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Abstract

Single cell branching during development in vertebrates is typified by neuronal branching to form 

neurites and vascular branches formed by sprouting angiogenesis. Neurons and endothelial tip 

cells possess subcellular protrusions that share many common features from the morphological to 

the molecular level. Both systems utilize filopodia as their cellular protrusion organelles and 

depend on specific integrin-mediated adhesions to the local extracellular matrix for guidance in 

their pathfinding. We discuss the similar molecular machineries involved in these two types of cell 

branch formation and use their analogy to propose a new mechanism for angiogenic filopodia 

function, namely as adhesion assembly sites. In support of this model we provide primary data of 

angiogenesis in zebrafish in vivo showing that the actin assembly factor VASP participates in both 

filopodia formation and adhesion assembly at the base of the filopodia, enabling forward progress 

of the tip cell. The use of filopodia and their associated adhesions provide a common mechanism 

for neuronal and endothelial pathfinding during development in response to extracellular matrix 

cues.

1. Introduction

Branching morphogenesis is a recurrent theme in the development of multicellular 

organisms and is critical for the formation of many tissues and organs. There are two basic 

types of branching morphogenesis that occur in development; branching of multicellular 

epithelial sheets and tubes, and branching of single cells. The former, which is more widely 

referred to as branching morphogenesis, involves the development of branched epithelial 

tubes, as observed in lung, kidney, and salivary gland development in vertebrates (reviewed 

in (Varner and Nelson, 2014)). Cells within epithelial sheets in these tissues have apical-
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basal polarity, with their basal surface bound to the extracellular matrix (ECM) and their 

apical sides facing a lumen. Epithelial sheets can form tubes and tubes can branch either by 

localized cell division or individual cell shape change. In developing mouse salivary glands, 

kidneys, and lungs, branches extend from sheets or tubes by out-of-plane asymmetric cell 

division in response to local growth factor cues that are released by supporting mesenchymal 

cells (Varner and Nelson, 2014; Bernfield et al., 1972; Qiao et al., 1999; Weaver et al., 

2000). In contrast, in mammary and lung morphogenesis, simple changes in the shape or 

relative positions of groups of cells can drive epithelial sheet bending or puckering to 

produce a branch (Ewald et al., 2008; Schnatwinkel and Niswander, 2013; Kim et al., 2013).

In contrast to multicellular epithelial sheet branching morphogenesis, in single cell 

branching morphogenesis, localized subcellular protrusions from the cell body give 

individual cells a branched architecture. Cells can stably maintain a branched architecture 

over time as in dendritic cells, neurons and melanocytes (Collin and Milne, 2016; Jan and 

Jan, 2010; Mort et al., 2015), or the branches can be dynamic and contribute to invasive 

migratory and pathfinding developmental programs such as elaboration of the nervous and 

vascular systems in animals or trachea development in Drosophila (Caussinus et al., 2008). 

In the case of neurons, subcellular branching arises from cone formation and subsequent 

elaboration of very long cellular processes, i.e. axons and dendrites. In the case of the 

vascular system, subcellular branches lead the way for the subsequent migration of the 

trailing cell body and attached cells along the branch pathway to elaborate the arboreal 

tissue architecture. Branching cells that lead trailing cells in a tissue such as endothelium are 

known as “tip cells.” Tip cells do not have an apical-basal polarity, but generate protrusive 

branches at their leading edges and thus have a “front-back” polarity similar to that of a 

migrating mesenchymal cell. Like migrating mesenchymal cells, productive advance of 

either growth cones or tip cells during branching migration requires adhesion of the 

branched protrusions to the surrounding extracellular matrix (ECM), where the ECM serves 

not only as a source of signal transduction, but also as a physical or haptotactic “road.”

In single cell branching morphogenesis, protrusion of subcellular branches and adhesion of 

those branches to the ECM are mediated by filopodia and focal adhesions. This review and 

the primary data presented herein is focused on the functions of filopodia and focal 

adhesions in single cell branching morphogenesis during neuronal pathfinding and 

angiogenesis to illustrate common mechanisms regulating these processes.

2. Filopodia fundamentals

To understand the role of filopodia in single cell branching morphogenesis during neuronal 

pathfinding and angiogenesis, we will first provide a brief overview of the cell biology of 

filopodia formation and architecture that has been gleaned primarily from studies of 

mesenchymal cells in tissue culture. Filopodia are thin, rod-like cell protrusions produced by 

polymerization of unbranched actin filaments arranged in tight parallel bundles with their 

polymerizing barbed (fast growing) ends at the filopodium tip, and their mechanism of 

formation and molecular architecture is conserved across large phylogenetic distances 

(Petersen et al., 2016).
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Filopodia formation is mediated by the initiation of very localized actin polymerization at 

the cell membrane in response to activation of the small GTPase Cdc42 (Nobes and Hall, 

