for the edge between atom i and j depends on their partial 

charges qi and qj and their geometric distance dij 49. The part due to the Coulomb’s potential 

in Eq. (2) can be substituted by other models, such as the van der Waals potential. We can 

also use cubical persistent homology103 to characterize the charge density as volumetric 

data, for example, one estimated from point charges,

μc(r) = ∑
i

qiexp − r − ri /ηi , (3)
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where ri is the position of atom i and ηi is a characteristic bond-length parameter.

In a more general setting, there often are available properties defined on the simplices in the 

simplicial complex representing the protein-ligand complex. The interaction strength 

characterized by physical models as in Eq. 2 is indeed a property defined on the 1-simplices 

(edges). There are also various properties given on the 0-simplices (nodes/atoms) including 

atomic weight, atomic radii, and partial charges. Another way of incorporating these 

properties into the topological representation is to attach additional attributes to the 

persistence barcodes obtained through geometric filtration. We developed a method called 

enriched barcode through cohomology theory104. The usage of cohomology has led to 

efficient algorithms105 as well as richer representations106. We are unable to elaborate on the 

details of cohomology here and the interested reader is referred to the aforementioned 

references.

Consider a persistence barcode {[bi, di)}i ∈ I of dimension k obtained by a geometric based 

filtration of the molecular system, for example, the Vietoris-Rips filtration built upon the 

Euclidean distance between atoms in space. Let K(x; k) be the set of k-simplices of the 

simplicial complex in the corresponding filtration with the filtration parameter x. Our goal is 

to annotate each persistence pair [bi, di) in the barcode with the non-geometric information 

provided by f :K(∞, k) ℝ. We proposed to embed such non-geometric information via 

cohomology104. Specifically, for an x ∈ [bi, di), let ωi,x be a real k-cocycle lifted from the 

representative cocycle from the persistent (co)homology computation106. A smoothed 

cocycle ωi, x = α + ωi, x can be obtained by solving the following problem,

α = argmin
α ∈ Ck − 1(K(x), ℝ)

ℒ ωi, x + dα 2
2, (4)

where Ck − 1(K(x), ℝ) is the real (k−1)-cochain on K(x), d is the coboundary operator, and ℒ
is an Laplacian operator. This smoothed representative k-cocycle ω annotates the simplices 

with weights which can be used to describe the non-geometric information on this 

persistence pair,

fi*(x) = ∑
σ ∈ K(x; k)

f(σ) ωi, x(σ) / ∑
σ ∈ K(x; k)

ωi, x(σ) . (5)

Intuitively, this obtained function fi*: bi, di ℝ describes the average value of f near the k-

dimensional hole associated to the persistence pair [bi, di). We call this object enriched 

barcode bi, di , fi* i ∈ I 104. In practice, we only compute for several filtration values in 

the interval or even only one such as the midpoint of each persistence pair.

II.A.6 From topological invariants to machine learning algorithms—While 

persistent homology already significantly reduces the complexity of the molecular system 

description, directly feeding it to machine learning algorithms can cause too many model 

parameters compared to the moderate size of available data in this field. Also, the outputs of 
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persistent homology are similar to unstructured point clouds. Additional processing is 

needed to integrate persistent homology characterization with machine learning models.

In the application to biomolecular structure description, prior knowledge is available on the 

approximate distance ranges for different interactions. Therefore, we first divide an interval 

[0,D] where D is the longest range among the interactions of interest into bins. We then 

count the number of events in each bin, namely, 1) birth of persistence pairs, 2) death of 

persistence pairs, and 3) overlaps of bars with the bins. These approaches result in a 1-

dimensional image-like feature tensor with three channels which can be fed into a 1-

dimensional convolutional neural network or any other machine learning model that accepts 

structured features. Prior knowledge on the spatial range of different types of interactions 

can guide the decision of bin endpoints. We have also found similar performance with 

uniform partitioning. Another way of vectorization is to statistically describe the 

unstructured persistence barcodes, for example, the mean value and standard deviation of 

birth, death, and bar lengths.

The Wasserstein distance between the resulting persistence barcodes also works well with 

distance-based methods, such as k-nearest-neighbor-based regression and classification or k-

means clustering. This approach was found effective especially when the objects are 

moderately complex. It has been successfully applied to ligand-based tasks49.

In general applications of integrating persistent homology with machine learning, the 

persistence barcodes can become sparse and available field knowledge might be insufficient 

to guide the vectorization. In this case, a neural network layer with each neuron learning a 

kernel function can automatically vectorize the barcodes. Specifically, one neuron in such 

layer is a function that takes the persistence barcode ℬ = [bi, di i ∈ I and output a number,

N(ℬ; Θ) = ∑
i ∈ I

ϕ bi − μb , di − μd ; Θ , (6)

where ϕ is a distance-based kernel function with learnable parameters Θ and the center (μb, 

μd). This layer can be the first layer in a neural network for supervised learning. This layer 

can also be used as the first layer of an autoencoder that tries to reconstruct the persistence 

barcodes controlled by the Wasserstein metric. On the other hand, kernel density estimators 

with a fixed number of kernels can also be used as a vectorization tool. Specifically, a kernel 

density estimator with nk kernels each of which has np parameters to optimize can turn a 

persistence barcode into a feature vector of size nk * np. Treatment such as truncated kernels 

might be needed to take care of the nature of persistence barcodes that the points are only in 

the upper left part of the first quadrant.

II.B Differential geometry-based methods

II.B.1 Background—Differential geometry has a long history of development in 

mathematics and has been consistently studied since the 18th century. Nowadays, many 

differential geometry branches have been created from Riemannian geometry, differential 

topology, to Lie groups. As a result, differential geometry has been used in various 

interdisciplinary fields including physics, chemistry, economics, and computer vision. In 
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2005, we unfolded a curvature-based model to generate biomolecular surfaces70. In the 

following years, we successfully formulated Laplace-Beltrami operator based minimal 

molecular surface (MMS) for macromolecular systems71,72,107. This approach is applied to 

multiscale solvation modeling in which the molecular surfaces are described via the 

differential geometry of surfaces. Specifically, the solute molecule is still described in 

microscopic detail while the solvent is treated as a macroscopic continuum to reduce a large 

number of degrees of freedom76–79,83,84. Differential geometry-based multiscale models 

incorporates molecular dynamics, elasticity and fluid flow to further couple the discrete 

macromolecular and continuum solvent domains80–82,86,87. In the past few years, we have 

improved the computational efficiency of the geometric modeling by incorporating the 

differential geometry based multiscale paradigms in Lagrangian73,74 and Eulerian 

representations75,108.

Differential geometry-based multiscale models have been used for solvation free energies 

prediction79,93 and ion channel transport analysis80–82,87,109 to demonstrate their model 

efficiency in comparison with atomistic scale models.

Another type of applications of differential geometry in biomolecular systems is to utilize 

curvatures to characterize the macromolecular surface landscape and further infer chemical 

and biological properties. For example, the minimum and maximum curvatures are 

combined with the surface electrostatic potential to detect both positively charged and 

negatively charged protein binding sites75,108.

The other type of applications of differential geometry in molecular science is to carry out 

curvature-based solvation free energy prediction85. In this approach, the total Gaussian, 

mean, minimum, and maximum curvatures of a molecule are computed for a molecule and 

correlated with its solvation free energy.

II.B.2 Challenge—Differential geometry based multiscale models bridge the discrete 

and continuum descriptions and enable physical interpretation of molecular mechanisms. 

Curvature-based modeling of biomolecular binding sites and solvation free energy reveals 

macromolecular interactive landscapes. These methods are designed as physical models to 

enhance our understanding of biomolecular systems. However, they have limited capability 

in predicting massive and diverse datasets due to their dependence on physical models such 

as the Poisson-Boltzmann equation or the Poisson-Nernst-Planck equation or their excessive 

reduction of geometric shape information, i.e., a molecular-level average of local curvatures. 

Indeed, physical models depend on force field parameters which are subject to errors. 

Meanwhile, molecular-level descriptions are too coarse-gained for large datasets. In contrast, 

atomistic descriptions not only involve too much detail but also are not scalable for 

molecules with different sizes in a large dataset. As a result, machine learning algorithms 

cannot be effectively implemented.

To overcome these obstacles, we have designed new differential geometry-based models to 

extract element-level geometric information which automatically leads to scalable machine 

learning representations. Additionally, the effort is given to encode intermolecular and 

intramolecular non-covalent interactions. Therefore, these novel models can be handily 
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applied for a diverse molecular and biomolecular datasets, including protein-ligand binding 

analysis and prediction.

