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SUMMARY

The immune composition of the tumor microenvironment influences response and resistance to 

immuno-therapies. While numerous studies have identified somatic correlates of immune 

infiltration, germline features that associate with immune infiltrates in cancers remain 

incompletely characterized. We analyze seven million autosomal germline variants in the TCGA 

cohort and test for association with established immune-related phenotypes that describe the tumor 

immune microenvironment. We identify one SNP associated with the amount of infiltrating 

follicular helper T cells; 23 candidate genes, some of which are involved in cytokine-mediated 

signaling and others containing cancer-risk SNPs; and networks with genes that are part of the 

DNA repair and transcription elongation pathways. In addition, we find a positive association 

between polygenic risk for rheumatoid arthritis and amount of infiltrating CD8+ T cells. Overall, 
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we identify multiple germline genetic features associated with tumor-immune phenotypes and 

develop a framework for probing inherited features that contribute to differences in immune 

infiltration.

Graphical Abstract

In Brief

The role of inherited variants in influencing the immune composition of the tumor 

microenvironment is not fully characterized. Shahamatdar et al. identify germline variants, genes, 

and pathways associated with immune infiltration phenotypes in cancer, which may offer insights 

into determinants of response to immunotherapy.

INTRODUCTION

Immune checkpoint blockade (ICB) therapies have emerged as impactful treatments for a 

variety of cancers. The discovery of cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) 

and programmed cell death protein 1 (PD-1) as important modulators of the adaptive 

immune system (Tivol et al., 1995; Fife et al., 2009) led to the development of ICB 

therapies, which target these specific pathways. Antagonism of PD-1 and CTLA-4, negative 

regulators of T cell activity, stimulates the host immune system to recognize and kill tumor 

cells. While these therapeutic strategies are effective in a wide variety of cancers, they elicit 

variable clinical response (Ribas and Wolchok, 2018; Keenan et al., 2019).
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Tumor-intrinsic features correlated with ICB clinical activity, such as mutational load and 

microsatellite instability, have been characterized extensively (Snyder et al., 2014; Gentles et 

al., 2015; Rizvi et al., 2015; Rooney et al., 2015; Van Allen et al., 2015; Giannakis et al., 

2016; Miao and Van Allen, 2016; Charoentong et al., 2017; Miao et al., 2018; Samstein et 

al., 2019). Numerous lines of evidence indicate that selective response to ICB is also driven 

by the composition of the tumor microenvironment (TME), particularly the immune 

infiltration patterns in the TME (Tumeh et al., 2014; Thorsson et al., 2018). A study by 

Thorsson et al. (2018) analyzed the immunogenomic landscape of over 10,000 tumor 

samples compiled by The Cancer Genome Atlas (TCGA), reported specific driver mutations 

correlated with tumor infiltrating leukocyte levels, and demonstrated the prognostic and 

therapeutic implications associated with the TME composition.

Germline determinants of immune infiltration in solid tumors remain incompletely 

characterized, although germline features have been found to be associated with immune 

traits such as anti-tumor response, autoimmune diseases, and baseline white blood cell 

indices in healthy patients (Orrù et al., 2013; Parkes et al., 2013; Roederer et al., 2015; Astle 

et al., 2016; Marty et al., 2017; Marty Pyke et al., 2018). Marty et al. (2017) and Marty Pyke 

et al. (2018) identified germline alleles that affect the anti-tumor immune response and 

shape the oncogenic mutational landscape of tumors, but the studies focused only on the 

major histocompatibility complex (MHC). Genome-wide association studies (GWASs) have 

identified hundreds of germline variants associated with immune-mediated diseases (Parkes 

et al., 2013). And finally, Astle et al. (2016) found that common autosomal genotypes 

explain up to 21% of variance in white blood cell indices in a GWAS of 170,000 

participants. Despite evidence that germline variants influence the immune system and its 

response to pathogens and tumors, there is a lack of genome-wide studies that investigate the 

effects of germline features on shaping the immune composition of the TME.

Recently, Lim et al. (2018) uncovered 103 germline single-nucleotide polymorphisms 

(SNPs) associated with immune cell abundance in the TME. However, the study overlooked 

potential confounding effects due to population structure and did not offer insight into how 

individual variants interact through genes or pathways to affect immune infiltration patterns.

Here, we analyze germline variants and test for association with immune infiltration in solid 

tumors in a pan-cancer meta-analysis of 30 TCGA cancer cohorts across different genomic 

scales. We identify SNPs, genes, and networks correlated with immune infiltration patterns, 

as well as an association between polygenic risk for autoimmune diseases and immune 

infiltration.