1995; Castellano et al., 1999) to produce a small bundle of elongating filaments that 

generate a cylindrical protrusion of the cell membrane. Downstream of Cdc42, localized 

actin assembly may either be nucleated de novo, or produced by elongation factors that 

mediate the assembly of pre-existing leading edge filaments. These two mechanisms are 

termed “tip nucleation” and “convergent extension” (Yang and Svitkina, 2011). In the tip 

nucleation model, Cdc42 directly activates formin family proteins such as FMNL2, FMNL3, 

and mDia2, which nucleate the formation of actin filaments and mediate their subsequent 

elongation (Skau et al., 2015; Campellone and Welch, 2010; Gardberg et al., 2016; Barzik et 

al., 2014; Young et al., 2015). In the convergent extension model, Cdc42 activates N-WASP, 

which in turn activates the Arp2/3 complex, which produces branched actin filament 

networks (Mullins and Pollard, 1999; Svitkina and Borisy, 1999). Most filaments generated 

by Arp2/3 are rapidly capped by capping protein, however a subset can be converged at the 

membrane by clusters of proteins that protect them from capping and mediate their 

elongation, including either formins or the members of the ena/VASP family (Young et al., 

2015; Svitkina et al., 2003; Bear et al., 2002; Bombardier et al., 2015). These two 

mechanisms of initiation are not mutually exclusive and may be cell type dependent (Yang 

and Svitkina, 2011; Young et al., 2015).

Once localized actin assembly is initiated at the membrane, filopodia require several other 

components for their growth and maintenance. Filopodial actin filaments are bundled tightly 

together by the actin crosslinking protein fascin (Jansen et al., 2011; DeRosier and Edds, 

1980; Vignjevic et al., 2006). IRSp53, an I-BAR domain-containing and Cdc42 effector 

protein, links actin to the membrane and remodels the membrane into curvature consistent 

with filopodial diameter (Ahmed et al., 2010), and also promotes clustering of the elongation 

factor VASP (Disanza et al., 2013; Kast et al., 2014). Myosin X, a barbed end-directed, 

plasma membrane-associated motor protein (Bohil et al., 2006) delivers VASP, growth factor 

and guidance receptors, and cell-cell and cell-ECM adhesion molecules to the growing 

filopodia tip (Tokuo and Ikebe, 2004; Zhang et al., 2004; Zhu et al., 2007; Almagro et al., 

2010).

In filopodia at steady state, actin is very dynamic, with continuous formin or VASP mediated 

assembly at the tip and cofilin and/or gelsolin-mediated disassembly at the base leading to 

treadmilling-driven actin retrograde flow along the filopodia shaft. Additional 

depolymerization and retraction forces are applied on filopodia actin filaments by non-

muscle myosin II, via connections into the lamella and/or cell cortex (Bornschlögl et al., 

2013; Medeiros et al., 2006; Craig et al., 2012). Filopodia length is thus governed by 

regulating the balance between filament assembly at the tip and disassembly at the base 

(Breitsprecher et al., 2011; Lu et al., 1997).

3. Filopodia in neuronal branching morphogenesis

Both neuritogenesis and growth cone advance depend on filopodia formation (Dent et al., 

2007, 2011), and many of the canonical filopodia components discussed above have been 

shown to be required. For example, Cdc42 activity is required for neurite outgrowth and 
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growth cone filopodia (Brown et al., 2000), and is activated in growth cones in response to 

the guidance molecule netrin-1 (Rappaz et al., 2016). The Cdc42 effector and membrane 

remodeling protein IRSp53 is required for neurite formation and dendritic branching in 

some neurons (Chen et al., 2015), and the actin assembly factors FMN2 and VASP may be 

involved in neuronal outgrowth and pathfinding (Sahasrabudhe et al., 2016; Lebrand et al., 

2004). Although IRSp53 is a well-known upstream activator of Arp2/3, the role of this 

nucleator of branched actin assembly in growth cone advance is unclear. In some neuronal 

types, Arp2/3 is inhibitory to growth cone advance and filopodia are straight and unbranched 

(Strasser et al., 2004), while in others Arp2/3 may play an important role filopodia stability 

in response to local tyrosine kinase regulation (Robles et al., 2003). Actin bundling by fascin 

is required for arbor morphology of branching dendrites (Nagel et al., 2012) and growth 

cone formation in axons (Wei et al., 2014), while myosin X promotes netrin-1-mediated 

guidance by transporting the DCC receptor to filopodia tips (Zhu et al., 2007).

The data demonstrating that neurite formation and growth cone advance depend on 

canonical filopodia is substantial, but what exactly are the filopodia needed for? Two main 

functions have been proposed which are not mutually exclusive. The first is that filopodia 

function essentially as antennae, with signal receptors at their tips or along their length, and 

thus enable the neuron to search for cues in their environment (Heckman and Plummer, 

2013; Davenport et al., 1993). The second function is simple locomotion of the growth cone. 

As discussed below, ECM adhesion sites are initiated by β1 integrins that are trafficked to 

filopodial tips by myosin X where they mediate traction forces along the filopodial axis 

(Chan and Odde, 2008). Thus, in addition to acting a signal-sensor, neuronal filopodia also 

provide adhesion formation and locomotion to the neurite.

