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Abstract

Alternative non-B form DNA structures, also called secondary structures, can form in certain DNA 

sequences under conditions that produce single-stranded DNA, such as during replication, 

transcription, and repair. Direct links between secondary structure formation, replication fork 

stalling, and genomic instability have been found for many repeated DNA sequences that cause 

disease when they expand. Common fragile sites (CFSs) are known to be AT-rich and break under 

replication stress, yet the molecular basis for their fragility is still being investigated. Over the past 

several years, new evidence has linked both the formation of secondary structures and 

transcription to fork stalling and fragility of CFSs. How these two events may synergize to cause 

fragility and the role of nuclease cleavage at secondary structures in rare and CFSs are discussed 

here. We also highlight evidence for a new hypothesis that secondary structures at CFSs not only 

initiate fragility but also inhibit healing, resulting in their characteristic appearance.
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I. Fragile sites: history and definition

In 1970, the term fragile site was used to refer to recurrent breaks found near the 

haptoglobin locus of human chromosome 16 (1). Since then, the term fragile site has been 

expanded to define loci that exhibit chromosome fragility as visible gaps and breaks on 

metaphase chromosomes or by physical or genetic assays of chromosome breakage. There 

are two main classes of fragile sites: rare fragile sites and common fragile sites (CFSs), 

which are defined by their frequency of expression (breakage) in the population. Rare fragile 

sites are present in less than 5% of individuals, are usually caused by expanded repetitive 

DNA elements, and are inherited in a Mendelian fashion (reviewed in (2, 3)). Common 

fragile sites are present in all individuals and are mainly visible after partial inhibition of 

DNA synthesis (reviewed in (4, 5)). CFS expression is induced by drugs that cause 
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replication stress: aphidicolin, which inhibits DNA polymerase α, δ and ε elongation, 

hydroxyurea (HU), which depletes dNTP pools, or caffeine, which inhibits the kinase Ataxia 

Telangiectasia and Rad3 related (ATR), which detects stalled forks and activates the DNA 

damage checkpoint (3). Over 85 CFSs have been identified to date (2, 3).

II. Formation of secondary structures in DNA

Most DNA conforms to the canonical right-handed double helix structure known as B form 

DNA. Alternative, or secondary, DNA structures can form at DNA of certain sequence and 

composition. Secondary structures are preferentially formed during processes where DNA is 

unwound, such as replication, transcription, and repair, allowing the conversion of B-DNA 

to alternative DNA structures (Figure 1). Secondary structures are often formed within 

repetitive DNA sequences that can pair out of register after double-stranded DNA (dsDNA) 

is denatured, resulting in misalignment of the two strands. If the misalignment is not 

corrected, expansions or contractions in repeat length will result. A longer number of repeat 

units can give rise to a larger and more stable alternative DNA structure.

During replication, the DNA strands must be separated to expose the DNA template, which 

gives an opportunity for alternative DNA structures to form (Figure 1A). The lagging strand 

template is especially vulnerable to structure formation as it becomes transiently single-

stranded. Indeed, studies of expandable CAG/CTG repeats show that when the more stable 

CTG hairpin structure is on the lagging strand template, this leads to bypass of the structure 

and deletions in the repetitive DNA, while CTG hairpins on the nascent lagging strand result 

in more expansions of the repetitive DNA (reviewed in (6)). Though formation of structures 

on the leading strand template has not been documented experimentally, they are potentially 

even more deleterious to replication fork progression. Another area of vulnerability is the 5’ 

end of the nascent lagging strand, which becomes single-stranded when displaced by 

polymerase synthesizing the incoming Okazaki fragment. If this flap forms a structure it can 

inhibit processing of the 5’ ends by FEN1 (S. cerevisiae Rad27), resulting in either ligation 

of extra sequence into the DNA backbone and a repeat expansion, or inhibition of ligation 

and a persistent nick, which can lead to fragility (reviewed in (6–8)). This same mechanism 

of structures interfering with flap ligation can occur during gap repair (Figure 1C) (reviewed 

in (6, 9)). Secondary structures could also form during fork reversal (Figure 1A), leading to 

either repeat length changes or fork breakage if they inhibit fork restart (reviewed in (10, 

11)).

Transcription can play a role in DNA secondary structure formation and repeat length 

changes, as it involves DNA unwinding and local chromatin changes that favor structure 

formation (Figure 1B). It is notable that many expandable repeats are located within 

transcribed regions (reviewed in (6, 12)). The process of RNA polymerase II traveling along 

the DNA template generates positive supercoils ahead of the polymerase and excess negative 

supercoils behind the polymerase, which can allow for DNA secondary structure formation. 

