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Abstract

Myelodysplastic syndrome (MDS) represents a heterogeneous group of clonal hematopoietic disorders, which is
characterized by cytopenias in the peripheral blood and bone marrow dysplasia due to ineffective hematopoiesis.
Patients with MDS have an increased risk of transformation to acute myeloid leukemia (AML). Although the
molecular basis of MDS is heterogeneous, several studies demonstrated the significant contribution of the
dysregulated immune system in accelerating MDS progression. The immunosuppressive tumor microenvironment is
shown to induce tolerance of MDS blasts, which may result in a further accumulation of genetic aberrations and
lead to the disease progression. Increasing evidence shows an expansion of myeloid-derived suppressor cells
(MDSCs), a population of inflammation-associated immature cells, in patients with MDS. Interestingly, the increased
MDSC populations are shown to be correlated with a risk of disease progression in MDS. In addition, MDS is highly
prevalent in aged individuals with non-hematology co-morbidities who are fragile for chemotherapy. Increasing
research effort is devoting to identify novel agents to specific targeting of the MDSC population for MDS treatment.

Keywords: Myelodysplastic syndrome, Myeloid-derived suppressor cells, Transfusion independent, T regulatory cells,
Leukemic stem cells, Therapeutic antibodies

Introduction
Myelodysplastic syndrome (MDS) is a group of clonal
hematologic disorders characterized by the abnormal
and ineffective hematopoiesis with an increased risk
of acute myeloid leukemia (AML) transformation [1].
Patients with MDS usually present constitutional and
debilitating symptoms, including fatigue, fever, and se-
vere unusual and recurrent infections [2, 3]. The key
features in the bone marrow (BM) of MDS patients
include impaired functions of hematopoietic stem and
progenitor cells, dysregulated differentiation of mye-
loid, erythroid, and megakaryocytic lineages, as well
as dysplastic hematopoietic cells. Recurring genetic
mutations involving in histone modification, DNA

methylation, transcription factors, RNA splicing, DNA
repair, cohesion complex proteins, kinase signaling,
and several signal transduction elements have been
identified to contribute to the pathogenesis of MDS
[4, 5]. Cytogenetic abnormalities have also been
shown to influence the clonal architecture and may
provoke an inflammatory BM microenvironment to
promote clonal expansion, thus promoting the devel-
opment of MDS. MDS is known as age-related stem
cell disorder impacting elders greater than 65 years.
Although the majority of cases have an undefined eti-
ology, it has been shown that the determinant factors
leading to MDS include exposure to chemicals,
chemotherapy, and high doses of radiation [6, 7].
As a standard prognostic tool, in MDS patients, Inter-

national Prognostic Scoring System (IPSS) is the clinical
and pathological assessment of morphology, periphery
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cytopenias, and karyotype [3, 8], which predict the trans-
formation of MDS to AML. MDS patients can be cate-
gorized into four groups, including lower-risk,
intermediate 1, intermediate 2, and high-risk MDS.
Based on the IPSS scoring system, the prognostic sub-
groups differ significantly in the rates of survival and
leukemic transformation [9, 10]. MDS patients of low
and intermediate 1 risk groups have a longer overall sur-
vival rate than the patients who are in intermediate 2
and high-risk MDS groups. Interestingly, MDS patients
who are at the low and intermediate 1 risk are often ac-
companied by myelosuppression with resultant cytope-
nia and anemia. Conversely, patients with high-risk
MDS can rapidly transform into AML with a short me-
dian survival rate, generally in months [11, 12].
Clinically, the management for MDS is often complex

due to the age, disease stage, and co-morbidities of indi-
vidual patients. The treatment options for MDS patients
range from supportive care to aggressive treatment, such
as chemotherapy and hematopoietic stem cell trans-
plantation [13, 14]. MDS patients with IPSS low or inter-
mediate 1 risk MDS are typically offered with supportive
care, such as red blood cell transfusion, cytokine, and
antibiotics to prevent infection [15, 16]. The lower-risk
MDS patients with the absence of chromosomal del 5q
aberration can be treated with erythropoiesis-stimulating
agents (ESAs) or other growth factors specific for
hematopoiesis [17, 18]. High-dose ESAs, combined with
G-CSF, have yielded erythroid response rates in this
setting in the range of 30 to 50% and of median duration
2 years [19–21]. In contrast, patients who are in inter-
mediate 2 or high risk generally require prompt treat-
ment, such as chemotherapy or a stem cell
transplantation [22–24]. Decitabine and azacytidine
(AZA) are nucleosides and act, in part, by incorporating
into DNA as false cytosine residues that cannot be
methylated by DNA methyltransferase and form cova-
lent adducts with the enzyme [25–27] This interaction
leads to the depletion of DNA methyltransferase to re-
verse the aberrant methylation that silences key genes
with the tumor-suppressive activity [28, 29]. AZA treat-
ment has exhibited improved overall survival for MDS
patients who are at high-risk [30]. Most patients treated
with a hypomethylating agent do not achieve an object-
ive response. Combinatorial treatment with AZA and
Revlimid demonstrated synergistic effects in MDS owing
to targeting of different pathways [31, 32].
While the molecular basis of MDS is heterogeneous,

increasing evidence revealed the significant contribution
of the dysregulated immune system in accelerating MDS
progression [33]. The immunosuppressive tumor micro-
environment is shown to induce tolerance of MDS
blasts, which may result in a further accumulation of
genetic aberrations and lead to the disease progression.