4. Filopodia in angiogenic branching morphogenesis

The discussion above suggests that neurites and growth cones utilize conserved filopodial 

machinery, however, the role of filopodia and their molecular components in branching 

morphogenesis and migration of endothelial tip cells during angiogenesis is less well 

established. Long thin protrusions at the leading edge of endothelial tip cells have been 

observed in tissues in situ in several vertebrate species and vessel types (Zhu et al., 2007; 

Gerhardt et al., 2003; Kurz et al., 2001), and these protrusions are required for angiogenesis 

and vessel patterning (Carmeliet et al., 2009). However, whether these are canonical 

filopodia is not clear. On the one hand, there is evidence for filopodial components in 

angiogenesis. In zebrafish angiogenesis, Cdc42 has been shown to be activated by 

ArfGEF9b, which is induced by bone morphogenetic protein (BMP) (Wakayama et al., 

2015), while in mice, knockout or endothelia-specific deletion of Cdc42 abrogates blood 

vessel formation during development (Jin et al., 2013; Barry et al., 2015). Furthermore, 

NRP1, a pro-angiogenic neuropilin, stimulates Cdc4-induced cell protrusions, and NRP1 

knockdown or Cdc42 inhibition blocks protrusion formation and angiogenesis in mouse 

retina and zebrafish models (Fantin et al., 2015), and Cdc42 is required for protrusions and 

angiogenic sprouting in vitro (Nguyen et al., 2017). Angiogenesis also requires formins, 

particularly the endothelial-enriched formin FMNL3, which is activated by Cdc42 to induce 

cell protrusions and tip cell migration and pathfinding (Wakayama et al., 2015; Hetheridge et 

al., 2012). In addition to Cdc42 activation, BMP (BMP6 in mice) activates myosin X in 
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angiogenesis, where it is required for protrusion formation, retinal angiogenesis, and 

vascular remodeling (Pi et al., 2007; Heimsath et al., 2017). Finally, like other filopodia, 

some endothelial tip cell protrusions such as those in retinal angiogenesis are dependent on 

α5β1 integrin for alignment and adhesion in their branching pattern (Stenzel et al., 2011).

Despite these data, endothelial tip cell protrusions may not be canonical filopodia for several 

reasons. First, some components of canonical filopodia are not required for angiogenesis. 

One example is fascin, which is dispensable for angiogenesis (Ma et al., 2013). Second, 

while canonical filopodia are unbranched and have uniform diameters along their length 

(Yang and Svitkina, 2011), endothelial tip cell protrusions have bulges along their length, 

and can be branched (see below). In addition, no role has yet been found for I-BAR proteins 

such as IRSp53 which is an important component of mesenchymal cell and neuronal 

filopodia. Finally, while most data indicate that endothelial tip cell protrusions are required 

for branch pathfinding during angiogenesis and vascular pattern formation, Gerhardt and 

colleagues showed that low concentrations of Latrunculin B, which inhibits actin 

polymerization, shifted tip cell protrusion architecture from long and thin to a wide and flat 

lamellipodia-type morphology, but did not alter the eventual vascular pattern (Phng et al., 

2013). This raises the possibility that endothelial tip filopodia are not required for 

angiogenesis pathfinding per se, but serve to make it more efficient by allowing faster 

searching for soluble or haptotactic cues.

5. Focal adhesion fundamentals

In migration mediated by single cell branching morphogenesis, filopodial protrusions must 

be stabilized by adhesion of the protrusion to the ECM to mediate advance of the growth 

cone of neurons or cell body of endothelial tip cells. Cells adhere to ECM using focal 

adhesions, which are integrin-based, plasma membrane-associated macromolecular 

assemblies that physically connect the ECM to the actin cytoskeleton (Case and Waterman, 

2015). This indirect coupling of actin to the ECM through integrins enables cells to both 

apply force to the ECM to migrate and to sense biochemical and mechanical properties of 

the ECM.

Cell biological studies on various cell types in tissue culture have established that the 

formation of focal adhesions is fundamentally coupled to actin-based protrusions by the 

basic mechanism of integrin activation in what has been termed the “molecular clutch” 

(Case and Waterman, 2015; Mitchison and Kirschner, 1988). While much of the work to 

elucidate this model has focused on cell migration mediated by lamellipodial protrusions, 

the underlying principles can be applied to both lamellipodia and filopodia, despite the 

differences in their actin architecture. At the leading edge of lamellipodial or filopodial 

protrusions in migrating cells, active actin polymerization and retrograde flow generates 

force on integrins to drive conformational changes that mediate a 4000-fold increase in their 

affinity for ECM ligand (Li and Springer, 2017). Mechanistically, this occurs by locally high 

PIP2 concentrations enabling talin to bind to β integrin cytoplasmic tails (Kalli et al., 2013; 

Moore et al., 2012) to promote the “extended closed” conformation of the integrin, and at 

the same time enables talin binding to F-actin, which the integrin dimer cannot do on its 

own. The force of actin flow transmitted to β integrin through talin induces the “extended 
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open” conformation of integrin, which corresponds to the high-affinity ligand-binding state 

(Swaminathan et al., 2017). Rearward flowing actin filaments in leading edge protrusions 

have been likened to the running engine in a car, and the linkage of ECM-bound integrins 

via talin to the actin has been likened to engagement of the clutch that allows force from the 

cytoskeleton engine to be transmitted to traction forces on the ECM to drive cell movement 

(Swaminathan and Waterman, 2016).

