_‘ Microbiology-

Resource Announcements

] AMERICAN
PcB SOCIETY FOR

MICROBIOLOGY

GENOME SEQUENCES

L)

Check for
updates

Complete Genome Sequence of Bacillus cereus Strain PL1,

Isolated from Soil in Japan
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ABSTRACT We isolated the soil bacterium strain PL1 and herein report its complete
genome sequence. The strain presented 97% average nucleotide identity (ANI) to
Bacillus cereus and 91% ANIs to other members of the B. cereus group, indicating
that it is affiliated with B. cereus.

he Bacillus cereus group includes several Bacillus species with close phylogenetic

relationships. Among these, the species that have been studied the most are B.
anthracis, B. cereus, B. thuringiensis, B. mycoides, B. pseudomycoides, B. weihenstephanensis, B.
cytotoxicus, and B. toyonensis (1-3). Because some of these species are known to be
potentially pathogenic (3, 4), numerous efforts have been made to clinically diagnose them.
One routine method for bacterial diagnostics involves 16S rRNA gene sequencing. How-
ever, because the sequences of B. cereus group species are markedly similar, often present-
ing >99% identity rates, this approach is not effective for species identification among
these group members. With the advent of next-generation sequencing technologies,
whole-genome sequencing is becoming the prime choice when complementing the
drawbacks (i.e., misidentification) of traditional 16S rRNA gene-based classification (2, 5).

To screen for soil bacteria, we collected soil samples from the city of Tsukuba, Japan.
The soil sample was spread over LB agar (1% [wt/vol] tryptone, 0.5% [wt/vol] yeast
extract, 0.5% [wt/vol] NaCl, and 1.5% [wt/vol] agar) plates and incubated at 37°C
overnight. Several single colonies were isolated. DNA sequencing of the nearly full-
length 16S rRNA genes revealed that many of them were affiliated with one of the
following genera: Bacillus, Streptomyces, or Klebsiella. The 16S rRNA sequence from PL1
showed ~99.9% similarity to that of B. wiedmannii (GenBank accession number
NR_152692.1), B. cereus (NR_115714.1), and B. proteolyticus (NR_157735.1). To more
accurately understand the taxonomic position of the strain, we subjected it to whole-
genome analysis. We used a hybrid approach involving a combination of long-read
sequencing with a GridlON device (Oxford Nanopore Technologies [ONTI]) and short-
read sequencing with a MiSeq instrument (lllumina). Software analyses were conducted
using default parameter settings throughout this study.

The PL1 strain was grown in LB broth at 37°C for 18 h. Genomic DNA was
extracted following a previously described procedure (6). For long-read sequencing,
genomic DNA (1 ng) was treated with Short Read Eliminator XS (Circulomics). The
resulting DNA was used to construct a library using a ligation sequencing kit
(SQK-LSK109; ONT), and the library was analyzed on a FLO-MIN106 R9.41 flow cell
(ONT) for 9 h. Base calling was conducted using Guppy v.3.3.2 (ONT) to generate
172,649 reads (935 Mb) with an average length of 5,418.1 bases. The raw reads were
filtered (Q = 10, read length = 1,000 bases) using NanoFilt v.2.3.0 (7). The longest
read contained 104,681 bases.
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TABLE 1 Genome statistics and features of Bacillus cereus strain PL1

Chromosome or plasmid Length (bp) GC content (%) No. of CDSs® No. of rRNAs No. of tRNAs Avg read depth (X) Accession no.
Chromosome 5,309,441 353 5,308 42 106 70.4 AP022643
Plasmid, pBwiPL1-1 363,764 325 311 0 0 94.6 AP022644
Plasmid, pBwiPL1-2 72,105 344 102 0 0 67.7 AP022645
Plasmid, pBwiPL1-3 60,534 43.7 77 0 0 111.0 AP022646
Plasmid, pBwiPL1-4 14,157 38.9 21 0 0 605.7 AP022647
Plasmid, pBwiPL1-5 13,909 41.0 12 0 0 296.2 AP022648
Plasmid, pBwiPL1-6 8,882 321 7 0 0 323.8 AP022649

aCDSs, coding DNA sequences.

For short-read sequencing, the Nextera DNA Flex library prep kit (Illumina) was used
to generate paired-end libraries with approximately 350-bp inserts. Sequencing was
performed using a MiSeq reagent kit v.2 (300 cycles) with reads that were 156 bp long.
Adapter sequences and low-quality data were trimmed (Q =30, read length =10
bases) using fastp v.0.20.0 (8), yielding 436 Mb of data containing 1.46 million paired-
end reads with an average length of 149.8 bp.

The long-read and short-read data were assembled de novo using Unicycler v.0.4.8
(9), followed by polishing with Pilon v.1.23 (10). This yielded a single circular chromo-
some (5,309,441 bp) and six putative plasmids (pBwiPL1-1 to pBwiPL1-6). The obtained
sequence data were submitted to a Web-based annotation pipeline, DFAST v.1.2.4 (11),
for automated annotation. The chromosome contained 5,308 protein-coding, 106 tRNA,
and 42 rRNA genes. Other characteristics are summarized in Table 1. Average nucleo-
tide identity (ANI) was analyzed using the JSpeciesWS online service (12), which
revealed that the PL1 genome sequence had 97% ANI to B. cereus (GenBank accession
number NC_004722), ~91% to other B. cereus group species (B. mycoides, B. toyonensis,
B. wiedmannii, and B. anthracis), and ~82% to B. pseudomycoides and B. cytotoxicus,
conclusively indicating the taxonomic affiliation of PL1 with B. cereus.

Data availability. The complete genome sequence of B. cereus PL1 is available from
DDBJ/EMBL/GenBank under the accession numbers AP022643 (chromosome) and
AP022644 to AP022649 (plasmids). Raw sequencing data have been deposited in the
DDBJ SRA database under the accession number DRA009574 (BioProject PRJDB9286,
BioSample SAMD00204526).
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