II.B.3 Multiscale discrete-to-continuum mapping—Biomolecular datasets provide 

atomic coordinate and type information. To facilitate differential geometry modeling, this 

discrete representation is transformed into a continuum one by the so-called discrete-to-

continuum mapping. In a given biomolecule or molecule with N atoms, denote rj ∈ ℝ3 and 

qj the position of jth atom and its partial charge, respectively. For any point r in three-

dimensional space, a discrete-to-continuum mapping56,59,62 defines the molecular number/

charge density as the following

ρ r, ηk , wk = ∑
j = 1

N
wjΦ r − rj ; ηj , (7)

Especially, the density ρ indicates the molecular number density when wj = 1, and represents 

the molecular charge density when wj = qj. In addition, ηj describes characteristic distances, 

∥ · ∥ is the second norm, and Φ with C2 property satisfies the following admissibility 

conditions

Φ r − rj ; ηj = 1, as r − rj 0, (8)

Φ r − rj ; ηj = 0, as r − rj ∞ . (9)

In principle, the density function can accept all radial basis functions (RBFs) as well as C2 

delta sequence of the positive type examined in this work110. In practice, the generalized 

exponential functions

Φ ri − rj ; ηkk′ = e− ri − rj /ηkk′
κ
, κ > 0; (10)

and generalized Lorentz functions

Φ ri − rj ; ηkk′ = 1
1 + ri − rj /ηkk′

ν , ν > 0. (11)

seem to be the most optimal choice for the biomolecular datasets56,59. Here power 

parameters κ and ν vary for different datasets and are systemically selected.

To generate the multiscale representation for ρ(r, {ηj}, {wj}), one can vary different values 

for scale parameters {ηj}. The published work42 has shown that the molecular number 

density Eq. (7) is an efficient representation for molecular surfaces. Unfortunately, such 

molecular-level description serves a little role in the predictive models for massive data.

II.B.4 Element interactive densities

To handle the diversity molecular or biomolecular datasets, we have upgraded differential 

geometry representations with an emphasis on non-covalent intramolecular interactions in a 

Nguyen et al. Page 13

Phys Chem Chem Phys. Author manuscript; available in PMC 2021 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



molecule and intermolecular interactions in complexes, such as protein-ligand, protein-

nucleic acid, and protein-protein complexes. Also, our differential geometry features can 

characterize the geometric information at element-specific interactions and are scalable 

despite a wide range of molecular sizes.

To accurately encode the physical and biological information in the differential geometry 

representations, we describe the molecular interactions at the element-level in a systematical 

manner. For instance, in the protein-ligand datasets, the intermolecular interactions are 

decomposed into element-level descriptions based on the commonly occurring element type 

in proteins and ligands. Typically, protein structures usually consist of H,C,N,O, S, and 

ligand structures often include H,C,N,O,S,P, F, Cl, Br, I. That results in 50 element-level 

intermolecular descriptions. In practice, hydrogen atoms are missing in most Protein Data 

Bank (PDB) datasets for proteins. Therefore, we do not include it in our models for 

macromolecules or for both proteins and ligands. Finally, we end up with 40 or 36 element-

specific groups to express the intermolecular interactions in the protein-ligand complexes. 

This element-specific approach can be straightforwardly carried out in other interactive 

systems in chemistry, biology and material science. For example, in protein-protein 

interactions, one can similarly arrive at a total of 16 element-level descriptions for practical 

use.

In a given molecule, based on the most frequently appearing element types included in the 

set C = H, C, N, O, S, P, F, Cl, ⋯ , we collect N atoms. For each jth atom in that collection, we 

label it as {(rj, αj, qj). Here αj is the element type of jth atom, and αj = Ck indicates the kth 

element type in set C.

Before defining the element interactive density, we have to designate the non-covalent 

interactions between two element types Ck and Ck′. Such interactions can be represented by 

correlation kernel Φ

Φ ri − rj ; ηkk′ αi = Ck, αj = Ck′; i, j = 1, 2, …, N; ri − rj > ri + rj + σ , (12)

where ri and rj are the atomic radii of ith and jth atoms, respectively and σ is the mean value 

of the standard deviations of all ri and rj in the dataset. The inequality constraint ∥ri − rj∥ > ri 

+ rj + σ serves the purpose of excluding the covalent forces.

Given a point r in ℝ3, we define the element interactive density induced by the pairwise 

interaction between two chemical element types Ck and Ck′

ρkk′ r, ηkk′ = ∑
j

wjΦ r − rj ; ηkk′ , r ∈ Dk, αj = Ck′; ri − rj > ri + rj + σ,

∀αi ∈ Ck; k ≠ k′,
(13)

where Dk is so-called atomic-radius-parametrized van der Waals domain given by the union 

of all the balls with centers are the Ck atomic positions with the corresponding atomic radius 

rk. In other words, if B(ri, ri) is denoted as a ball with a center ri and a radius ri, Dk can be 

expressed as
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Dk: = ∪ri, αi = Ck B ri, rk . (14)

Note that element interactive density represented in (13) is only good for k ≠ k′. When 

density is calculated based on the interactions between the same element types, i.e. k = k′, 

each Ck atom will belong to the atomic-radius-parametrized van der Waals domain and 

element interactive density representation. To this end, we define such density formulation 

as the following

ρkk r, ηkk = ∑
j

wjΦ r − rj ; ηkk , r ∈ Dk
i , αi = Ck; αj = Ck; ri − rj

> 2rj + σ,
(15)

in which, domain Dk
i  is just a single ball B(ri, ri), and the density function ρkk is evaluated at 

all Dk
i .

The element interactive density ρkk is the linear combination of correlation kernel Φ of pairs 

of element types. Consequently, the smoothness of ρkk is the same as that of Φ. Moreover, 

by changing a level constant c, one can attain a family of element interactive manifolds as

ρkk′ r, ηkk′ = cρmax, 0 ≤ c ≤ 1 and ρmax = max ρkk′ r, ηkk′ . (16)

Figure 7 illustrates a few element interactive manifolds.

II.B.5 Element interactive curvatures

Differential geometry of differentiable manifolds: We here describe the geometric 

information calculation on a differential manifold. Consider U being an open subset of ℝn

with its closure is compact72,86,111, we are interested in a C2 immersion f :U ℝn + 1. Given 

a vector u = (u1, u2,… , un) ∈ U, we express the Jacobian matrix with respect to u as

Df = X1, X2, ⋯, Xn , Xi = ∂f
∂ui

, i = 1, 2⋯n . (17)

The first fundamental form is written in the metric tensor with its coefficients gij = 〈Xi,Xj〉, 
where 〈, 〉 is the Euclidean inner product in ℝn, i, j = 1, 2, ⋯, n.

We define the unit normal vector via the Gauss map

N:U Rn + 1 (18)

u1, u2, ⋯, un X1 × X2⋯ × Xn/ X1 × X2⋯ × Xn , (19)

where “×′′ denotes the cross product. If we denote ⊥uf the normal space of f at point X = 

f(u), then N(u) ∈ ⊥uf. In addition, one can form a second fundamental form via the means 

of the normal vector N and tangent vector Xi:
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II Xi, Xj = ℎij i, j = 1, 2, ⋯n = − ∂N
∂ui

, Xj ij
. (20)

Then, the Gaussian curvature K and the mean curvature H are determined as the following

K = Det ℎij
Det gij

, H = 1
nℎijgji . (21)

The Einstein summation convention is used in the curvature expressions and (gij) = (gij)−1.

Element interactive curvatures: With an element interactive manifolds defined via element 

interactive density ρ(r) describing in (16) and the expressions in (21), one can further 

formulate the representations for the Gaussian curvature (K) and the mean curvature (H) as 

the following75,112

K = 1
g2 2ρxρyρxzρyz + 2ρxρzρxyρyz + 2ρyρzρxyρxz

− 2ρxρzρxzρyy − 2ρyρzρxxρyz − 2ρxρyρxyρzz
+ ρz2ρxxρyy + ρx2ρyyρzz + ρy2ρxxρzz
−ρx2ρyz2 − ρy2ρxz2 − ρz2ρxy2 ,

(22)

and

H = 1
2g

3
2

2ρxρyρxy + 2ρxρzρxz + 2ρyρzρyz − ρy2 + ρz2 ρxx − ρx2 + ρz2 ρyy

− ρx2 + ρy2 ρzz ,
(23)

where g = ρx2 + ρy2 + ρz2.

In addition, the minimum curvature (κmin) and maximum curvatures (κmax) can be evaluated 

based on the Gaussian and mean curvature values

κmin = H − H2 − K, κmax = H + H2 − K . (24)

It is noted that in the curvature representations in (22), (23), and (24), the derivatives of the 

density function can be analytically calculated. For the convenience, we denote the 

curvatures associated with the density function ρkk′ r, ηkk′  as Kkk′ r, ηkk′ , Hkk′ r, ηkk′ , 

κkk′, min r, ηkk′ , κkk′, max r, ηkk′ . In practical use, the element interactive curves are only 

evaluated at the atomic positions in a given molecule or biomolecule structure. Notice that, 

due to the variant sizes in different biomolecular structures, numbers of selected atoms for 

the curvature evaluations vary. To achieve element-level geometry information, we propose 

the element interactive mean curvature as the following

Hkk′
EI ηkk′ = ∑

i
Hkk′ ri, ηkk′ , ri ∈ Dk; k ≠ k′ (25)
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and

Hkk
EI ηkk = ∑

i
Hkk ri, ηkk , ri ∈ Dk

i , Dk
i ⊂ Dk . (26)

The other element-level interactive curvatures for Gaussian curvature Kkk′
EI ηkk′ , minimum 

curvature κkk′, min
EI ηkk′ , and maximum curvature κkk′, max

EI ηkk′  are defined in a similar 

manner.