RESULTS

Overview of Association Analyses

In order to characterize how host genetics affect immune infiltration in solid tumors, we 

analyzed the association between germline variants and 17 phenotypes describing the 

immune component of the TME across 30 TCGA cohorts (Figure 1A). The genotype data 

consist of 5,788 samples of European genetic ancestry and 7,070,031 imputed variants. 

Table S1 describes the 17 molecular phenotypes and sample size per phenotype.
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We conducted GWASs of the 17 phenotypes and aggregated SNP-level signals across genes 

and pathways with gene-level and network-level tests of association. In addition, we asked 

whether polygenic risks of autoimmune diseases are associated with immune infiltration 

measures.

SNP-Level Association with Follicular Helper T Cell Phenotype

GWASs conducted on 17 immune infiltration phenotypes reveal two independent 

associations at genome-wide significance (p <5 3 10−8). rs3366, a variant in the 3′ 

untranslated region (UTR) of SIK1 (effect size = 0.155, p = 2.99 3 10−9), is associated with 

the amount of follicular helper T (TFH) cells in bulk tumor (Figure 1B). This SNP currently 

has no published associations in the GWAS catalog (Buniello et al., 2019). Although the 

biological role of SIK1 in TFH cells is unknown, there is evidence of differential expression 

of SIK1 in this cell type (Newman et al., 2015).

rs4819959 is associated with the T helper 17 (Th17) cell signature (effect size = −0.168, p = 

2.52 × 10−16). The Th17 cell signature phenotype is defined by the expression of three 

genes, including IL17RA. The significant SNP is a known expression quantitative trait loci 

(eQTL) of IL17RA in 31 tissues according to the Genotype-Tissue Expression (GTEx) 

database (Carithers et al., 2015), meaning the observed association is likely a byproduct of 

the phenotype definition.

Gene-Level Association Studies Reveal 23 Candidate Genes

We then performed gene-level tests of association with immune infiltration phenotypes using 

PEGASUS (Nakka et al., 2016). We report gene-level associations at p < 2.8 3 10−6, after 

Bonferroni correction for 17,563 autosomal genes. These genes are referred to as candidate 

genes. Because of the small size of the dataset and overlap between genes, we also report 

suggestive associations at p < 2.9 × 10−5, after Bonferroni correction for 1,703 independent 

haplotype blocks in the autosomes, consistent with Wojcik et al. (2015) and Gorlova et al. 

(2018), as defined by Berisa and Pickrell (2016).

We found 24 candidate gene-phenotype relationships, composed of 23 unique genes across 

16 phenotypes. There are an additional 54 unique suggestive genes. The results are 

summarized in Figure 2A; full annotated results can be found in Table S2. We annotated the 

genes based on (1) gene expression in TCGA bulk tumor and reference immune cell 

populations (Schmiedel et al., 2018); (2) previously published GWAS hits in the GWAS 

catalog (Buniello et al., 2019), focusing on traits related to cancer, immunity, or 

autoimmunity; (3) evidence for promoting oncogenic transformation (Futreal et al., 2004); 

and (4) correlation between gene expression and tumor purity. The results are summarized in 

Figure 2A; full results can be found in Table S2.

All 23 candidate genes were expressed in either bulk tumor or reference immune cell 

populations. In addition, the expression of these genes was either not correlated or only 

weakly correlated with tumor purity; the correlation coefficients ranged from −0.22 to 0.21. 

One of the candidate genes, TRIM34, had a negative correlation coefficient that was more 

than two standard deviations away from the mean correlation coefficients for all genes.
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We observed seven genes that contain reported GWAS hits in a related trait according to the 

GWAS catalog (Buniello et al., 2019). Four of the seven genes (COL21A1, GPATCH1, 

LEKR1, and SBF2) contain SNPs associated with different cancers, such as small cell lung 

carcinoma and breast carcinoma (McKay et al., 2017; Wang et al., 2017; Michailidou et al., 

2017; Wu et al., 2014; Law et al., 2019). Five of the seven genes (COL21A1, LEKR1, PXK, 

RABGAP1L, and SIK1) contain SNPs associated with immune or autoimmune traits, such 

as allergies and systemic lupus erythematosus (Bønnelykke et al., 2013; Ahola-Olli et al., 

2017; Alarcón-Riquelme et al., 2016; Kichaev et al., 2019; Ferreira et al., 2017). We refer to 

genes with no published GWAS hits in traits related to cancer, immunity, or autoimmunity as 

novel genes. Of the 16 novel candidate genes, the Gene Ontology (GO) term with the most 

members is the cytokine-mediated signaling pathway. Lastly, four suggestive genes and one 

candidate gene are annotated by the Cancer Gene Census as casually implicated in cancer 

(Figure 2A).