As force is applied to the integrin-talin-actin complex and clusters of complexes are formed, 

a host of hundreds of adapter and signal molecules are recruited (Byron et al., 2011; Kuo et 

al., 2011) to generate a focal adhesion. This collection of proteins is self-assembled into a 

conserved nanoscale architecture with three functional layers (Kanchanawong et al., 2010; 

Case et al., 2015). Integrin cytoplasmic tails and focal adhesion signaling proteins such as 

focal adhesion kinase (FAK) and paxillin are found in the membrane proximal integrin 

signaling layer, while actin-associated proteins such as VASP, a-actinin, and zyxin are 

localized deeper in the cell along cortical actin filaments in the actin regulatory layer. Talin, 

which binds to both integrin β tails (Bouaouina et al., 2008; Anthis et al., 2010) and actin 

(Hemmings et al., 1996; Smith and McCann, 2007) spans between the integrin signaling and 

actin regulatory layers of the focal adhesion (Kanchanawong et al., 2010). Extension of talin 

under force (del Rio et al., 2009) enables binding of vinculin in an intermediate zone called 

the force transduction layer (Case et al., 2015), forming an essential part of the molecular 

clutch (Hu et al., 2007; Thievessen et al., 2013). Vinculin binding to talin and actin in the 

force transduction layer enables the adhesion to withstand larger pulling forces by myosin II, 

which further reinforces the strength of the adhesion and induces the recruitment of more 

proteins such as α-actinin (Stricker et al., 2013; Roca-Cusachs et al., 2013) and VASP 

(Zaidel-Bar et al., 2003), driving focal adhesion growth along a bundled actin template 

(Choi et al., 2008; Plotnikov et al., 2012; Atherton et al., 2015). This force-dependent 

“maturation” process is dependent on actomyosin contractility and RhoA activation 

(Chrzanowska-Wodnicka and Burridge, 1996), as well as FAK phosphorylation of paxillin 

(Pasapera et al., 2010).

For a growth cone or cell body to move beyond the site of initial adhesion formation, focal 

adhesions must disassemble in a regulated manner. While perhaps less well understood than 

adhesion assembly, disassembly of adhesions has been found to require proteolysis of talin 

and FAK via calpain cleavage as a rate-limiting step (Franco et al., 2004; Chan et al., 2010), 

and calpains also act on β-integrin associated proteins including talin (Du et al., 1995; 

Huttenlocher et al., 1997) and α-actinin (Sprague et al., 2008). In addition to proteolysis, 

focal adhesion disassembly may also be mediated by clathrin-, dynamin-, and Rab5- 

dependent endocytosis of focal adhesion components (Ezratty et al., 2009; Mendoza et al., 

2013), or by catabolic autophagy programs (Kenific et al., 2016; Sharifi et al., 2016). FAK 

activity plays a role in both assembly and disassembly of focal adhesions, as FAK null cells 

accumulate large adhesions with reduced turnover (Ilić et al., 1995; Webb et al., 2004). 

Phosphorylation of several focal adhesion components by FAK and Src are required for 

efficient focal adhesion disassembly (Webb et al., 2004). In addition, some of these 

mechanisms of focal adhesion disassembly may be spatially regulated by microtubule 

targeting of specific focal adhesions (Kenific et al., 2016; Ezratty et al., 2005; Bhatt et al., 

2002).
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6. Focal adhesions in neuronal branching morphogenesis

During neuronal branching morphogenesis, for protrusions to result in neurite advance, 

directional forces must be applied to adhesions to pull the growth cone towards its target in 

response to chemotactic and haptotactic guidance cues. Neurite extension and axon guidance 

have long been proposed to depend on the extracellular matrix as a pre-existing path 

(Bozyczko and Horwitz, 1986; Dodd and Jessell, 1988). Consistent with this, numerous 

studies in vitro and in vivo have shown that ECM composition and expression of appropriate 

integrins regulates pathfinding (Myers et al., 2011; Anton et al., 1999; Graus-Porta et al., 

2001). However, instead of the focal adhesions found in the lamellipodia of mesenchymal 

cells, adhesive sites in the advancing growth cone take the form of “point contacts”, and 

localize to filopodia (Renaudin et al., 1999; Gomez et al., 1996). In spite of their different 

formation mode, point contacts and focal adhesions share similarities, including the 

accumulation of talin, paxillin and vinculin, as well as stabilization by RhoA activity (Woo 

and Gomez, 2006). Like focal adhesions, growth cone point contacts also require calpain-

mediated cleavage of talin and FAK activity for their turnover (Robles et al., 2003; Kerstein 

et al., 2017). Interestingly, the filopodial activator Cdc42 is required for FAK-mediated 

response to axon guidance cues (Myers et al., 2012), demonstrating the feedback 

connections between guidance cues, filopodia formation, and adhesion signaling.