II.B.6 Differential geometry based geometric learning (DG-GL)

Geometric learning: In our differential geometry based geometric learning (DG-GL) 

model, we incorporate the geometric representations such as element-level interactive 

curvatures with advanced machine learning algorithms to form powerful predictive models. 

Given a training set Xi i ∈ I, in which Xi is the input data for the ith molecule and I is the 

set of the molecular indices in the training data. We denote F Xi; ζ  is a differential 

geometric functions encoding the the input structures Xi via the given hyperparameter set ζ 
into aforementioned DG descriptions. Our DG-GL model learns the training set Xi i ∈ I by 

minimizing the following loss functions

min
ζ, θ

∑
i ∈ I

L yi, F Xi; ζ ; θ , (27)

in which L is the loss function, yi is the target label of molecule Xi, and θ is the set of 

parameters of a selected machine learning algorithm. It is worth noting that the DG 

representation encoded in F does not depend on the type of learning task. Therefore, our 

DG-GL models can adapt any regressors or classifiers models such as linear regression, 

support vector machine, random forest, gradient boosting trees, artificial neural networks, 

and convolutional neural networks. Besides the machine learning hyperparameters, the 

kernel parameters in the encoding DG function F need to be optimized for a specific 

learning algorithm and a particular training set Xi .

In the validation, we only utilize the gradient boosting trees (GBTs) even though the other 

advanced machine learning models including convolutional neural networks can be 

incorporated with minimal effort. The general framework of DG-GL model is depicted in 

Figure (7). The GBTs in the DG-GL score are employed via the gradient boosting regression 

module in scikit-learn v0.19.1 package with the following hyperparameters: 

n_estimators=10000, max_depth=7, min_samples_split=3, learning_rate=0.01, loss=ls, 

subsample=0.3, max_features=sqrt for all experiments.

Model parametrization: In our differential geometry-based approach, we calculate the 

element interactive curvatures (EICs) of type C based on kernel α with parameters (δ, τ). 

We denote such model EICα, δ, τ
C . Here, C ∈ {K,H, kmin, kmax} and α = E and α = L indicate 

generalized exponential and generalized Lorentz kernels, respectively. In addition, δ refers 
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to the kernel order and is denoted as κ if α = E or ν if α = L. Another kernel parameter is τ 
defined by the following relationship

ηkk′ = τ rk + rk′ (28)

where rk and rk′ stand for the van der Waals radii of element type k and element type k′, 

respectively. These kernel parameters are selected via a 5-fold cross-validation on a specific 

training set with the range of τ and δ varying from 0.5 to 6 with an increment of 0.5. 

Moreover, we are interested in high values of power order, δ ∈ {10, 15, 20}, which accounts 

for the ideal low-pass filter (ILF)63. These parameter ranges are also listed in Table 1.

To enable the multiscale descriptions in differential geometry representation, we employ 

multiple kernels to evaluate the EICs. For instance, if two kernels with the following 

parameters (α1, δ1, τ1) and (α2, δ2, τ2) are utilized, our EIC model can be written as 

EICα1, δ1, τ1; α2, δ2, τ2
C1C2 .

In a protein-ligand complex, we are interested in 4 commonly occurred protein atom types 

{C,N,O, S}, and 10 commonly occurred ligand atom types {H,C,N,O,F,P, S, Cl, Br, I}. That 

results in a total of 40 different combinations. With a set of calculated atomic pairwise 

curvatures, we construct 10 statistical features, namely sum, the sum of absolute values, 

minimum, the minimum of absolute values, maximum, the maximum of absolute values, 

mean, the mean of absolute values, standard deviation, and the standard deviation of 

absolute values. In total, we attain 400 features for the current differential geometry-based 

models.

II.C Graph theory-based methods

II.C.1 Background—Graph theory is one of the most popular subjects in discrete 

mathematics. In graph theory, the information inputs are represented in the graph structures 

formed by vertices that are connected by edges and/or high-dimensional simplexes. Different 

ways to interpret the graph result in different graph theories such as geometric graph theory, 

algebraic graph theory, and topological graph theory. In geometric graph study, the graph 

information is extracted based on the geometric objects drawn in the Euclidean plane113. If 

there are algebraic methods involving in graph structure processing, that approach belongs to 

algebraic graph theory. There are two common approaches to this branch. The first one is to 

use linear algebra to study the spectrum of various types of matrices representing graph 

including adjacency matrix and Laplacian matrix114. Another approach relies on the group 

theory, especially automorphism groups115 and geometric group theory116, for the study of 

graphs. Unlike the aforementioned graph theories, the algebraic graph theory considers 

graphs as topological spaces by associating different types of simplicial complexes such as 

abstract simplicial complex117 and Whitney complex118.

Due to the natural representations for structured information, graph theory enacts enormous 

applications in various fields including computer science, linguistics, physics, chemistry, 

biology, and social sciences. Especially in the chemical and biological study, graph theory is 

commonly used since molecular structures always feature graph information in which 
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vertices illustrate atoms and graph edges represent bonds. Indeed, graph-based approaches 

have been utilized to describe chemical datasets119–124 as well as biomolecular 

datasets54,125–130. In addition, one can make use of graph representations to uncover the 

connectivity of different components of a molecule such as centrality131–133, contact 

map54,134, and topological index123,135. Moreover, graph extracting representations can be 

employed in chemical analysis52,120,121 and biomolecular modeling136. Particularly, some 

research groups have invested their efforts to carry out the graph-based representation to 

model protein flexibility and long-time dynamics such as normal-mode analysis 

(NMA)137–140 and elastic network model (ENM)54,55,141–144.

II.C.2 Challenge—Due to the richness in geometric interpretations, graph theory-based 

approaches have shown their efficiency in the qualitative and descriptive models. However, 

oversimplified representations and the lack of physical and biological detailed information 

may render graph theory-based approaches less attractive in the quantitative analysis. For 

instance, in Gaussian network model (GNM)54,142,145, the use of the spectrum of the 

Laplacian matrix is quite efficient to decompose the flexible and rigid regions and domains 

of proteins but its fluctuation predictions on protein Cα atoms were not reliable with the 

Pearson correlation coefficient as low as 0.6 for three datasets146. To predict the mutations in 

proteins, the graph-based mCSM method was not competent as physical and knowledge-

based or topological fingerprint-based models46,147.

The poor performances of the aforementioned graph theory-based models on quantitative 

tasks are due to the lack of three main components in our point of view. Firstly, these graph 

theory-based structures do not provide the information at the chemical element level. 

Consequently, these models treat different element types equally which results in inadequate 

coded information from the original structures. Secondly, non-covalent interactions between 

two atoms are overlooked in many graph edges which cause the unphysical representations 

for most molecular and biomolecular data. Finally, the edges in the many graph-based 

models express the connectivity between a pair of atoms based on the number of covalent 

bonds between these two atoms, which inaccurately describe many interactions that depend 

on the Euclidean distance.

To address the aforementioned issues in graph based-modeling, we have developed the 

weighted graphs, termed as the flexibility-rigidity index (FRI), to predict the B-factor of 

protein atoms. In our FRI model, the graph edges were formulated by the radial basis 

functions (RBFs)58–60,62 which properly describe the interaction strengths between two 

atoms in the equilibrium structures. The original FRI was upgraded to multiscale FRI60,63 

for capturing the multiscale interactions in biological structures. Specifically, the graph in 

the multiscale FRI model is allowed to have multiple edges formed by RBFs with careful 

selections of scaled and power parameters. Although our FRI models have outperformed the 

GNM in B-factor predictions, they provide only coarse-grained molecular-level descriptions. 

To overcome this limitation, we have proposed graph coloring based methods with vertices 

colored differently based on the corresponding element types. Consequently, we ended up 

with various element-specific subgraphs taking care of different types of physical 

interactions, such as hydrophilic, hydrophobic, hydrogen bonds64,65. As a result, the 

predicted accuracy for protein B-factors by our multiscale weighted colored graphs is over 
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40% higher than GNM models65. The success of multiscale weighted colored graph models 

on B-factor prediction encouraged us to design graph-based scoring functions to predict 

protein-ligand binding affinities. The protein-ligand binding mechanism is more complex 

than the protein B-factor. Therefore, it requires sophisticated graph-based models to 

accurately encode the physical and biological properties to unveil its molecular mechanism. 

The development of such graphs is described in the following sections.