We found evidence of genes associated with multiple phenotypes. For example, ZFP91 is 

associated with the Th17 cell phenotype at gene-level significance and associated with the 

lymphocytes and macrophages phenotypes at a suggestive level. This gene activates the 

nuclear factor κB (NF-κB) pathway by stabilizing the NF-κB-inducing kinase, a regulator of 

the immune system (Jin et al., 2010).

In addition, we identified three candidate genes and four suggestive genes associated with 

the CD8+ T cell phenotype, an established effector cell in the anti-tumor activity of the 

immune system (Figure 2B). TCF12 is one of the suggestive genes associated with the CD8+ 

T cell phenotype. It codes for a transcription factor called HeLa E-box binding protein 

(HEB), which regulates lineage-specific transcriptional profiles of CD4+CD8+ thymocytes 

(Emmanuel et al., 2018). The relevance of the other associated genes is not as immediately 

clear. Two genes, LRRC19 (suggestive association) and IFT74, are related to genes that are 

involved in the innate immune system (Ng et al., 2011) and recycling of T cell antigen 

receptors (Finetti et al., 2009), respectively. DCDC2 is aberrantly expressed in prostate 

tumors (Longoni et al., 2013), and gain-of-function mutations in MAP3K9 (suggestive 

association) in lung cancer may activate the extracellular signal-regulated kinase (ERK) 

pathway (Fawdar et al., 2013).

Genes in DNA Repair and Transcription Elongation Pathways Correlated with Leukocyte 
Fraction

We conducted network propagation analyses (Reyna et al., 2018) to identify gene 

subnetworks enriched for genes with low gene-level p values whose protein products are 

topologically connected on a protein-protein interaction network. We found statistically 

significant subnetworks for the leukocyte fraction phenotype (p < 10−3) with the 

ReactomeFI 2016 interaction network; two of these subnetworks are highlighted in Figure 3.

The second largest connected subnetwork includes two suggestive genes, ATR and HSPA2 
(p < 2.81 3 10−5). ATR has been previously implicated in cancer pathogenesis (Futreal et al., 

2004). In addition, reported germline ATR variants predispose an individual to cancer 

(Tanaka et al., 2012). ATR and HSPA2 are connected via SYCP2. Although not significant 

in our gene-level analysis, somatic mutations in SYCP2 were previously reported to lower 
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regulatory T cell to CD8+ T cell ratios in head and neck cancers (Siemers et al., 2017). Other 

biologically relevant genes in this subnetwork include FANCM, RAD51, PRIM1, and 

TOPBP1, which participate in DNA repair pathways.

Components of the subnetwork shown in Figure 3B are involved in the transcription 

elongation pathway (CCNT2, CD3EAP, GTF2H4, IWS1, and LEO1) and nucleotide 

excision repair pathway (COPS4, COPS5, GTF2H4, and XPC). None of the genes in this 

subnetwork had significant gene-level p values, although they are part of a significant 

subnetwork in the network analysis.

Autoimmune Disease Polygenic Risk Associated with Immune Infiltration Patterns

We investigated if common variants that affect the risk for autoimmune diseases are 

correlated with immune infiltration (Figure 4A). We calculated polygenic risk scores (PRSs) 

for five autoimmune disorders: rheumatoid arthritis, inflammatory bowel disease, celiac 

disease, systemic lupus erythematosus, and multiple sclerosis. These diseases were chosen 

based on availability of summary statistics in large, well-powered published GWASs 

(Dubois et al., 2010; Sawcer et al., 2011; Anderson et al., 2011; Okada et al., 2014; Bentham 

et al., 2015).

We identified statistically significant associations (p < 0.0029, Bonferroni corrected for 17 

immune infiltration phenotypes) between PRS for rheumatoid arthritis and phenotypes: 

lymphocytes, CD8+ T cells, and macrophages (Figure 4B). The effect sizes are as follows: 

CD8+ T cells = 0.0088, lymphocytes = 0.0091, and macrophages = −0.0073. It is important 

to note that the lymphocytes phenotype is defined as the sum of 12 cell types, one of which 

is amount of CD8+ T cells. To test whether the lymphocyte and CD8+ T cell hits were 

independent, we subtracted the amount of CD8+ T cells from lymphocytes and repeated the 

analysis. We no longer observed a significant association between this phenotype and PRS 

of rheumatoid arthritis (p = 0.0092), demonstrating that the association signal of the 

lymphocytes phenotype is driven by the CD8+ T cells phenotype.