Although point contacts in neurons and focal adhesions in mesenchymal cells share many 

common components, there are some differences in their dynamics. While focal adhesions 

form in Arp2/3 mediated lamellipodia in mesenchymal cells, work on neurons in tissue 

culture has shown that growth cone point contacts assemble at filopodia tips. After 

formation, point contacts often undergo sliding or slippage as they are drawn towards the 

filopodia base where most point contacts disassemble. A fraction of the adhesions that slide 

to filopodia bases persist as the growth cone expands between adjacent filopodia to extend 

beyond the stabilized adhesion sites (Kerstein et al., 2015). Engagement of the point contacts 

with actin retrograde flow in filopodia enables the forward progress of the growth cone (Lin 

and Forscher, 1995; Santiago-Medina et al., 2013; Nichol et al., 2016), and the highest 

traction forces in the growth cone are just behind the filopodia in the lamellar portion, 

suggesting that the adhesions may mature there (Hyland et al., 2015). However, due to their 

small size and the depth into tissue at which they exist, high resolution imaging of growth 

cone point contact dynamics in vivo has been limited (Santiago-Medina et al., 2012).

7. Focal adhesions in endothelial branching

Angiogenesis, like neuronal pathfinding, is well established as an integrin-ECM dependent 

process (Ingber and Folkman, 1989). Indeed, blocking the angiogenic integrins αvβ3 or 

α5β1 by antibodies has been a clinically attractive therapeutic strategy to suppress tumor 

angiogenesis (Reardon and Cheresh, 2011; Hariharan et al., 2007; Saharinen and Ivaska, 

2015), although it has had limited long-term success. In addition to integrin-ECM 

interactions, other focal adhesion proteins are known to be important in endothelial 

migration and angiogenesis. Loss of FAK, for example, leads to cardiovascular defects in 

early embryogenesis (Ilić et al., 1995), and FAK is required for angiogenesis events in late 

embryogenesis and adult animals (Shen et al., 2005; Lechertier and Hodivala-Dilke, 2012) 
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and also plays a role in angiogenic sprouting. Given these data, it is not surprising that FAK, 

like integrins, has shown promise as an anti-angiogenic therapy target (Stone et al., 2014). 

Paxillin and its homolog Hic-5, as well as talin have also been shown to play a role in 

angiogenesis (Dave et al., 2016; Monkley et al., 2011). Our knowledge of many other 

canonical focal adhesion proteins in angiogenesis such as VASP (Chen et al., 2008), vinculin 

(Deroanne et al., 1996), and integrin-linked kinase (Xie et al., 2013) has been limited to data 

from in vitro systems.

Indeed, while much is known about focal adhesion formation and associated actin dynamics 

in endothelial cells migrating on flat substrates in tissue culture in vitro (e.g., (Lele et al., 

2008; Ingber et al., 1995; Kiosses et al., 1999)), little is known about their dynamics and 

formation in the context of branching morphogenesis during angiogenic sprouting. Unlike 

neuronal growth cones, which form very similar morphologies in vitro and in vivo (e.g., 
(Sahasrabudhe et al., 2016; Dwivedy et al., 2007)), endothelial cells can adopt very different 

morphologies depending on their context both in vitro and in vivo. When plated on 2D 

ECM-coated substrates in vitro, endothelial cells spread over a large area with a discoid 

shape and thin lamellae, like their morphology in a patent vessel wall, and as such, have 

focal adhesion dynamics very similar to those in a mesenchymal migrating cell. In contrast, 

when cultured in 3D collagen gels, endothelial cells do not form large thin lamellae, but 

rather form thin branched pseudopodia and filopodia (Gerhardt et al., 2003; Fischer et al., 

2009; Nguyen et al., 2013), which much more closely resemble those in tip cells and 

neuronal protrusions. Indeed, endothelial cells cultured in such 3D contexts closely 

recapitulate the morphology and dynamics of those undergoing sprouting angiogenesis in 
vivo (Fischer et al., 2009; Nguyen et al., 2013). While we may presume that focal adhesions 

are formed in regions of active actin-driven protrusions during sprouting angiogenesis may 

be similar to the morphologically similar neuronal pathfinding paradigm, neither adhesion 

formation nor direct actin dynamics have been documented in endothelial tip cell migration 

in vivo, and so leaves open many questions with mechanistic implications. Do endothelial 

tip cells use mesenchymal/lamellipodial or growth cone-like/filopodial based mechanism of 

adhesion generation and subsequent migration? If the latter, this could imply that endothelial 

tip cells use their filopodia for similar mechanisms of pathfinding as neurons.

8. Primary research: filopodia and focal adhesion dynamics visualized 

during zebrafish angiogenesis

The above discussion highlights the similarities between neuronal and endothelial branching 

morphogenesis in terms of the roles for filopodia and integrin-mediated adhesions. However, 

the function of filopodia and adhesions in neuronal growth cones is more well-established. 

During guidance, protruding filopodia arrayed along the leading edge of growth cones 

function for efficient searching for haptotactic guidance cues. Those filopodia tips that 

encounter conducive ligands serve as adhesion initiation sites to allow traction force 

generation, and at the same time serve as anchor sites from which the filopodia can further 

protrude. Forward progress of the growth cone beyond the adhesion sites is mediated by 

subsequent advance of the growth cone lamellar region spanning between adjacent anchored 
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filopodia. Thus, filopodia and integrin-mediated adhesions act as a dynamic, integrated 

system that drive directed advance of the growth cone.