II.C.3 Multiscale weighted colored geometric subgraphs—In this section, we 

discuss general graph representations for a molecule or biomolecule. Graph-based 

representations are systematical, scalable, and straightforward applied not only to the 

predictions of protein-ligand binding affinity but also for various bioactivities such as 

toxicity, solvation, solubility, partition coefficient, mutation-induced protein folding stability 

change, and protein-nucleic acid interactions. In a given molecule or biomolecule in a 

dataset, we denote a graph G to represent a subset of its N atoms. The set of its vertices V
consists of coordinates and chemical element types of atoms, defined as

V = rj, αj rj ∈ ℝ3; αj ∈ C; j = 1, 2, …, N , (29)

where rj is the 3D position of jth atom, and αj is its element type which belongs to a 

predefined set of commonly occurred chemical element types as introduced in Section 

II.B.4. To accomplish a meaningful encoded physical and biological information in the 

graph, graph edges have to express the non-covalent interactions. Moreover, to 

accommodate for the interactions between k element atoms and k′ element type atoms, we 

consider a set of graph edges ℰkk′ represented by RBFs as the following

εkk′ = Φ xi − rj ; ηkk′ αi = Ck, αj = Ck′; i, j = 1, 2, …,
N; ri − rj > ri + rj + σ , (30)

where ∥ri−rj∥ accounts for the Euclidean distance between the ith and jth atoms, ri and rj are 

the atomic radii of ith and jth atoms, respectively. Moreover, σ is the mean value of the 

standard deviations of all atomic radii belonging to element types Ck and Ck′ in the dataset. 

The exclusion of the covalent interactions are portrayed in this inequality ∥ri − rj∥ > ri + rj + 

σ. Φ is a predefined RBF representing a graph weight and has the following properties56,59

Φ ri − rj ; ηkk′ = 1, as ri − rj 0 and (31)

Φ ri − rj ; ηkk′ = 0 as ri − rj ∞, αi = Ck, αj = Ck′, (32)

where ηkk′ is a characteristic distance between the atoms. We now achieve the weight 

colored subgraphs (WCS) G V, ℰkk′  or denote Gkk′ for short.

In principle, our WCS G V, ℰkk′  can adopt any RBFs. In practice, the generalized 

exponential functions (10) and generalized Lorentz functions (11) seem to be the most 

optimal choice for the biomolecular datasets56,59. Here power parameters κ and ν vary for 
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different datasets and are systemically selected. To illustrate WCS of a given molecule, we 

use the uracil compound (C4H4N2O2) as an example. Figure 8 depicts WCS for nitrogen and 

oxygen atoms GNO . To elicit the geometrical invariants of WCS formed by element types 

Ck and Ck′, we propose a collective representation at the element level as follows

RIG ηkk′ = ∑
i

μiG ηkk′ = ∑
i

∑
j

Φ ri − rj ; ηkk′ , αi = Ck, αj = Ck′;

ri − rj > ri + rj + σ,
(33)

where μiG ηkk′  which is a geometric subgraph centrality for the ith atom has been developed 

in our previous work for protein B-factors predictions65. The summation over μiG ηkk′  in Eq. 

(33) gives rise to WCS rigidity between element types Ck and Ck′. In fact, μiG ηkk′  is the 

generalized form of our successful rigidity index model for protein-ligand binding affinity 

prediction in the previous work64. it is noticed that the WCS for the protein-ligand system is 

bipartite since each of its edges presents the interaction between one atom in the protein and 

another protein in the ligand. With that design, a variety of physical and biological properties 

such as electrostatics, van der Waals interactions, hydrogen bonds, polarization, 

hydrophilicity, hydrophobicity can be successfully encoded in our WCS representations.

To exhibit the intermolecular and intramolecular properties, one can vary the characteristic 

distance ηkk′ to set up multiscale weighted colored subgraphs (MWCS). To methodically 

attain multiscale graph-based molecular and biomolecular representations in a collective and 

scalable manner, one can aptly select groups of pairwise element interactions k and k′, the 

choice of subgraph weights Φ and their parameters.

II.C.4 Multiscale weighted colored algebraic subgraphs—In this section, we 

present another approach to extract the meaningful representation for biomolecules from 

their WCS. This scheme depends on the algebraic graph or spectral graph formulations. 

Since geometric and algebraic approaches handle the graph information differently. 

Therefore, these two kinds of subgraphs will be expected to encode the physical and 

biological information in varied aspects. In the algebraic graph theory, matrices are utilized 

to represent a given subgraph. Two of the most common ones are the Laplacian matrix and 

the adjacency matrix.

Multiscale weighted colored Laplacian matrix: Considering a weighted colored subgraph 

G V, ℰkk′  defined at Eqs. (29) and (30), we construct a following weighted colored 

Laplacian matrix L ηkk′ = Lij ηkk′  describing the interaction between element types Ck
and Ck′

Lij ηkk′ =
−Φ ri − rj ; ηkk′

−∑jLij

if i ≠ j, αi = Ck, αj = Ck′
and ri − rj > ri + rj + σ;
if i = j .

(34)
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For the illustration, we explicitly formulate the Laplacian matrix of the WCS GNO for the 

uracil molecule (C4H4N2O2) in Figure 8. It is obvious to learn that all eigenvalues of our 

element-level WCS Laplacian matrix are nonnegative due to its symmetric, diagonally 

dominant, and positive-semidefinite properties. Moreover, every row sum and column sum 

of L ηkk′  is zero. In consequence, its first eigenvalue is 0. The second smallest eigenvalue of 

L ηkk′  is so-called algebraic connectivity (also known as Fiedler value) which approximates 

the sparest cut of a graph. With a given WCS G V, ℰkk′  one can easily see its geometrical 

invariant proposed at Eq. (33) is fully recovered in the trace of its Laplacian matrix L ηkk′

RIG ηkk′ = TrL ηkk′ , (35)

where Tr is the trace.

In the algebraic graph, we are interested in using the eigenvalue and eigenvector information 

to extract the graph invariants. To this end, we denote λj
L, j = 1, 2, ⋯ and ujL, j = 1, 2, ⋯ the 

eigenvalues and eigenvectors of L ηkk′ . The element-level molecular representations of the 

Laplacian matrix L ηkk′  is proposed as the following

RIL ηkk′ = ∑
i

μiL ηkk′ , (36)

where μiL ηkk′  is so-called an atomic representation for the ith atom ri, αi = Ck

μiL ηkk′ = ∑
l

λl
L −1 ul

L ul
L T

ii
, (37)

where T is the transpose. It is noted that μiL ηkk′  is the atomic representation of the 

generalized GNM54,63. Therefore, it can be directly utilized to capture atomic properties 

such as protein B-factors. Moreover, the element-level invariant of the Laplacian matrix can 

be enriched via the statistical information of μiL ηkk′  values, namely sum, mean, maximum, 

minimum and standard deviation.

Another way to extract the invariant representation from the WCS Laplacian matrix is the 

direct use of nontrivial eigenvalues λj
L

j = 2, 3, ⋯. Also, the statistical analysis of those 

eigenvalues can be incorporated to form a feature vector to characterize element-level 

information of the molecule and biomolecule.

Multiscale weighted colored adjacency matrix: By setting all diagonal entities of the 

Laplacian matrix to be 0, we end up with an adjacency matrix with simpler representation 

but still preserve the essential properties of the original molecular structures. With a given 

WCS Gkk′, the adjacency matrix A ηkk′ = Aij ηkk′  is given as
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Aij ηkk′ = Φ ri − rj ; ηkk′
0

if i ≠ j, αi = Ck, αj = Ck′
and ri − rj > ri + rj + σ;
if i = j .

(38)

Since the adjacency matrix defined in (38) is undirected, A ηkk′  is symmetric. Thus, all the 

eigenvalues of it are real. Moreover, due to being a bipartite graph, for each eigenvalue λ, its 

opposite −λ is also an eigenvalue of A ηkk′ . In consequence, only positive eigenvalues are 

used in the molecular representation. For the sake of illustration, Figure 8 illustrates the 

adjacency matrices for the weighted colored subgraph GNO in the uracil molecule 

(C4H4N2O2). It can be seen from the Perron-Frobenius theorem that the spectral radius of 

A ηkk′ , denoted as ρ(A), is bounded by the range of the diagonal elements of the 

corresponding Laplacian matrix

min
i

∑
j

Aij ≤ ρ(A) ≤ max
i

∑
j

Aij . (39)

It is easy to see that all elements in the Laplacian matrix belong to [0,1] and depends on the 

scale parameter ηkk′. At a characteristic scale range for capturing hydrogen bonds or van der 

Waals interactions, the Laplacian matrix has many zeros. However, the scale parameter ηkk′ 
can be very huge in electrostatic and hydrophobic interactions47, which results in many 

elements in the Laplacian matrix nearly 1. In that particular situation, the spectral radius of 

the adjacency matrix A(ηkk′) is bounded by n − 1, where n is the number of atoms in WCS 

Gkk′.