DISCUSSION

The abundance and composition of immune cell populations in the TME are known to affect 

response to ICB therapies. Here, we presented a pan-cancer germline analysis of immune 

infiltration in solid tumors, demonstrating that host genetics are associated with phenotypes 

describing the immune component of the TME. Through integrative analysis of germline 

genotype, tumor RNA sequencing (RNA-seq), and tumor DNA methylation data, we 

identified features at multiple genomic scales (SNP-level, gene-level, and pathway-level) 

that are correlated with the amount of infiltrating TFH cells and fraction of leukocytes in 

bulk tumor, among other phenotypes. The 17 immune phenotypes were chosen to capture 

different facets of the TME, from abundance of particular types of immune cells to gene 

expression signatures that describe interferon-γ signaling. The association studies described 

here are sensitive to the precise phenotype definitions.

In our analyses, we found evidence for only one SNP-level association. The sparsity of 

results from our GWAS analysis is not surprising, as the GWAS framework is underpowered 
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to detect SNP-level associations in complex traits (McClellan and King, 2010; Stranger et 

al., 2011). The GWAS framework does not account for the genetic heterogeneity often seen 

in complex traits (McClellan and King, 2010). In addition, we do not have adequate power 

to detect variants of small effect size because of the small size of our dataset. Gene-level and 

network-level tests of association overcome these limitations by reducing the multiple 

hypothesis burden and aggregating SNP-level signals across biologically functional units 

(Neale and Sham, 2004; Liu et al., 2010; Wu et al., 2010; Nakka et al., 2016; Wang et al., 

2010; Reyna et al., 2018).

By combining SNP-level signals and testing for phenotype associations at the gene and 

pathway levels, we uncovered multiple genes and pathways that are associated with immune 

infiltration patterns. Out of 23 unique candidate genes, five were previously identified in 

GWASs on autoimmune disorders or immune-related traits; these results suggest host 

genomic factors that cause variation or disease in the immune system may also affect 

immune infiltration of tumors. We found an additional four candidate genes containing 

SNPs significant in cancer GWASs; these genes may be affecting cancer risk by altering the 

anti-tumor immune response. There is already evidence for this relationship from GWASs of 

cancer predisposition, in which cancer-risk SNPs are found to be involved in the immune 

system (Clifford et al., 2010; Shiels et al., 2012; Peltekova et al., 2014).

We also identified several subnetworks associated with the leukocyte fraction. ATR, a 

suggestive association from gene-level analysis, and interacting genes were among one of 

the subnetworks. Germline and somatic mutations in ATR have been reported to play a role 

in tumorigenesis (Tanaka et al., 2012; Forbes et al., 2017). Somatic ATR mutations have also 

been shown to modulate the TME in melanomas, recruiting macrophages and blocking T 

cell recruitment (Chen et al., 2017).

Other significant subnetworks contain genes involved in DNA repair and transcription 

elongation pathways. Somatic mutations in genes involved in DNA repair can increase the 

neoantigen load in the TME and affect the response to ICB (Mouw et al., 2017; Knijnenburg 

et al., 2018). In addition, defective transcription elongation is known to confer resistance to 

immunotherapy despite increased levels of infiltrating T cells (Modur et al., 2018). We note 

that these significantly altered subnetworks were found using the ReactomeFI interaction 

network, and the results using other tested interaction networks were not statistically 

significant. These results are likely due to differences in network topology, with ReactomeFI 

being the densest out of the three interaction networks used.

Finally, we showed that the PRS for rheumatoid arthritis is correlated with amount of CD8+ 

T cells, which may suggest a shared genetic etiology between rheumatoid arthritis and 

cytotoxic immune response to solid tumors. In the synovial compartment of rheumatic 

joints, 40% of T cells are CD8+ T cells (McInnes, 2003). Past studies have found 

associations between rheumatoid arthritis and MHC class I polymorphisms (Raychaudhuri 

et al., 2012) as well as between amount of CD8+ T cells in synovial fluid and disease 

activity (Cho et al., 2012), suggesting a potential role for CD8+ T cells in the development 

and progression of rheumatoid arthritis.
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While we applied many quality-control filters to the genotype and phenotype data to remove 

confounders in our analyses, replication is necessary. However, replication studies are 

currently not feasible due to a lack of a large, independent, pan-cancer cohort with matched 

germline and RNA-seq data. The TCGA dataset provided a unique opportunity to conduct 

integrative association analyses that leverage germline data. The TCGA germline data have 

been largely underappreciated, besides investigation of predisposition germline variants in 

cancer (Kim et al., 2013; Palles et al., 2013; Huang et al., 2018). Future studies with larger, 

integrative datasets are needed to increase statistical power and take advantage of other 

existing tools to conduct multi-trait GWAS analyses and heritability estimates.