Since filopodia and focal adhesions in endothelial cells undergoing branching 

morphogenesis during sprouting angiogenesis share many morphological and molecular 

features of neurons undergoing pathfinding, it is possible that these cellular structures serve 

endothelial tip cells the same guidance function(s) in angiogenesis. This model of filopodia 

as a focal adhesion initiation site for subsequent advance of a trailing lamellar structure that 

has been documented in growth cones has been proposed as a more general mechanism for 

haptotactic mesenchymal cell migration (Johnson et al., 2015). However, as mentioned 

above, no dynamic observations of endothelial tip cell filopodia and adhesions have been 

made in vivo, despite evidence that they must occur. Toward this end, we sought to observe 

tip cell filopodia dynamics and focal adhesions simultaneously in vivo, to determine if there 

were dynamic spatiotemporal relationships similar to those observed in neuronal growth 

cones.

One molecule which participates in both filopodia and focal adhesion formation is VASP. 

VASP, or vasodialator stimulated phosphoprotein, is widely expressed but enriched in 

endothelial cells (Gambaryan et al., 2001). VASP is an actin filament elongation factor that 

protects barbed ends from capping (Bear et al., 2002) and collaborates with formins to 

produce filopodia (Jaiswal et al., 2013; Winkelman et al., 2014; Schirenbeck et al., 2005). 

Studies of GFP-VASP dynamics in filopodia in cultured cells and neurons has shown that 

VASP localization to filopodia enhances filopodia lifetime and protrusion persistence 

(Barzik et al., 2014; Bilancia et al., 2014), in agreement with its role in promoting actin 

filament assembly. VASP also localizes strongly to focal adhesions and binds directly to 

several focal adhesion proteins including zyxin and vinculin (Pula and Krause, 2008), 

however, the role of ena/VASP proteins in adhesion is less clear. On the one hand, selective 

depletion of ena/VASP proteins from focal adhesions has no effect on fibroblast migration 

on fibronectin (Bear et al., 2000), however in leukocytes mutation of VASP tyrosine 38, a 

target for Abl kinase, impairs adhesion to fibronectin (Maruoka et al., 2012). In addition to 

filopodia and focal adhesions, VASP also localizes to and mediates formation and 

maintenance of cell-cell junctions (Benz et al., 2008). Consistent with this, VASP has been 

shown to be critical to blood vessel barrier function (Schmit et al., 2012; Furman et al., 

2007). However, the functions of VASP and its role in filopodial and focal adhesion 

dynamics during sprouting angiogenesis have not been described.

9. Results

To observe localization of VASP during sprouting angiogenesis, we expressed the Danio 
rerio VASP fused to a danio rerio codon-optimized eGFP in the vasculature of developing 

embryos, with expression driven by an endothelial specific promoter (Lawson and 

Weinstein, 2002). GFP-VASP in the developing vasculature was imaged live by spinning 

disc confocal microscopy, as previously described (Lam et al., 2014). GFP-VASP localized 

to the tips of filopodia-like protrusions in sprouting endothelial tip cells during 

intersegmental vessel (ISV) development (Fig. 1A; Movie 1), and at the distal area of 

lamella-likeprotrusions in larger, elongated, stable plaques (Fig. 1B). As neighboring ISV 
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vessels made contact after rostral-caudal branching to form the dorsal longitudinal 

anastomotic vessel (DLAV; (Gore et al., 2012)), GFP-VASP was recruited to nascent cell-

cell contacts (Fig. 1D, Movie 2). In tip cells of some vessels, transient lamellipodia were 

observed with GFP-VASP at their leading edges (Fig. 1C, Movie 3). In mature, patent 

vessels at 48 h post-fertilization, GFP-VASP was enriched at cell-cell junctions (Fig. 1E, 

Movie 4), consistent with its role in vascular barrier function.

Supplementary material related to this article can be found online at doi:10.1016/

j.ydbio.2018.08.015.

Since GFP-VASP is known to promote actin filament elongation to induce filopodia 

formation, we studied GFP-VASP dynamics at endothelial tip cell filopodia-like protrusions 

in more detail. We observed anecdotally that in ISV tip cells with aberrantly high expression 

of GFP-VASP, the entire surface of the cell was covered in small filopodia, these cells never 

advanced to the dorsal side of the neural tube, and they failed to meet their ISV partners 

(Fig. 1F, Movie 5). In moderately expressing cells, we observed that GFP-VASP was 

enriched at the tip of filopodia-like protrusions only during extension, but was lost during 

retraction phases (Fig. 2A–C), consistent with its role in filopodia actin filament elongation. 

We noted that the tip cell filopodia-like protrusions, unlike canonical filopodia, often had 

small lamellipodia-like protrusions and branches along their lengths (Movie 6). These results 

show that GFP-VASP in tip cell protrusions behaves similar to its observed role in canonical 

filopodia in mesenchymal cells and neurons.