Similarly to the approach of forming feature representation for the Laplacian matrix, all 

positive eigenvalues λj
A , and their statistical information such as sum, mean, maximum, 

minimum, and standard deviation are included in element-level molecular representations. If 

we define ujA  as the eigenvectors corresponding to eigenvalues λj
A , then the atomic 

representations can be attained as

μiA ηkk′ = ∑
j

QΛQ−1
ij, (40)

where Q = u1
Au2

A⋯unA  is composed by n linearly independent eigenvectors of A(ηkk′); thus 

Q is invertible. Moreover, Λ is a diagonal matrix with each diagonal element Λii being the 

eigenvalue λi
A . Unfortunately, formulation given in Eq. (40) is very computationally 

expensive due the involvement of the inverse-matrix calculation.

In general, the methods regarding the eigenvalues and eigenvectors analysis often pose a 

great challenge for sustaining an efficient computation strategy. Fortunately, the construction 

of WCS enables us to design a less-expensive computational model due to two facts. Firstly, 

the protein-ligand binding site only involves a small region of the whole complex structure. 

Second, WCS only admits the specific element types in the matrix construction, which 
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further reduces the size of matrices for eigenvalue and eigenvector calculations. As a result, 

these facts offer an efficient spectral graph-based model for protein-ligand affinity analysis.

II.C.5 Graph-based learning models

Graph learning: The eigenvalue related information obtained from the algebraic graph 

approach is incorporated with machine learning algorithms to form predicting models for 

molecular and biomolecular properties. Depends on the nature of each learning task, 

regressor or classifier algorithms will be utilized. To illustrate the learning process, we 

denote Xi the ith structure in the training data and denote G Xi; ζ  a function representing 

the graph information of sample Xi with respect to kernel parameters ζ. Generally, during 

the training process, machine learning models will minimize the following loss

min
ζ, θ

∑
i ∈ I

ℒ yi, G Xi; ζ ; θ , (41)

where ℒ is the loss function, yi indicates the training labels. In addition, θ is the machine 

learning parameters. In principle, the set of parameters θ will be optimized for a specific 

training set and the choice of a machine learning algorithm. With the current graph 

presentations, one can make use of advanced machine learning models such as random 

forest (RF), gradient boosting trees (GBTs), deep learning neural networks to minimize the 

loss function ℒ. To illustrate the performance of our graph-based model, we employ GBTs 

for a balance between accuracy and complexity. The flow chart of the proposed model is 

illustrated in Figure 9.

All the experiments in this graph learning task are carried out by the Gradient Boosting 

Regressor module implemented in the scikit-learn v0.19.1. The detailed parameters are 

given as n_estimators=10000, max_depth=7, min_samples_split=3, learningrate=0.01, 

loss=ls, subsample=0.3, and max_features=sqrt. That parameter selection is nearly optimal 

and is the same for all calculations.

Model parametrization: Avoiding the wording, this notation AGLΩ, δ, τ
ℳ  represents the AGL-

Score features encoded based on the interactive matrix type ℳ along with kernel type Ω and 

kernel parameters δ and τ. Furthermore, ℳ = Adj, ℳ = Lap, and ℳ = Inv represent adjacent 

matrix, Laplacian matrix, and the pseudo inverse of Laplacian matrix, respectively. In the 

kernel type notation, Ω = E and Ω = L, respectively, indicate generalized exponential kernel 

and generalized Lorentz kernels. Since the kernel order notation depends on the specific 

kernel type, we denote δ = κ if Ω = E, and δ = ν if Ω = L. Lastly, the scale factor τ i 

implicitly imply this expression ηkk′ = τ rk + rk′ , in which rk and rk′ are the van der Waals 

radii of element type k and element type k′, respectively.

In the multiscale representation for the AGL-Score, we naturally extend the single-scale 

notation. Only at most two different kernels are carrying out in the AGL-Score model, and 

the resulting model is denoted as AGLΩ1, δ1, τ1; Ω2, δ2, τ2
ℳ1ℳ2 .
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To achieve the optimal parameter selection in the AGL-Score’s kernels, we perform 5-fold 

cross-validation (CV) on the training data of the benchmark. Ideally, one needs to revise the 

machine learning model for different problem settings. To demonstrate the robustness of our 

graph-based features, we only train the AGL-Score’s parameters on CASF-2007 benchmark 

with a training data size of 1105 complexes. Similar to our previous work, we select the 

range of the graph-based model’s hyperparameters as demonstrated in Table 2. The ranges 

of AGL’s kernel parameters are selected similarity to ones in DG-GL models discussed in 

Section II.B.6. For the CASF benchmark datasets, we take into account 4 atom types in 

protein, namely {C,N,O, S}, and 10 atom types in the ligand, namely {H,C,N,O,F,P, S, Cl, 

Br, I}, that results in 40 different atom-pairwise combinations. Due to having the opposite 

eigenvalues in the adjacency matrix, we only consider its positive eigenvalues. Moreover, the 

statistical properties of these eigenvalues such as sum, minimum (i.e., the Fiedler value for 

Laplacian matrices or the half band gap for adjacency matrices), maximum, mean, median, 

standard deviation, and variance are collected. Moreover, the number of distinct eigenvalues, 

as well as the summation of the second power of them, are calculated. Finally, we form a 

representation vector of 360 features.

II.D Machine learning algorithms

It is generally true that our mathematical representations can be paired with any machine 

learning model. However, the devil is in the details: difference machine learning algorithms 

respond differently to data size, representation dimension, representation noise, 

representation correlation, representation amplitude, and representation distribution. 

Therefore, it is useful to design learning-model adapted mathematical representations.

In the past few years, we have integrated various mathematical representations with a variety 

of machine learning algorithms, namely k-nearest neighbors (KNNs)26,49, learning to rank 

(LR)25,27, support vector machine (SVM)43, gradient boosted decision trees (GBDT)46,47, 

random forest (RF)64,92,94, extra-trees (ET)49, deep artificial neural network (ANN)92,94, 

deep convolutional neural network (CNN)48,49, multitask ANN92,94, multitask CNN48, and 

generative networks148.

Due to the extensive variability in the possible types of biological tasks and machine 

learning algorithms for potentially many data conditions, it is very challenging to provide an 

exhaustive list of fully optimized representations for a specific combination of biological 

tasks, learning algorithms and datasets. Nevertheless, one can explore near-optimal 

representations to each potential combination of biological task, learning model, and dataset 

and select appropriate mathematical representations with suitable parameters. Using 

topological representations as an example, we outline the construction of a few topological 

learning strategies. In general, kNNs are very simple and are used to facilitate optimal 

transport approaches, such as Wasserstein metrics. However, their results might not be the 

optimal49. LR algorithms can be quite accurate25,27, but their training is quite time-

consuming. Ensemble methods, such as RF, GBDT, and ET, are relatively accurate and 

efficient49,64,92,94. In particular, RF should be the method of choice for a new problem due 

to its fewer parameters and robustness. Due to its accuracy and robustness, RF method is 
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often used to rank the feature importance. Utilizing a few more parameters, GBDT can 

typically improve RF’s predictions after a more intensive parameter search.

Ensemble methods and deep CNNs can be very accurate and robust against overfitting 

originated from large machine learning dimensions by shrinkage and dropout techniques, 

respectively46,47. Therefore, they can be used to examine a large number of representations. 

It is worthy to note that none of these methods works well when the statistics of the test set 

differs much from that of the training set. When training datasets are sufficiently large, deep 

learning methods can be more accurate but might involve a very expensive training because 

of multiple layers of neurons48,49,92,94. Transfer learning or multitask learning can be used 

to improve the prediction of small datasets when they are coupled to a large dataset that 

shares similar statistics and the same representation structure48,92,94.

Intrinsically low-dimensional representations based on advanced mathematics can be 

constructed for complex learning models involving multiple neural networks, such as 

domain adaptation, active learning, recurrent neural network, long short term memory, 

autoencoder, generative adversarial networks, and various reinforcement learning 

algorithms.

III Datasets and evaluation metrics

III.A Datasets

In this review, we illustrate our models against three commonly used drug-discovery related 

benchmark datasets, namely, CASF-2007149, CASF-2013150, and CASF-2016151. These 

benchmarks are collected in the PDBbind database and have been used to evaluate the 

general performance of a scoring function on a diverse set of protein-ligand complexes.

Note that for docking power and screening power assessments, additional data information is 

given for CASF-2007149 and CASF-2013150,152 as described in the next section.

III.B Evaluation metrics

In the drug-design related benchmark, a scoring function (SF) is often validated based on 

four commonly metrics, namely scoring power, ranking power, docking power, and 

screening power149,152. The following sections briefly offer introductions for these matrices 

and the associated datasets.

III.B.1 Scoring power—This metric measures how good a scoring function in predicting 

affinities that linearly correlate to the experimental data. To this end, the standard Pearson’s 

correlation coefficient (Rp) is employed

Rp = ∑ xi − x yi − y
∑ xi − x 2 ∑ yi − y 2 , (42)

where xi and yi are, respectively, predicted binding affinity and experimental data for the ith 

complex. The average of all predicted and experimental values are denoted as x and y, 
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respectively. All three benchmark datasets, CASF-2007, CASF-2013, and CASF-2016, were 

used to evaluate the scoring power of our models.