We note that the studied phenotypes were calculated based on sections of tumor tissue at one 

point in time and therefore do not capture the whole extent of the heterogeneity of the TME. 

In addition, 16 out of 17 phenotypes were based on bulk RNA-seq data, and 6 of those 16 

were derived using a deconvolution method CIBERSORT (Newman et al., 2015). 

CIBERSORT has several limitations, including reliance on the fidelity of a reference 

expression panel for deconvolution (Newman et al., 2015). More generally, bulk RNA 

deconvolution methods have limits to interpretation, as they cannot be used to tease apart the 

source of gene expression (i.e., if candidate gene is expressed by tumor cell or immune 

cells). Ideally, future studies will integrate germline and somatic variation with orthogonal 

measures of immune infiltration patterns (such as single-cell RNA-seq profiling) at different 

time points, but such study design does not currently exist to validate the reported results.

Follow-up studies incorporating other immune cell populations known to affect response to 

immunotherapy (such as fraction of infiltrating neutrophils or CD4+ T cells) and joint 

analysis of germline variants, somatic mutations, and environmental factors will further our 

understanding of predictors of response to ICB therapies. Ultimately, experimental 

investigations are also needed to determine the biological mechanisms driving the reported 

associations.

In conclusion, we report germline variation in SNPs, genes, and pathways associated with 

immune infiltration patterns. These results highlight the important yet previously overlooked 

role that inherited variants play in influencing the immune composition of the TME, a 

crucial step toward understanding predictors of response to ICB therapies.

STAR⋆METHODS

Detailed methods are provided in the online version of this paper and include the following:

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Sohini Ramachandran (sramachandran@brown.edu). This study did not 

generate new unique reagents.

METHOD DETAILS

Subject Details—The Cancer Genome Atlas (TCGA) dataset consists of tumor and 

matched normal samples from over 11,000 patients. The Genomic Data Commons (GDC) 
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legacy archive contains germline data for 11,440 samples from 10,776 unique participants. 

Samples with the following TCGA project IDs: DLBC, LAML, LCML, MISC, and THYM 

were excluded as they represent unidentified cancer or cancers derived from immune cells. 

Samples indicated as problematic by either GDC-issued or TCGA-issued annotations were 

removed. The reasons for exclusion ranged from mismatched genotypes in tumor and 

normal samples to incorrect barcodes on aliquots.

Raw Germline Variant Data—Germline variants were derived from the Affymetrix 

SNP6.0 microarray. Raw CEL files for the TCGA cohort were downloaded from FireCloud 

(https://software.broadinstitute.org/firecloud/) and the GDC legacy archive (https://

portal.gdc.cancer.gov/legacy-archive). Probesets with non-unique mapping in the genome or 

not mapping to the location provided by Affymetrix (NetAffx Annotation Release 35) were 

removed.

Germline Variant Calling—Genotype calls from the CEL files were made using Birdseed 

(Korn et al., 2008) in batches; samples from the same TCGA batch were included in the 

same run. Because Birdseed recommends more than 50 samples in each run, batches with 

less than 50 samples were combined with samples from temporally adjacent batches. 

Genotype calls with Birdseed confidence scores more than 0.1 were removed.

Samples with autosomal SNP missingness > 2% or unexpected sex chromosome genotypes 

(males with missing Y chromosome calls or females with Y chromosome calls) were 

removed. Participants with more than two replicate samples were removed. Participants with 

replicate samples with > 1% discordance among genotype calls were removed. Among these 

samples, SNPs with missingness > 5%, sex effect (Fisher’s exact p < 10−20) or batch effect 

(each batch versus all others, Fisher’s exact p < 10−12) were removed. Several participants 

had two replicate samples remaining after the filtering process. SNPs with > 2% replicate 

discordance were removed. For each participant, the sample with the higher genotype 

missingness was removed, and discordant genotypes were excluded.

We imputed genotypes with the Michigan Imputation Server (Das et al., 2016), using data 

from the Haplotype Reference Consortium (McCarthy et al., 2016) as the reference panel. 

Loci with imputation quality R2 < 0.8 were excluded.