Supplementary material related to this article can be found online at doi:10.1016/

j.ydbio.2018.08.015.

We then examined the dynamics of GFP-VASP plaques at the bases of filopodia-like 

protrusions, regions of tip cells that may be functionally analogous to a growth cone (Fig. 

2C, Movie 6). In time-lapse movies, GFP-VASP plaques appeared to form small punctae 

within filopodia-like protrusions that underwent retrograde flow and subsequently stabilized 

at the base of the protrusion. These stabilized punctae then grew into elongated plaques up to 

3.6 μm in length along the axis of retrograde flow, reminiscent of focal adhesion maturation 

seen in cells in tissue culture (Thievessen et al., 2013; Choi et al., 2008). Once formed, GFP-

VASP plaques were roughly stationary at the base of the cell protrusion. Given that the 

substrate underneath cell tips was moving in vivo, the GFP-VASP plaques were remarkably 

stable. Quantitative analysis with automated focal adhesion tracking software (Berginski et 

al., 2011) demonstrated that plaques of GFP-VASP had an average lifetime of 6.25 +/− 2.1 

min, comparable to the lifetime of focal adhesions in cells in tissue culture (Webb et al., 

2002; Gupton and Waterman-Storer, 2006). As the endothelial cell tip advanced, GFP-VASP 

plaques disassembled and areas between leading filopodia-like protrusions filled in, and the 

cell progressed forward. These results show that GFP-VASP forms stable plaques at the base 

of protrusions with similar dynamic characteristics as focal adhesions in migrating 

mesenchymal cells.
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10. Model and outlook

Combining our results with the previous studies reviewed above, we propose a speculative 

model for filopodia as “adhesion factories” for migration of cells undergoing branching 

morphogenesis, the main components of which are conserved for both neuronal growth 

cones and endothelial tip cells (Fig. 3). In filopodia extensions, myosin X transports many 

components such as VASP (Tokuo and Ikebe, 2004) and inactive integrins (Zhang et al., 

2004; He et al., 2017) to the filopodia tip. VASP localizes to the actin filament free barbed 

ends, where it protects barbed ends from capping and collaborates with formins to enable 

filament elongation. This rapid polymerization drives both filopodial protrusion and actin 

filament retrograde flow. VASP is captured by retrograde flow via its actin filament bundling 

activity. The retrograde flow also drives the activation of integrin clusters which have been 

“primed” by talin binding, resulting in molecular clutch engagement and traction generation 

on the ECM. Retrograde flow and further actin bundling results in accumulation of activated 

integrin clusters, VASP, and other focal adhesion components such as vinculin, paxillin, and 

α-actinin into maturing elongated adhesions near the base of the filopodia, where the 

integrins become maximally engaged. The enhanced traction at mature filopodia then 

enables the cell edge to advance beyond the adhesion point, with further filopodial 

protrusion and the cycle continues. Some details may differ between neuronal and 

endothelial filopodia, e.g., neuronal filopodia may rely on fascin cross-links, while 

endothelial cell filopodia may additionally have Arp2/3 mediated branches and small 

lamellipodia along their length (Fig. 3). Nevertheless, the main aspects of this model seem 

likely to be conserved, adding to the growing list of conserved molecular mechanisms in 

pathfinding between the two branched cell systems. More broadly, the role of filopodia as 

adhesion-generating organelles may be conserved amongst diverse motile cell types such as 

fibroblasts and macrophages, where focal adhesion puncta can be observed in these types of 

protrusive structures (Johnson et al., 2015; Barros-Becker et al., 2017).

The speculative model presented above will certainly require more intravital imaging of 

sprouting angiogenesis to observe other focal adhesion components together with F-actin 

markers in tip cell filopodia for substantiation. Amongst the important molecular 

components to observe and perturb during imaging of angiogenesis in vivo will be FAK, 

since it contributes to both focal adhesion formation and turnover and is known to be 

important in pathfinding in neurons, and thus seems likely to be important in tip cell 

dynamics during angiogenesis as well. Although the analogy between endothelial tip cell 

protrusions and neuronal growth cones may not be complete in all details, the common 

mechanisms of filopodia advance and adhesion dynamics between the two systems make 

sense given the similar biological requirements of both branching cell systems, namely that 

they navigate stereotypical paths over long distances and integrate soluble, immobilized, and 

mechanical cues to do so. Much work over the past several years has shown multiple 

common molecular guidance cues and mechanisms between angiogenesis and neuronal 

pathfinding (Quaegebeur et al., 2011), and the use of filopodia-derived adhesions represents 

another part of this understanding.
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11. Methods

Danio rerio husbandry was performed by the Zebrafish Facility at Marine Biological 

Laboratories, in Woods Hole, MA. D. rerio optimized GFP-VASP was constructed by fusing 

an eGFP sequence codon-optimized for D. rerio to the D. rerio VASP coding sequence 