Increased negative supercoiling stabilizes many different secondary structures in repetitive 

DNA, including hairpins, triplexes, slipped-strand DNA, Z-DNA, and cruciforms (reviewed 

in (13–15)). Increased negative supercoiling also results in deletions at secondary structure-

forming GAA and CGG repeats in E. coli (16). RNA polymerase II transiently pauses when 
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transcribing through repetitive DNA, possibly due to intrastrand structure formation (15, 17). 

Interestingly, convergent transcription through CAG repeats as well as other CG-rich repeats 

causes cellular stress and apoptosis (18–20); it is possible that convergent transcription (or 

convergent transcription and replication) could generate excessive positive supercoils that 

would inhibit further elongation (15, 21). Head-on collisions of replication and transcription 

machinery can also cause DNA breaks and genome instability (reviewed in (22, 23)). 

Transcription start sites are another potential hotspot for formation of single-stranded DNA 

and DNA structures, in fact this may be a physiological role of structure formation in 

genomes (24). Hairpin and stem-loop secondary structures are predicted to form 10 to 50 

nucleotides upstream of RNA polymerase II promoter proximal pause sites (24). These 

structures are thought to initiate RNA polymerase II pausing either by directly binding 

proteins that mediate promoter-proximal pausing or by stabilizing the formation of 

RNA:DNA hybrids (24).

Another effect of transcription is the potential formation of R-loops, which are RNA:DNA 

hybrids that can form behind RNA polymerase by re-hybridization of the RNA transcript to 

its DNA template (Figure 1B). Certain DNA sequences, especially sequences that are G-rich 

on the non-template strand, form stable R-loops, which can stall both replication and 

transcription and lead to DNA damage and genome instability (reviewed in (25–27)). There 

is evidence for the formation of stable R-loops at many repetitive secondary structure-

forming sequences, such as CAG, CGG, GAA, and G4C2 repeats (reviewed in (27–29)). The 

stabilization of one strand in an RNA:DNA hybrid can promote secondary structure 

formation on the exposed non-template DNA strand (15, 30, 31). Exposure of ssDNA by 

formation of R-loops or DNA structures can lead to breaks induced by cytosine deamination 

and reactive oxygen species (32, 33).

DNA repair also provides an opportunity for DNA secondary structure formation. When a 

double strand break (DSB) is formed, end resection leads to a single-stranded DNA end that 

is normally coated by RPA but can also fold back into a DNA structure (Figure 1C). The 

competition between RPA binding and structure formation can be influenced by the 

sequence and affinity of RPA binding (34, 35). Recent results from our lab indicate that 

DNA structure formation in this situation can significantly impair healing (36). Data from 

model systems has shown that DSB repair proteins such as Rad51/Rad52, Mre11 (human 

MRE11), Exo1, and Dnl4 (human LIG4) are important for preventing fragility at DNA 

structures (37). Gap repair provides yet another opportunity for secondary structure 

formation, both on the ssDNA gap itself, or on the 5’ flap if there is displacement synthesis. 

Formation of structures during gap repair is a primary means of disease-causing CAG repeat 

expansions (38, 39) (Figure 1C).

Though in general repair proteins are believed to mitigate the formation of DNA structures 

in order to allow repair or replication to proceed, some can play a role in stabilizing DNA 

structures. For CAG repeats, MutSβ stabilizes hairpin formation (40) and leads to increased 

replication fork stalling (41). Extensive research has implicated MutSβ in stabilizing 

hairpins during base excision repair, to facilitate CAG expansions and CGG expansions and 

contractions (reviewed in (6, 9)). In addition, the MutLα endonuclease, which is recruited by 
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MutSβ, has been shown to cause breaks at GAA repeats (42). At CAG repeats R-loop-

dependent structures stimulate MutLγ-mediated breaks and instability (33).

III. Types of secondary structures and links to fork stalling and 

chromosome fragility

Examples abound of secondary structures formed from repetitive DNA in the genome, and 

there are many links to their ability to cause replication fork stalling, chromosome fragility, 

and genome instability. These links are less clear for CFSs, however there are parallels since 

CFS regions also contain repetitive and structure-forming sequences and are also regions 

with difficulty completing replication. The yeast genome exhibits an increase in 

recombination events at DNA sequences and subregions associated with replication fork 

stalling (43), illustrating the connection between replication fork stalling, fragility, and 

genome rearrangements. Below, we outline common repetitive DNA tracts and discuss 

evidence of the known links between replication fork stalling and chromosome fragility at 

these sites.

Mononucleotide runs are the simplest repetitive element and consist of repetition of the 

same base. Mononucleotide runs can result in slipped-strand DNA, where DNA strands 

mispair and anneal out-of-register, resulting in ssDNA loops interspersed within dsDNA. A 

or T mononucleotide runs can also serve as DNA unwinding elements (DUEs) due to the 

strong unwinding capability of AT-rich DNA (Figure 2). In vitro, polymerase δ holoenzyme 

accumulated at an (A)28 mononucleotide run from one subregion of CFS FRA16D, a (T)19 

run from different subregion of FRA16D, and a (T)22 mononucleotide run from CFS 

FRA3B, especially after aphidocolin-induced replication stress (44). Mononucleotide runs, 

and especially A-tracts, had the strongest correlation with cancer deletion breakpoints out of 

all potential non-B-DNA forming sequences probed in 46,000 cancer genomes (45). 