To prepare the genotype data for association studies, the following additional quality control 

steps were taken using plink (Chang et al., 2015):

1. SNPs with minor allele frequency < 1% were removed.

2. SNPs not in Hardy Weinberg equilibrium (p < 10−6) were removed.

3. Related individuals (IBD π > 0.185) were removed.

4. Samples with missing GDC demographic data (sex and birth year) were 

removed.

The final genotype data consists of 7,070,031 variants and 5788 samples.
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Genetic Ancestry Calculation—Strict ancestry filtering was applied to samples using 

two techniques: (1) project TCGA samples onto a ten-dimensional principal component 

(PC)-space derived from principal component analysis (PCA) of all individuals in the 1000 

Genomes Project (Auton et al., 2015), and retain only TCGA samples whose five nearest 

1000 Genomes neighbors were labeled as “European” and whose mean distance to those 

neighbors was < 0.1. (2) Run supervised Admixture (Alexander et al., 2009) with K = 3 — 

using the Utah Residents with Northern and Western European Ancestry (CEU), Yoruba in 

Ibadan, Nigeria (YRI), and Han Chinese in Beijing, China (CHB) + Japanese in Tokyo, 

Japan (JPT) populations as reference data — and keep TCGA samples with greater than 

90% membership in the CEU cluster.

Phenotype Data—CIBERSORT-derived fraction of 22 types of immune cells (Newman et 

al., 2015), immune gene expression signatures (Beck et al., 2009; Bindea et al., 2013; 

Calabrò et al., 2009; Chang et al., 2004; Teschendorff et al., 2010; Wolf et al., 2014), and 

leukocyte fraction from methylation analysis were downloaded from Thorsson et al. (2018). 

Cytolytic activity immune signature was added from Rooney et al. (2015). Twenty 

phenotypes with more than 10% zero values were excluded, with 17 phenotypes remaining. 

Within each cancer cohort, a rank-based inverse normal transformation was applied to each 

phenotype. The transformed value of phenotype j for the ith subject in cohort k is:

Yijk = Φ−1 rijk − 0.5
Njk

where rijk is the rank of the ith case in non null observations of phenotype j in cohort k, Njk 

is the number of non null observations of phenotype j in cohort k, and Ф−1 is the probit 

function.

SNP-Level and Gene-Level Association Studies—Genome-wide association studies 

(GWASs) were conducted for 17 phenotypes within each cancer- specific cohort using plink 

(Chang et al., 2015). The first ten genetic PCs, age, and sex were included in the regression 

analysis as covariates. We then used METAL (Willer et al., 2010) with a sample size 

weighting scheme to perform a pan-cancer meta-analysis for each phenotype. SNPs with a 

calculated p value in all cohort-specific GWASs and a meta-analysis p value less than 5 × 

10−8 were reported as significant SNPs. When multiple SNPs in the same haplotype block 

(r2 > 0.1) were significant, the SNP with the lowest p value is reported. The effect sizes of 

significant SNPs were calculated using an inverse-variance weighting scheme.

The meta-analysis SNP-level summary statistics were then used as input to the gene-level 

association test method PEGASUS (Nakka et al., 2016). Gene-level p values are reported for 

genes with at least one SNP in the gene boundary ± 50kb window (17,563 autosomal genes). 

Genes with p values less than 2.8 × 10−6 (Bonferroni corrected for 17,563 autosomal genes) 

were reported as significant. Genes with p values less than 2.9 × 10−5 (Bonferroni corrected 

for number of independent haplotype blocks in the autosomes, 1703 (Berisa and Pickrell, 

2016)) were reported as suggestive.
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Candidate Gene Annotation—The candidate genes from the gene-level association 

studies were annotated using the following methodology:

1. Mean gene expression (TPM) in each TCGA cohort: RNA-seq data was 

downloaded for each TCGA cohort from http://firebrowse.org. The patients were 

subsampled to those included in this study. For each patient, the primary tumor 

sample was used in these calculations, when available. Otherwise, metastatic 

tumor samples were used. The TPM values were derived from multiplying the 

columns labeled “scaled estimates” from files labeled “illuminahiseq rnaseqv2-

RSEM genes” by 106.

2. Mean gene expression (TPM) in immune cells: The mean expression values were 

downloaded from the DICE database (Schmiedel et al., 2018) for all cell types 

(https://dice-database.org/download/mean_tpm_merged.csv).

3. GWAS catalog annotation: Reported associations were downloaded from the 

GWAS Catalog (http://www.ebi.ac.uk/gwas/) on December 28, 2018. The GWAS 

traits were recorded from the “MAPPED TRAIT” column, and categorized into 

immune, autoimmune, or cancer related traits.