(XM_ 005173679.1) using PCR overlap, and this fusion construct was cloned into a vector 

with fli1 promoter and enhancer regions to drive expression. All constructs were confirmed 

by sequence analysis. Transient expression of this construct in D. rerio embryos was 

performed as previously described (Lam et al., 2014). Briefly Tol2 transposase mRNA was 

produced in vitro (mMessage mMachine kit, Ambion) and mRNA purified (RNeasy kit, 

Qiagen). One-cell-stage embryos were injected with 25 ng of plasmid DNA and 50 ng of 

Tol2 mRNA, and cultivated in E3 water as previously described (Lam et al., 2014). At 20–36 

h post fertilization, embryos were dechorionated and anesthetized with tricaine for several 

minutes, and placed onto BSA coated glass bottom dishes (MatTek), and covered with low 

melt agarose. After gelation, embryos were imaged on an inverted Nikon Ti microscope 

equipped with a Yokagawa X-1 confocal scanhead, a water-immersion 60X lens, an Agilent 

laser combiner, and a Hammamatsu cooled CCD camera. 300–600 msec exposures were 

taken every 3 s to 5 min, depending on the experiment. For quantification of GFP-VASP tip 

enrichment, individual filopodia were tracked using a custom ImageJ script. The mean 

intensity of each filopodium tip and stalk was determined and the fold enrichment was 

calculated as the ratio (after background substraction) of tip mean intensity/stalk mean 

intensity. These values for each tip position over time were plotted against the displacement 

from the previous frame, with positive values indicating extension, and negative values 

retraction. Focal adhesion lifetime analysis was performed on image series of GFP-VASP 

using the Focal Adhesion Analysis Server (http://faas.bme.unc.edu/) described previously 

(Berginski and Gomez, 2013). Focal adhesions were thresholded to find GFP-VASP puncta 

over local background, and only puncta greater than 40 pixels in size (roughly 4.3 μm2 in 

area) were kept for analysis.
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Fig. 1. 
GFP-VASP localizes to filipodia-like protrusions and cell-cell junctions in endothelial cells 

undergoing sprouting angiogenesis in zebrafish in vivo. (A) GFP-VASP localizes to puncta 

at tips of filopodia (arrowheads) of ISV endothelial cells. Bar equals 5 μm. (B) bases of 

filopodia and/or distal lamella regions at cell tips show stable, elongated accumulations of 

GFP-VASP (arrowhead). Bar equals 1 μm. (C) Along dorsal axis, some ISVs exhibit 

transient lamellipodia-like protrusions (arrowhead) with GFP-VASP at the leading edge. Bar 

equals 3 μm. (D) As ISVs meet at the dorsal side and connect to form the lumen, 

lamellipodia form nascent cell-cell junctions where VASP is enriched (arrowhead). Bar 

equals 3 μm. (E) In dorsal aorta and patent ISVs, GFP-VASP localizes to cell-cell junctions. 

Bar equals 20 μm. (F) ISV cells with high levels of GFP-VASP expression (asterisk) show 

numerous small filopodia and fail to properly migrate to the dorsal junction point. Elapsed 

time shown in minutes, bar equals 100 μm.
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Fig. 2. 
GFP-VASP highlights growing filopodia during ISV sprouting in zebrafish. (A) cropped 

single time point frame of GFP-VASP expressing tip cell with an example filopodium 

outlined in yellow box. (B) Time-lapse montage of outlined filopodium from (A); total time 

elapsed in series is 345 s (C) Quantification of filopodia extension as a function of GFP-

VASP enrichment at the tip. The mean intensity of GFP-VASP as a ratio to the stalk 

intensity was quantified over time, and the tip displacement displayed such that positive 

values indicate extension distance over 30 s, negative values indicate retraction. Dashed 

vertical line shows tip:stalk intensity ratio of 1. Data shown for 22 individual filopodia. (D) 

Time-lapse series showing accumulation of GFP-VASP into stable, elongated focal 

adhesion-like structures at the base of filopodia. Puncta of VASP travel down filopodia, and 

stabilize at the base of the filopodium (arrowheads). Puncta can accumulate to form large 

fibrillar plaques (arrows) which are stable over many minutes during advance of the leading 

edge of the tip cell. Over time, stable plaques accumulate, and eventually begin to 

disassemble (asterisks), enabling forward progress of the tip cell.
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Fig. 3. 
Conserved mechanism for filopodia generated adhesions in pathfinding mediated by 

branching morphogenesis in endothelial cells and neurons. (A) In endothelial tip cell 

filopodia, myosin X transports adhesion molecules including integrins and VASP to the 

filopodium tip. Along with other tip components, Arp2/3 also is activated and induces small 

side lamellipodia. At the tip, VASP bundles filaments, protects them from capping, and 

collaborates with formins to allow rapid F-actin polymerization to advance the tip. Tip 

advance is partially balanced by retrograde flow of actin, which activates integrins in 

conjunction with talin binding. Retrograde flow and slippage of active integrins results in 

accumulation of active focal adhesions at the base of filopodia. These adhesions grow and 

exert stronger traction allowing forward progress of the cell edge. (B) Key features of the 

neuronal filopodia architecture are similar to endothelial cells, except that fascin cross-

linking generally results in tight parallel bundled actin filaments without branches, although 

some examples of branched growth cone filopodia exist (see text).
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