III.B.2 Ranking power—In this assessment, the ability to ranking the binding affinity of 

complexes in the same cluster is stressed149,152. Two benchmarks, CASF-2007 and 

CASF-2013, were used to test our AGL-Score’s ranking power. Both these datasets have 65 

different protein targets, and each protein has three binding distinct ligands. There two 

different levels of the assessments. The first is high-level success measurement which 

testifies if the affinities of three ligands in each cluster are correctly ranked. The other 

assessment is the so-called low-level success measurement which determines whether a 

scoring function can identify the ligand with the highest binding affinity in its cluster. The 

score in this assessment is calculated by the percentage of successful ranking in a given 

benchmark.

The above-mentioned ranking power evaluation may not be robust since there are only three 

ligands in each cluster used to determine the order ranking. Thus, the real performance of 

the scoring function in virtual screening cannot be transferable. Moreover, more accurate 

statistical information can be attained by Kendall’s tau or Spearman correlation coefficient 

as used in D3R Grand Challenges153.

III.B.3 Docking power—This metric is used to testify the ability of a scoring function in 

discrimination the “native” pose from the docking software-generated structures149. To 

determine the native pose, one used the root-mean-square deviation (RMSD) between that 

structure and the true binding pose. If its RMSD is less than 2Å, that pose is classified as a 

native. Each ligand in CASF-2007˚ benchmark has 100 generated structures using four 

docking software, namely GOLD154,155, Surflex156,157, FLexX158 and LigandFit159. In 

CASF-2013, there are still 100 software-generated structures for each ligand but from three 

docking software, namely, GOLD v5.1 (https://www.ccdc.cam.ac.uk), Surflex-Dock 

provided in SYBYL v8.1 (https://www.certara.com/), and MOE v2011 (https://

www.chemcomp.com/). It is noted that RMSD formulation in CASF-2007 is different from 

one in CASF-2013. Specifically, RMSD in CASF-2007 used a standard representation but 

property-matched RMSD (RMSDPM) is employed in CASF-2013150,152. The use of new 

RMSD formulation is due to the incorrect values reported by standard RMSD on the 

symmetric structures. It is worthy to mention that each ligand can have more than one 

“native” structure in the benchmark. Thus, if a scoring function can be able to detect any 

native poses, one can regard it as a successful task. The number of ligands whose “native” 

poses precisely selected defines the docking power of the method.

III.B.4 Screening power—This assessment relates to the scoring function’s capability 

on the differentiation of a target protein’s true binders from unbinding structures. 

CASF-2013 benchmark is used in this assessment. This dataset consists of 65 different 

protein classes. In each protein class, at least three ligands are binding to that target. The true 

binder has the highest experimental binding affinity is regarded as the best true binder. In 

this assessment, there are two different kinds of measurements. The first type concerns the 

enrichment factor (EF) in x% top-ranked candidates:
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EFx% = Number of true binders among x% top‐ranked candidates
Total number of true binders of the given target protein . (43)

In this measure, top-ranked candidates are the ligands with high binding affinities predicted 

by the scoring function. The screen power is determined by the average of all EF values over 

65 targets in the benchmark.

The second type of screening power is the success rate which concerns the best true binder 

identification. The percentage in identifying the best binders for 65 receptors from x% top-

ranked candidates yields the value for the success rate.

IV Results and discussions

In this section, we review the scoring power, ranking power, docking power and screening 

power of the discussed mathematical models on the three benchmark sets including 

CASF-2007, CASF-2013, and CASF-2016.

IV.A Hyperparameter optimization

To achieve optimal hyperparameters among the possible combinations listed in Tables 1 and 

2 for our models, 5-fold cross validation-based grid search strategies are taken into the 

account. For each CASF benchmark, the training data excluding the corresponding data is 

employed for the aforementioned grid search. As a result, the best EICs models in the 

differential based approach are EICE, 2, 1; E, 3, 3
H H  and EICL, 3.5, 0.5; L, 3.5, 2

H H  for CASF-2007. In 

CASF-2013, two optimal models are EICE, 1.5, 5; E, 3.5, 3
H H Rp = 0.771  and 

EICL, 4.5, 2.5; L, 5.5, 5
H H . The selected hyperparameters found in CASF-2013 are also employed 

in CASF-2016. In AGL-Score models, we find that the following hyperparameters attain the 

highest cross-validations scores for all the CASF benchmarks: AGLE, 6, 2 . 5; E, 4, 2
Adj  and 

AGLL, 3.5, 1.5; L, 15, 0.5
Adj . Noting that the consensus models, which are achieved by the mean of 

predictions of two associated models, will further lift the accuracy. Therefore, they are 

included in our experiments.

IV.B Performance and discussion

IV.B.1 Scoring power—In this task, we measure the Pearson correlation coefficient (Rp) 

between predicted affinity by our models, namely TopBP, EIC-Score, and AGL-Score and 

experimental values on CASF-2007, CASF-2013, and CASF-2016. The optimal 

hyperparameters for AGL-Score which are chosen based on the procedure described in 

Section IV.A are AGLE, 6, 2 . 5; E, 4, 2
Adj  and AGLL, 3.5, 1.5; L, 15, 0.5

Adj . To validate the scoring power 

of AGL-Score models on CASF-2007, we train the two aforementioned models on that 

benchmark’s training set consisting of 1105 samples after excluding 195 complexes in the 

test set. To reduce the variance in our results, we perform 50 prediction task of AGL-Score 

models at the different random seeds. The final reported affinity is defined by averaging all 

the predicted values at different runs. Similarly, we also train the optimal models of DG-GL, 
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i.e. EICE, 2, 1; E, 3, 3
H H  and EICL, 3.5, 0.5; L, 3.5, 2

H H , and Topology based models (TopBP) on 1105 

complexes of CASF-2007. To compare the accuracy of our models with other state-of-the-

art models, Figure 10a provides a comprehensive list of various scoring functions published 

in the literature149,160–163. It is encouraging to see that all our models are at the top 

positions. Particularly, AGL-Score is the best model with Rp = 0.830, followed by TopBP 

with Rp = 0.827 and EIC-Score with Rp = 0.817.

To predict the affinity labels of the test set consisting of 195 complexes in the CASF-2013 

benchmark, we train the TopBP, EIC-Score, and AGL-Score models with optimal 

parameters selected in Section IV.A on CASF-2013’s training set having 3516 samples. We 

also provide a list of various scoring functions’ performances on this benchmark as 

illustrated in Figure 11a. The data from that figure reveals that our TopBP is ranked in the 

first place with a Pearson correlation coefficient value Rp = 0.808, followed by AGL-Score 

with its Rp = 0.792. Our differential geometry-based model is in third place with Rp = 0.774. 

The fourth place in the ranking table is PLEC-nn165, a deep learning network model.

Similar to the training procedure on the first two benchmarks, in the last one, i.e. 

CASF-2016, the structures of our three models are learned from the training set (N = 3772) 

of this benchmark. Figure 12 compares Rp of numerous scoring functions on the 

CASF-2016. Consistently, our models still achieve the highest correlation values with Rp = 

0.861, Rp = 0.835, and Rp = 0.825 for TopBP, AGL-Score, and EIC-Score, respectively. It is 

worth noting that all top models in this benchmark are machine learning-based scoring 

functions, namely KDEEP 166, Pafnucy167, and PLEC-nn165. These models predict the 

energies for the test set of 290 complexes which is the PDBbind v2016 core set. Our 

topology-based model, TopBP, was able to outperform our other methods because it used 

convolutional neural networks whereas AGL-Score and EIC-Score were based on gradient 

boosted decision trees.

IV.B.2 Ranking power—In this assessment, the predicted binding energies are used to 

determine the rank of the ligands binding to the same target. We evaluated the ranking power 

of three AGL-Score models, namely generalized exponential kernel model 

AGLE, 6, 2 . 5; E, 4, 2
Adj  and generalized Lorentz kernel model AGLL, 3.5, 1.5; L, 15, 0.5

Adj , and the 

consensus one. The result reveals that the generalized exponential kernel model produces the 

best performances on both CASF-2007 and CASF-2013 benchmarks. Therefore, it is the 

representative model of the AGL-Score on this measurement. Figure 10b reports the ranking 

power of various scoring functions on CASF-2007. In this benchmark, our AGL-Score is 

ranked the third on high-level success with a rate of 54%, and is behind ΔvinaRF20 (success 

rate = 57%)163 and d X-Score::HSScore (success rate = 58%)149. Surprisingly, our graph-

based model achieves the best success rate in CASF-2013 with the rate being 60%, followed 

by X-ScoreHM with the success rate as high as 59%. Since the ranking power performance 

depends on the predicted affinities used for the scoring power, one can see there is a 

correlation between these two assessments. However, our AGL-Score is the only model that 

is ranked in the top three places in these metrics for both CASF-2007 and CASF-2013 

benchmarks.
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IV.B.3 Docking power—This docking power examines the ability of a scoring function 

in the discrimination between “native” and “non-native” poses. To build a robust machine 

learning-based model for this task, it is natural to include the diverse conformers with 

different range of root-mean-squared deviation (RMSD) to target experimental structure. 