4. Cancer Gene Census annotation: Genes in the Cancer Gene Census were 

downloaded from https://cancer.sanger.ac.uk/census. In this database, genes are 

designated as tier 1 or tier 2 depending on the available literature evidence.

5. Correlation between gene expression and tumor purity: The gene expression 

(TPM) was calculated for every gene and every sample. See (1) for source of 

gene expression data. The tumor purity data for each sample was calculated 

using ABSOLUTE and downloaded from https://api.gdc.cancer.gov/data/

4f277128-f793-4354-a13d-30cc7fe9f6b5. The Pearson correlation coefficient per 

gene was calculated between gene expression and tumor purity across samples.

Network Propagation Analysis—We performed network propagation analysis with 

Hierarchical HotNet (Reyna et al., 2018) on the −log10-transformed p values from gene-level 

association testing to identify significantly altered subnetworks. For our analysis, we used 

the following interaction net-works, which were the most recent versions available as of 

February 23, 2018.

• HINT+HI (Das and Yu, 2012; Rolland et al., 2014): HINT binary + HINT co-

complex + HuRI HI

• iRefIndex 15.0 (Razick et al., 2008)

• ReactomeFI 2016 (Fabregat et al., 2018)

For the ReactomeFI network, we considered the set of interactions with a confidence score 

of 0.75 (out of 1) or larger. For each network, we restricted our attention to the largest 

connected subgraph of the network.

To reduce the influence of genes for which we have low confidence of association with a 

phenotype, we assigned p values of 1 to genes with p values of p > 0.1 and ran Hierarchical 
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HotNet (103 permutations) on these thresholded gene scores. This provides sparser, more 

interpretable, and higher confidence networks. Similar p value thresholds were applied in 

similar network analyses (Nakka et al., 2016).

Polygenic Risk Score Analysis—We downloaded the summary statistics from GWASs 

of five autoimmune traits: celiac disease (Dubois et al., 2010); multiple sclerosis (Sawcer et 

al., 2011); ulcerative colitis (Anderson et al., 2011); rheumatoid arthritis (Okada et al., 

2014); and systemic lupus erythematosus (Bentham et al., 2015). Records with missing odds 

ratio, p values, and risk alleles were excluded from analysis. For each autoimmune disease, 

we extracted SNPs at various p value thresholds (p = 1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 

10−7, 5 × 10−8) that overlapped with our genotype data, excluding ambiguous and 

mismatched variants. At each threshold, the SNPs were filtered via linkage disequilibrium 

(LD) clumping, with a 250kb window and an r2 threshold of 0.1 (Table S3). PRSice 

(Euesden et al., 2015) was used to calculate the polygenic risk score (PRS) for each 

autoimmune trait for each sample by summing over the log odds ratio of the selected SNPs, 

weighted by allele dosage of risk alleles.

The PRS for each disease was regressed against each of the 17 immune infiltration 

phenotypes within each cancer cohort, using the first 10 PCs, birth year, and sex as 

covariates. The reported results are from a sample size based meta-analysis of all cancer 

cohorts. Effect sizes of significant associations (Bonferroni corrected for number of immune 

infiltration phenotypes tested) were calculated using an inverse-variance weighted analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical details of all analyses are reported in the Results, figure legends, and Method 

Details.

DATA AND CODE AVAILABILITY

The raw germline data is available from FireCloud (https://software.broadinstitute.org/

firecloud/) and GDC legacy archive (https://portal.gdc.cancer.gov/legacy-archive). The 

phenotype data is available from the original published sources Rooney et al. (2015) and 

Thorsson et al. (2018). The software used for the analyses are referenced in the Method 

Details subsections and Key Resources Table.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Tumor immune infiltration impacts response to immunotherapy

• GWAS identifies inherited genetic variants associated with immune 

infiltration

• Aggregating variants into genes and networks increases power to find 

associations

• Germline associations may offer insight into predictors of response to 

immunotherapy
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Figure 1. Association Study Approach and GWAS Results
(A) Schematic showing the type and size of dataset for association studies. Association 

studies are conducted at three genomic scales across all 17 phenotypes. (B) Manhattan plot 

for GWAS meta-analysis for the TFH cell phenotype. Positions along the chromosomes are 

on the x axis, and −log10-transformed p values are on the y axis. Every autosome is 

represented, but some are unlabeled for visualization purposes. The red line indicates 

genome-wide significance (p < 5 × 10−8). See also Figure S1.
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Figure 2. Summary of Gene-Level Association Results
(A) Gene-level association testing identified 23 unique candidate genes. Four candidate 