Interestingly, early replicating fragile sites (ERFSs) are located close to origins (46) and new 

data shows that poly(dA:dT) tracts adjacent to origins are preferential sites of fork stalling 

and fork collapse under conditions of HU-induced replication stress in mouse B cells (47). 

DSB hotspots were also located by END-seq at poly(dA:dT) tracts within the mouse 

WWOX gene in a region corresponding to the CFS FRA16D AT-rich core in human cells 

and within the mouse FHIT gene which is the location of CFS FRA3B in humans; these data 

suggest that poly(dA:dT) tracts far from origins and within gene bodies are also fragile (47). 

The intergenic breaks at poly (dA:T) sites were present both when cells were exposed to a 

low dose of HU or no exogenous replication stress, emphasizing the role of sequence in their 

fragility. In contrast, a study that mapped DSBs by a different technique (BrITL) in 

conditions of ATR inhibition did not identify mononucleotide A:T runs, but rather break 

sites were enriched at structure-forming repeats in both mouse and human cells (covered 

below) (48).

Another interesting sequence is the ATTCT repeat at the ATXN10 locus which can expand 

to cause spinocerebellar ataxia type 10 (SCA10). ATTCT repeats are a DUE as detected by 

atomic force microscopy (49) and can function as a replication origin in lymphoblastoid 

cells (50). ATTCT tracts of 80 or 160 repeats were shown to cause fragility when placed on 
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a yeast chromosome (51). The Debatisse lab found that two mammalian DNA replication 

origins exhibit higher levels of fragility than neighboring DNA upon aphidicolin treatment, 

providing a connection between replication origin sequences and fragility (52).

Regularly alternating purines and pyrimidines, especially GC and GT repeats, can result in 

left-handed Z-DNA (21, 53) (Figure 2). DNA sequences predicted to form a mixture of Z-

DNA and triplexes reduced plasmid replication rates by up to 50 % compared to a control 

plasmid and stalled replication by 2D gel analysis in mammalian cells (54). Z-DNA induces 

DSBs in bacterial and mammalian cells (55) and a (CG)14 Z-DNA-forming repeat caused a 

20x increase in mutation rate and nearby deletions in mammalian cells and mice (53). 

Sequences capable of forming Z-DNA have been found associated with breakage hotspots in 

the c-myc proto-oncogene in B-cell precursors from acute lymphoblastic leukemia patients 

and in lymphoid tumors (53).

G-quadruplex structures are four-stranded structures of Hoogsteen-bonded guanines (21, 56) 

(Figure 2). Interspersed guanine runs – optimally 4 repeats of at least 3 Gs in a row 

separated by a spacer of 1 to 7 nucleotides, can result in a G-quadruplex structure forming 

on one DNA strand, leaving the partner DNA strand single-stranded (21, 57). G-

quadruplexes have been mapped to breakpoint regions of cancer-causing translocations in 

humans, implicating them in causing fragility (58–62). G-quadruplexes are involved in 

immunoglobulin class switching where they are stabilized by R-loops and promote AID-

induced nicks (63). G-quadruplexes also can form within telomeric DNA, and telomeres 

show characteristics of fragile sites when under replication stress (64, 65). In fact an 

interstitial telomeric sequence appears as a CFS, with increased breakage in conditions 

where the telomere binding protein TRF1, which is needed for TTAGGG repeat-associated 

replication, is limiting (65). These data show that an aphidicolin-inducible CFS can be 

caused by a specific difficult-to-replicate DNA sequence. The helicases FANCJ, WRN, 

BLM/Sgs1, RTEL, and the PIF1 family helicases are especially important for faithful 

replication and preventing deletions of G-quadruplexes (57, 66–71).

DNA hairpin or stem-loop structures occur when one DNA strand base-pairs with itself 

rather than the strand of opposite polarity and are formed by many different types of 

sequences (Figure 2). Hairpins formed on opposite strands in an offset configuration are 

referred to as slipped-strand structures (Figure 2). Many expandable trinucleotide repeats 

(TNRs) that have been shown to be associated with chromosome fragility form hairpin 

structures, including CAG, CTG, CGG, and CCG sequences. In addition, many other types 

of repeats such as AT-rich repeats and inverted repeats (IRs), which are often found within 

CFS regions, form stem-loop structures.