Therefore, to create a satisfactory training data set for our AGL-Score model, we carry out 

GOLD v5.6.3155 to set up a training set of 1000 poses for a given target ligand and its 

corresponding receptor. The parameters in the GOLD software are chosen as the following 

autoscale = 1.5, early termination = 0, and gold fitfunc path = plp. The total of computer-

generated structures for both CASF-2007 and CASF-2013 benchmarks is 365,000 poses 

which are fed to AGL-Score for the learning process. The interested readers can download 

these structure information at our online server https://weilab.math.msu.edu/AGL-Score.

In considering benchmarks, each target ligand has 100 generated structures. To identify its 

“native” poses, we retrain single exponential kernel AGL-Score AGLE, 6, 2.5
Adj  on 1000 poses 

generated by docking software for that specific ligand. The single model is used here to save 

the calculation and training time. The accuracy and robustness of our AGL-Score model on 

the docking power is illustrated in Figure 10c and 11c for CASF-2007 and CASF-2013, 

respectively. In both benchmarks, our graph-based model is ranked in the first place. 

Specifically, on CASF-2007, the success rate of the AGL-Score model is 84%, the second 

and third best models are GOLD::ASP (82%)149 and ΔvinaRF20 (80%)163, respectively. On 

CASF-2013, the success rate of our method is higher with the rate being 90%, while 

ΔvinaRF20 163 and Autodock Vina163 only reach 87% and 85%, respectively.

The training data of the AGL-Score model for this assessment is provided by the docking 

software GOLD with ChemPLP as a scoring function type (ChemPLP@GOLD). It is 

interesting to see how this scoring function performs on the same benchmark. The 

ChemPLP@GOLD model achieves the success rates of 67% and 82% for CASF-2007 and 

CASF-2013, respectively. These values are much lower than of our model (84% and 90%). 

These comparisons confirm that our AGL-Score indeed upgrades the accuracy of the 

existing docking software by correctly exacting the real physical and biological properties of 

a biomolecular structure.

Scoring power and docking power are two very different measurement metrics. The first one 

concerns the affinity with the training data based on the experimental information. The latter 

targets the geometric validation involving artificial data. Consequently, it is not an easy task 

to accomplish state-of-the-art performances on both evaluations168–170. According to our 

observation, the most commonly used docking software is reliable on identifying the 

“native” structures but inadequate in the binding energy prediction. For instance, GOLD 

with ASP as a scoring function (ASP@GOLD) performs quite well on the docking power 

with the success rate being 82% in CASF-2007. However, ASP@GOLD’s performance on 

the scoring power does not meet the satisfactory accuracy with Rp = 0.534. On the contrary, 

the machine learning-based scoring functions often display an opposite impression. For 

example, RF-IChem169 is a machine learning model and attains a higher Pearson correlation 

coefficient on the scoring power (Rp = 0.791, as expected. Unfortunately, due to the lack of 

proper training data and too simple representations for accurately encoding physical and 
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biological information of a molecule, RF-IChem has difficulty in detecting the “native” pose 

with the success rate as low as 30%. Recently, a machine learning-based model named 

ΔvinaRF20 was developed by Wang and Zhang163 with a purpose of improving the accuracy 

of random-forest based scoring function on various evaluations. Indeed, ΔvinaRF20 offers an 

excellent success rate (80%) on the docking power of CASF-2007 but still shows a 

respectable precision on binding affinity prediction with Rp = 0.732. Nevertheless, the 

Pearson correlation coefficient of the ΔvinaRF20 is far behind the elite models such as TNet-

BP (Rp = 0.826)48. Our graph based-model, AGL-Score, not only has a great 

accomplishment on the docking power (success rate = 84% in CASF-2007) as ΔvinaRF20, 

but also performs similarly to TNet-BP on the scoring power (Rp = 0.83 in CASF-2007). 

These results again reinforce the ability of the AGL-Score in capturing the crucial 

interactions in molecular and biomolecular structures.

IV.B.4 Screening power—In this assessment, we verify the ability of the AGL-Score in 

picking up the true binders for different 65 protein classes in the CASF-2013 benchmark. 

The power metric concerns the active and inactive of 195 ligands for a specific class of 

protein rather than the estimation of a binding affinity for an experimental complex or 

“native” conformer identification. Therefore, to effectively carry out the machine learning 

scoring function on this take, one needs to construct an appropriate training data tailoring the 

active/inactive classification purpose. To this end, our training data consists of docking 

software-generated poses and corresponding energies. The 3D structures of 195 ligands 

binding to a specific target are also created by the docking program and their energies are 

estimated by our AGL-Score model. The predicted true binders are identified based on their 

predicted affinities.

Our training set for AGL-Score on this screen power test is based on the PDBbind v2015 

refine set excluding the core set in that database. Besides these experimental structures, we 

generate the non-binder structures for each target protein by using Autodock Vina171. 

Specifically, we use that docking software to dock all ligands in the PDBbind v2015 refined 

set without the inclusion of the core-set compounds to the interested receptor. Here are the 

parameters of Autodock Vina we use in this procedure: exhaustiveness=10, num_modes=10, 

and energy_range=3. For each docking run, the pose associated with the highest predicted 

affinity by Autodock Vina is kept.

To preserve the consistency in the energy unit, all the Autodock Vina scores in kcal/mol are 

converted to pKd unit via a constant factor −1.363325. Ligands in the PDBbind v2015 

refined set which do not bind to a target protein are designated as decoys150,152. To conserve 

the physical and biological sense, the Autodock Vina predicted energies of those decoys 

cannot be higher than the lowest energies among the ligands experimentally bind to that 

target protein. To this end, we constraint the decoy energies by the lower bound of the true 

binders. The generated structures, as well as the energy labels of the decoys used in the 

AGL-Score training process, are publicly available at https://weilab.math.msu.edu/AGL-

Score.
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The AGL-Score model we used in this screening power is AGL-Score AGIE, 6, 2.5
Adj . Figure 13 

plots the performance of the AGL-Score along with numerous scoring functions reported in 

the literature150,163. It is an encouragement to see our AGL-Score achieves the top 

performance on enrichment factor (EF) and success rate at the top 1% level in the 

CASF-2013 benchmark. The EF of the AGL-Score is 25.6 followed by ΔvinaRF20 

(EF=20.9)163 and GlideScore-SP (EF=19.5)150. Moreover, the success rate of our graph-

based model is 68% followed by ΔvinaRF20 and GlideScore-SP that both attain 60%.

Since the partial training data of our AGL-Score model is generated by Autodock Vina, it is 

interesting to see the accuracy of that docking software carried out in our lab on this 

assessment. The Autodock Vina’s performances are much lower than the graph-based 

model. Specifically, the docking software attains EF as low as 14.7 while AGL-Score 

produces EF as high as 25.6. In the success rate metric, Autodock Vina’s accuracy is only 

32% which is far from AGL-Score’s rate at 68%. Since the published work163 already 

reported Vina’s screen power tests, to avoid any confusion we plot our experiments on the 

Vina software as green bars in Figure 13. The unsatisfactory results of the Autodock Vina on 

the screen power further reinforce the accurately encoded physical and biological 

information in our graph-based model rather than the dependence on training quality.

The screening power validation is an important metric in virtual screening in drug design. 

Since this assessment strictly requires meaningful molecular representations and an 

appropriate training set, large numbers of machine learning-based scoring functions with 

simple features and irrelevant training data often perform poorly on this metric despite the 

promising accuracy on the scoring power. For instance, RF@ML170 is a machine learning 

model using Random Forest for the prediction but its features simply count the number of 

intermolecular contacts between two atom types. In fact, RF@ML produces an acceptable 

correlation (Rp =0.704) on 164 complexes in PDBbind v2013 dataset. However, RF@ML’s 

accuracies of screen power are the worst among the models listed in Figure 13. In contrast, 

our AGL-Score model with superior feature representations and training data insight has 

achieved the top places in both scoring and screening powers.

IV.C Online servers

In the past few years, a few online servers have been developed for the predictions of 

protein-ligand binding affinities (RI-Score, TML-BP, and TML-BP), protein stability 

changes upon mutation (TML-MP, and TML-MP), molecular toxicity (TopTox), partition 

coefficient and aqueous solubility (TopP-S), and protein flexibility (FRI).

V Concluding remarks

Artificial Intelligence (AI), including machine learning (ML), has had tremendous impacts 

on science, engineering, technology, healthcare, security, finance, education, and industry, to 

name just a few. However, the development of ML algorithms for macromolecular systems 

is hindered by their intricate structural complexity and associated high ML dimensionality. 