Several groups reported that MDS patients have an ex-
pansion of myeloid-derived suppressor cells (MDSCs), a
population of inflammation-associated immature cells.
Interestingly, the increased MDSC population is associ-
ated with a risk of MDS progression [33]. In this review,
we summarized the current understanding of the in-
volvement of immunosuppressive tumor microenviron-
ment in MDS initiation, progression, and potential
treatment.

Innate immune system in MDS
In the tumor microenvironment, the primary immuno-
suppressive cell types include activated immature mye-
loid cells, Tregs, and regulatory B cells. Upon activation,
these immunosuppressive cells reduce the T cell prolif-
eration and type II interferon secretion, inhibit antigen
presentation, and inhibit natural killer cell function [34].
MDSCs secrete high levels of soluble factors with in-
flammatory suppressive activity, such as sCD27,
sCXCL8, sCSIF and transforming growth factor beta.
Tregs modulate self-tolerance and immune surveillance,
which inhibit the effective immune responses against the
malignant clone and accelerate disease progression. In
addition, the regulatory B cells suppress T cell prolifera-
tion by modulating the production of IL-10 and altering
cellular contacts. A higher frequency of immunosuppres-
sive cell populations has been reported in the peripheral
blood and the BM of the patients with MDS compared
to that of healthy individuals. It has also been shown
that the immunosuppressive cell populations can alter
normal hematopoiesis through a direct contact with
stem cell and progenitor cells, which may contribute to
anemia development [34]. Thus, targeting these im-
munosuppressive cell populations may be beneficial to
patients with anemia and thus reduce frequent RBC
transfusions and promote myeloid maturation, benefit-
ing MDS patients [34].
Below as illustrated in Fig. 1, increased populations of

inflammatory cells in tumor microenvironment are a
prominent feature of MDS, which canresult in a sup-
pression of normal hematopoietic cell differentiation
[34]. In the last decade, clinical investigations and stud-
ies in mouse model systems revealed that MDSCs, a het-
erogeneous group of cells originated from myeloid
lineage, were drastically expanded in the BM of MDS
patients, which may contribute to the pathogenetic de-
velopment of ineffective hematopoiesis, and thus can be
used as an indicator for poor prognosis of MDS patients.
Surprisingly, MDSCs in MDS patients do not acquire
the same somatic gene mutations as the MDS clone,
suggesting that these MDSCs may arise from a distinct
hematopoietic clone rather than the MDS clone. Regard-
less of the potential impact of MDSCs on the MDS
pathogenesis, the mechanisms of action remain to be
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investigated. MDSCs secrete immunosuppressive cyto-
kines to reduce effector T cell proliferation and contrib-
ute significantly to the dysregulation of immune
surveillance in MDS and possess strong immunosup-
pressive activities, potentially through secreting
immunosuppressive cytokines and interacting with other
immune cell lineages, including T cells, macrophages,
dendritic cells, and natural killer cells [34].
Phenotypic studies on human MDSCs revealed that

MDSCs lack the traditional surface markers of mature im-
mune cells, including lineage negative (LIN−), HLA-DR−

[35]. However, MDSCs express CD33, CD123, and CD38,
and CD27L is expressed on MDSCs [36, 37]. CD33 is a si-
alic acid-binding lectin usually expressed on immature
myeloid cells and in the myeloid lineage that is not
expressed on hematopoietic stem/progenitor cells [38].
The high frequency of CD33 cell population in the bone
marrow of MDS patients signifies the involvement of its
impact on the disease initiation and progression [38].
CD123 is a transmembrane glycoprotein capable of

binding to IL-3 receptor beta (CD131) and can form a
complex that can signal through the cell membrane [5,

39]. Two isoforms of CD123 have been reported which
are capable of binding IL-3 which leads to malignant cell
survival by a signal through the cell membrane [40, 41].
The shorter isoform, which is missing a portion of the
extracellular domain close to the N-terminus, generally
expressed at significantly lower levels than the longer iso-
form [41]. CD123 is the marker on leukemic stem cells
(LSC), and the high frequency of this antigen on LSCs is
shown to correlate to blast proliferation and poor progno-
sis [42]. CD123 has been shown to be expressed with high
levels of Lin− HLA-DRlow CD11b+ CD33+ MDSCs, an in-
crease in the frequency of MDSCs in MDS patient sam-
ples compared to healthy controls [43].
CD27, a costimulatory receptor of the TNF superfamily, is

constitutively expressed on lymphocytes and hematopoietic
stem/progenitor cells [44]. We found that CD27L is
expressed on Lin− HLA-DRlow CD11b+ CD33+ MDSCs and
the frequency of Lin− HLA-DRlowCD11b+CD33+CD27L+