genes contained published GWAS SNPs related to cancer traits; five candidate genes 

contained published GWAS SNPs related to immunity or autoimmune traits. Out of the 

genes with no previously known associations, the Gene Ontology (GO) term with the most 

members is shown. Suggestive and candidate genes annotated as casually implicated in 

cancer by the Cancer Gene Census are also shown. Genes are colored according to the 

phenotype category for which they are most significant. Genes associated with multiple 

phenotypes, including suggestive associations, are denoted with a colored asterisk. Genes 

with only suggestive associations are underlined. See also Table S2. (B) Manhattan plot for 

gene-level association analysis for the CD8+ T cell phenotype. Each point represents a gene. 

Positions along the chromosomes are on the x axis, and −log10-transformed p values are on 

the y axis. The solid red line indicates gene-level significance (p < 2.8 × 10−6), and the 

dashed red line indicates suggestive significance (p < 2.9 × 10−5).
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Figure 3. Altered Subnetworks in Leukocyte Fraction Phenotype
Two statistically significant (p < 0.05) altered subnetworks associated with the leukocyte 

fraction phenotype in the ReactomeFI 2016 interaction network. Each rectangle represents a 

gene and is colored according to the gene-level p value. Two genes are connected if their 

protein products interact in the ReactomeFI 2016 interaction network. Underlined genes are 

suggestive genes from gene-level analysis.

(A) Two suggestive genes, ATR and HSPA2, are part of a larger subnetwork involved in 

DNA repair. Genes involved in DNA repair or metabolism are indicated by * and §, 

respectively.

(B) A subnetwork containing important members of the nucleotide excision repair and 

transcription elongation pathway, indicated by # and †, respectively.
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Figure 4. PRS Associations with Immune Infiltration
(A) Workflow for calculating polygenic risk scores (PRSs) of autoimmune disorders based 

on published GWAS summary statistics, followed by regression of the 17 immune 

infiltration phenotypes onto PRS.

(B) Bar plot showing the strength of association between the phenotypes and PRS for 

rheumatoid arthritis. The phenotypes are on the x axis, and −log10-transformed p values are 

on the y axis. Each bar is colored according to the phenotype category. The red line indicates 

the Bonferroni-corrected significance value (p < 0.0029).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Raw germline data NCI Genomic Data Commons https://portal.gdc.cancer.gov/

Haplotype Reference Consortium McCarthy et al., 2016 http://www.haplotype-reference-consortium.org/

1000 Genomes Project Auton et al., 2015 https://www.internationalgenome.org/

Immune cellular fraction estimates and 
immune gene expression signatures

Thorsson et al., 2018 https://gdc.cancer.gov/about-data/publications/panimmune

Cytolytic activity calculation Rooney et al., 2015 PMID: 25594174

Celiac disease GWAS summary statistics Dubois et al., 2010 PMID: 20190752

Multiple sclerosis GWAS summary 
statistics

Sawcer et al., 2011 PMID: 21833088

Rheumatoid arthritis GWAS summary 
statistics

Okada et al., 2014 PMID: 24390342

Systemic lupus erythematosus GWAS 
summary statistics

Bentham et al., 2015 PMID: 26502338

Ulcerative colitis GWAS summary 
statistics

Anderson et al., 2011 PMID: 21297633

HINT Das and Yu, 2012 http://hint.yulab.org/

HI Rolland et al., 2014 http://www.interactome-atlas.org/download

iRefIndex Razick et al., 2008 https://irefindex.vib.be/download/irefindex/data/archive/
release_15.0/psi_mitab/MITAB2.6/9606.mitab.22012018.txt.zip

ReactomeFI 2016 Fabregat et al., 2018 https://reactome.org/

Software and Algorithms

Admixture Alexander et al., 2009 http://software.genetics.ucla.edu/admixture/

Birdseed Korn et al., 2008 https://www.broadinstitute.org/birdsuite/birdsuite-analysis

Hierarchical HotNet Reyna et al., 2018 https://github.com/raphael-group/hierarchical-hotnet

METAL Wilier et al., 2010 https://genome.sph.umich.edu/wiki/METAL

Michigan Imputation Server Das et al., 2016 http://imputationserver.sph.umich.edu/index.html

PEGASUS Nakka et al., 2016 https://github.com/ramachandran-lab/PEGASUS

plink Chang et al., 2015 https://www.cog-genomics.org/plink2/

PRSice Euesden et al., 2015 http://www.prsice.info/
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