In the past few years, we have addressed these challenges by three classes of mathematical 

techniques based on algebraic topology, differential geometry, and graph theory. These 
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mathematical apparatuses are enormously effective for macromolecular structural 

simplification and ML dimensionality reduction. By integrating with advanced ML 

algorithms, we have demonstrated that our mathematical approaches give rise to the best 

prediction in D3R Grand Challenges, a worldwide competition series in computer-aided 

drug design28,29, as well as many other physical, chemical and biological datasets. 

Nonetheless, our methods and results were scattered over a number of papers. In this review, 

we provide a systematical and coherent narration of our state-of-the-art algebraic topology, 

differential geometry, and graph theory-based methods. Emphasis is given to the physical 

and biological challenge-guided evolution of these mathematical approaches. Although our 

mathematical methods can be paired with various machine learning algorithms for a wide 

variety of chemical, physical, and biological systems, we focus on protein-ligand binding 

analysis and prediction in the present review.

Fueled by the fast advances in ML and the availability of biological datasets, recent years 

witness the rapid growth in the development of advanced mathematical tools in the realm of 

molecular biology and biophysics. In most of history, mathematics has been the driving 

force for natural science. Indeed, mathematics is the underpinning for every aspect of 

modern physics, from electrodynamics, thermodynamics, statistical mechanics, quantum 

mechanics, solid state physics, quantum field theory, to the general theory of relativity. In 

the past century, mathematics and physics have been mutually beneficial. Similar, 

mathematics will become an indispensable part of biological sciences shortly. Currently, 

algebraic topology, differential geometry, graph theory, group theory, differential equations, 

algebra, and combinatorics have been widely applied to biological science. Many other 

advanced mathematical subjects, such as algebraic geometry and low dimensional manifolds 

will soon find their applications to biological science.

The next generation of AI and ML technologies will be designed to understand the rules of 

life and reveal the physical and molecular mechanics of biomolecular systems. Such a 

development will bring tremendous benefits to health sciences, including drug discovery. 

Mathematics will play a paramount role in future AI and ML technologies. On the one hand, 

the mathematical theory will contribute to the foundation of AL and the design principle of 

ML. On the other hand, new mathematical representations will be developed to enable the 

automatic discovery of scientific laws and principles172. New mathematical representations 

will be made physically interpretable so that machine learning predictions from these 

representations can reveal new molecular mechanisms. A generation of new mathematical 

representations will be made adaptive to future AI technology. Mathematical representations 

will be systematically validated and optimized on a vast variety of existing datasets.
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Figure 1: 
Illustration of essential elements for machine learning (ML) based discovery from complex 

biomolecular data.
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Figure 2: 
Illustration of descriptor-based learning processes.
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Figure 3: 
Wei team’s performance in D3R Grand Challenges 2, 3 and 428,29, community-wide 

competition series in computer-aided drug design, with components addressing blind 

predictions of pose-prediction, affinity ranking, and binding free energy. The golden medal, 

silver medal, and bronze medal label the contest where our prediction was ranked 1st, 2nd, 

and 3rd, respectively. The numbers (a∕b) right beside each medal, say gold medal, implies we 

have a predictions were ranked 1st and there was a total of b submissions sharing the first 
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position. “No Participation” is placed in the contests that we unintendedly did not participate 

due to the inconsistent announcement from the D3R organizer.
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Figure 4: 
Topological representation of point clouds via persistent homology. Top panel: The Betti 

numbers for some objects. Middle panel: Many datasets are represented as a point cloud and 

the simplices are the building blocks for constructing a simplicial complex to topologically 

characterize the point cloud. Bottom panel: the persistence barcode of the point cloud and 

some example simplicial complexes at different stages of the filtration.
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Figure 5: 
Topological fingerprints addressing different aspects of the protein-ligand complex. (a) The 

example protein-ligand complex (PDB:1A94). (b) The H0 barcodes from Rips filtration 

based on the Coulomb potential for carbon-carbon and nitrogen-oxygen interactions 

between protein and ligand. (c) The multi-level persistent homology characterization of the 

ligand revealing the non-covalent intramolecular interaction network. (d) The enriched 

barcode via persistent cohomology for atomic partial charges as the non-geometric 

information.
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Figure 6: 
Workflow of topology based protein-ligand binding affinity prediction. In multi-level 

persistent homology, the distance between covalent bonds are set to ∞ to avoid their 

disturbance to the topological representation of non-covalent bonds.
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Figure 7: 
Illustration of the DG-GL strategy for complex with PDBID: 5QCT (first column). The 

second column presents the different element specific groups including OC, CN, and CH, 

respectively from top to bottom. The third column depicts the element interactive manifolds 

for the corresponding element specific groups. A predictive model in the last column 

integrates the differential geometry features (fourth column) with the machine learning 

algorithm.
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Figure 8: 
Illustration of weighted colored subgraph GNO (Left), its Laplacian matrix (Middle), and 

adjacency matrix (Right) for uracil molecule (C4H4N2O2). Graph vertices, namely oxygen 

(i.e., atoms 1 and 4) and nitrogen (i.e., atoms 2 and 3), are labeled in red and blue colors, 

respectively. Here, graph edges (i.e., Φij) are labeled by green-dashed lines which are not 
covalent bonds. Here, Φij are distance-weighted edges. Note that there are 9 other nontrivial 

subgraphs for this molecule (i.e., GCC, GCN, GCO, GCH, GNN, GNH, GOO, GOH, GHH).
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Figure 9: 
A paradigm of the graph-based approach. The first column is the complex input with PDBID 

5QCT. The second column illustrates the element-specific groups in the binding site. The 

third column presents the eigenvalues of the corresponding weighted colored graph 

Laplacian and adjacency matrices in the second column. The statistics of these eigenvalues 

are calculated in the fourth column. The final column forms a gradient boosting trees model 

using these eigenvalues.
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Figure 10: 
The performances on different evaluation metrics of various scoring functions on 

CASF-2007 benchmark. a) scoring power ranked by Pearson correlation coefficient, b) 

ranking power assessed by the high-level success measurement, and c) docking power 

measured by the rate of successfully identifying the “native” pose from 100 poses for each 

ligand. Our developed models, namely TopBP49, EIC-Score89, and AGL-Score66 are colored 

in orange, and other scoring functions48,89,149,160–163 are colored in teal.
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Figure 11: 
The performances on different evaluation metrics of various scoring functions on the 

CASF-2013 benchmark. a) scoring power ranked by Pearson correlation coefficient, b) 

ranking power assessed by the high-level success measurement, and c) docking power 

measured by the rate of successfully identifying the “native” pose from 100 poses for each 

ligand. Our developed models, namely TopBP49, EIC-Score89, and AGL-Score66 are colored 

in orange, and other scoring functions89,150,163–165 are colored in teal.
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Figure 12: 
The Pearson correlation coefficient of various scoring functions on CASF-2016. Our 

developed models, namely TopBP49, EIC-Score89, and AGL-Score66 are colored in orange. 

The performances of other models that are in teal are taken from Refs.48,89,151,165–167. Our 

TopBP is the best model with Rp = 0.861 and RMSE = 1.65 kca/mol. Our AGL-Score is the 

second best model, with Rp = 0.833 and RMSE = 1.733 kcal/mol. The third-ranked scoring 

function is still our model, EIC-Score, with Rp = 0.825 and RMSE = 1.767 kcal/mol. Note 

that, scoring functions marked with * use PDBbind v2016 core set (N = 290).
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Figure 13: 
The performances of various scoring functions on the screening power for CASF-2013 

benchmark based on a) enrichment factor and b) success rate at the top 1% level. The orange 

bar indicates our graph-based models66. The green bar represents the results of Autodock 

Vina carried out in our lab. The teal bars express the performances of other models Refs.
150,163.
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Table 1:

The ranges of DG-GL hyperparameters for 5-fold cross-validations

Parameter Domain

τ {0.5, 1.0, …, 6}

δ {0.5, 1.0, …, 6} ∪ {10, 15, 20}

C {K, H, kmin, kmax}
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Table 2:

The ranges of AGL hyperparameters for 5-fold cross-validations

Parameter Domain

τ {0.5, 1.0, …, 6}

δ {0.5, 1.0, …, 6} ∪ {10, 15, 20}

ℳ {Adj, Lap, Inv}
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Table 3:

Summary of PDBbind datasets used in the present work

Training set complexes Test set complexes

CASF-2007 benchmark 1105 195

CASF-2013 benchmark 3516 195

CASF-2016 benchmark 3772 285
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Table 4:

Discrepancy information between PDBbind v2016 core set and CASF-2016 test set

PDBID

Complexes in CASF-2016 but not in PDBbind v2016 core set 1g2k

Complexes in PDBbind v2016 core set but not in CASF-2016 4mrw, 4mrz, 4msn, 5c1w, 4msc, 3cyx
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