MDSCs is much higher in the BM than that in the periph-
eral blood of MDS patients [45].
CD38 is a glycoprotein with ectoenzymatic functions,

which is expressed on different cells, including

Fig. 1 Toxic chemical exposure, genetic changes, or aging lead to the generation of malignant clone in the bone marrow, which affects the
normal hematopoiesis. This early dysregulation in hematopoietic system leads to reduction of mature cells in the peripheral blood. Within the
MDS bone marrow microenvironment, the immature cells and MDSCs secrete immunosuppressive cytokines to reduce effector T cell proliferation
and contribute significantly to the dysregulation of immune surveillance in MDS. LR-MDS (low-risk MDS)
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lymphocytes and myeloid cell populations. We have pre-
liminary data showing that MDS patient has a higher
frequency of CD38+ cell population on immune-
suppressive MDSC [46].

Antigen-specific therapeutic antibodies targeting immune
suppressive cells in the tumor microenvironment of
patients with MDS
The fact that MDSCs function as a key cellular compo-
nent of the BM microenvironment of MDS patients
points to a potential role of MDSCs in the initiation and
progression of MDS. It is conceivable to hypothesize
that inhibition of the MDSC population may benefit to
MDS patients. In fact, several studies have revealed the
potential of depleting MDSCs or inhibiting MDSC activ-
ity in the treatment of MDS patients.
Gleason and colleagues developed a single-chain vari-

able fragment (scFv) recombinant reagent, so-called bispe-
cific BiKE, which targets CD16 as well as the myeloid
differentiation antigen CD33 (CD16xCD33) and facilitates
CD33+ cell elimination [38]. They further showed that
CD16xCD33 BiKE can reverse MDSC immunosuppres-
sion of NK cells and induce MDSC target cell lysis [38].
This study implies a potential of using the CD16xCD33
BiKE to target MDSCs in MDS patients. In another study,
to improve hematopoiesis in MDS patients, a therapeutic
drug developed with Fc-engineered CD33 monoclonal
antibody has been tested to target MDSC [35], blast, and
leukemic stem cell population in patients with low-risk
MDS and preventing immune-suppressive cytokine secre-
tion by blocking CD33 antigen with the goal of improving
bone marrow hematopoiesis [47].
Anti-CD123 is a humanized IgG1 monoclonal anti-

body that specifically targets the α-subunit of the IL-3
receptor (CD123) to effectively neutralize IL-3 signaling
[48]. This therapeutic antibody has been engineered to
have increased affinity for FcγRIIIa (CD16), which elicits
potent, receptor density-dependent killing, thus elimin-
ating target cells via [1] antibody-dependent cellular
cytotoxicity and [2] macrophage-mediated antibody-
dependent cellular phagocytosis, respectively. This drug
is also shown to be able to eliminate cells expressing ele-
vated levels of CD123, such as basophils, plasmacytoid
dendritic cells, myeloid-derived suppressor cells,
leukemic blasts, and leukemic stem cells. Of note, elim-
ination of CD123+ MDS blasts, leukemic stem cells, and
MDSCs thus offers a new therapeutic strategy for AML
patients [49].
Daratumumab is a human IgG1ĸ monoclonal antibody

(mAb) that binds with high affinity to a unique epitope
on CD38, a transmembrane glycoprotein. It is a targeted
immunotherapy directed towards tumor cells expressing
high levels of CD38, such as plasma cells from patients
with multiple myeloma. Daratumumab is shown to

eliminate CD38+ immunosuppressive cell populations,
including MDSCs, Tregs, and Bregs [46]. Due to notable
efficacy in heavily pretreated multiple myeloma patients,
daratumumab was approved by both the FDA (2015)
and the EMA (2016) as mono-therapy to treat relapsed
multiple myeloma.

Conclusion
Treatment of patients with MDS has improved in recent
years, but remains challenging. Drugs targeting different
pathways or different cell populations might show a bet-
ter overall response in MDS to minimize side effects.
Synergistic effect by targeting tumor cells and immuno-
suppressive populations shows a promising result in im-
proving bone marrow hematopoiesis. Combinatory
application of ezatiostat hydrochloride and epoetin alpha
in MDS patients at lower risk may be able to reduce the
red blood cell transfusion dependence. Combination
therapy using hypomethylating agents or Revlimid to-
gether with an antigen-specific therapeutic antibody
would increase the response rates and improve patient
quality of life with minimal adverse side effects.
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