Expansions of CGG TNRs cause fragile X syndrome and FRAXE mental retardation and are 

visible on human metaphase chromosomes as rare fragile sites (72). Expanded CGG repeats 

can adopt abnormal secondary structures including hairpin and G-quadruplex structures (6), 

though in an in vivo yeast replication system, fork stalling at a CGG repeat was associated 

with hairpin and not G-quadruplex formation (73). CGG repeat-induced fork stalling in 

mammalian cells correlates well with the threshold for expansions in humans (74). Further, 

expanded CGG tracts at the FMR1 locus cause late replication and problems with replication 
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elongation (6). Expanded CGGs also cause chromosome fragility in a recombination-based 

yeast system (75). Fragility is exacerbated in the absence of the Srs2 helicase, which 

facilitates replication of CGG repeats via its helicase activity and ability to bind PCNA (73).

CAG/CTG repeat expansion is the cause of multiple heritable degenerative diseases 

including Huntington’s disease, myotonic dystrophy type 1, and several spinocerebellar 

ataxias (6, 38). Both the CAG strand and complementary CTG strand are able to form 

hairpins, which may make these structures especially likely to expand. CAG/CTG repeats 

cause fork stalling in both mammalian and yeast cells, and seem to be especially prone to 

fork reversal as visualized by EM in vitro and by 2D gels in vivo (76, 77). Expanded 

CAG/CTG repeats also cause fragility when inserted on a yeast chromosome (78–80). In 

primate cells, DSBs near CTG repeats result in deletions, with deletion length correlating 

with repetitive DNA length (81). Cells from myotonic dystrophy patients containing 

expanded CTG repeats have increased formation of micronuclei, a consequence of 

chromosome breakage (82). These studies all implicate hairpin structures as a cause for 

DNA breakage. Not surprisingly, cells have mechanisms for unwinding hairpins to prevent 

genome instability. In yeast, both Srs2 and Sgs1 helicases can unwind CAG and CTG 

hairpins in vitro, and both also protect against fragility of expanded CAG/CTG repeats (83, 

84). The human RTEL helicase can unwind CAG and CTG hairpins in vitro, substitute for 

yeast Srs2 in protecting against fragility, and prevent CAG expansions in a human cell 

system (85). The Sgs1 homolog WRN was also found to unwind CAG/CTG repeat hairpins 

and prevent repeat contractions (86), and the FANCJ helicase suppresses microsatellite and 

CAG/CTG repeat instability (87, 88). Thus, multiple helicases likely cooperate to unwind 

hairpin structures and prevent repeat instability and chromosome fragility.

Expanded GAA repeats form triple helical structures called triplex or H-DNA (89–91) 

(Figure 2). Expanded GAA repeats cause replication fork stalling in S. cerevisiae in a 

length-dependent manner when present in greater than 20–40 copies on the lagging strand 

(92). GAA repeats are fragile sites on yeast chromosomes (42) and in human cells (93). 

Further, GAA and GAAA predicted triplex-forming repeats are enriched near translocation 

and deletion breakpoints in cancer genomes (45). A naturally occurring H-DNA forming 

sequence in the c-myc promoter maps to the Bcl-2 major breakpoint region and implicates 

secondary structures in common c-myc translocations that occur in lymphomas (94–97). 

Though expanded triplet repeats have not been associated with CFSs, the principles 

governing their fragility may be similar to structure-forming sequences within CFSs.

A cruciform structure is formed when two hairpins or stem-loops are located directly across 

from one another (Figure 2). Cruciform structures form within double-stranded DNA, thus 

they require conditions where the double helix can be easily unwound, such as AT rich 

sequences within negatively supercoiled DNA. For example, AT/TA dinucleotide repeats can 

participate in intrastrand base-pairing on both strands to form a cruciform. Cruciforms form 

at AT repeats on plasmids in bacteria and yeast when the stem length exceeds 22 bp (98–

101). When an AT repeat within the Flex1 subregion of CFS FRA16D exceeded 46 bp (23 

repeats) it caused replication fork stalling, which correlates well with the length 

requirements for cruciform formation (102). The Flex1 repeat induced breakage of a yeast 

chromosome (102), and recent results from our lab show that breakage increases with AT 
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repeat length, proportional to fork stalling ability (36). These results directly link cruciform 

formation, fork stalling, and chromosome fragility. Polymorphic (AT)-rich DNA was 

enriched when compared to 20,000 cancer genome translocation breakpoints and deletion 

breakpoint data from the COSMIC database, and different patient translocation/deletion 

breakpoints were found at the same nucleotide position, supporting the capability of these 

sequences to form secondary structures and break in human cells (45).

Palindromic AT-rich repeats (PATRRs) can form large stem-loop secondary structures and 

are found at the breakpoints of known recurrent translocations, such as the t(11;22) 

translocation between PATRR11 and PATRR22, which causes Emanuel syndrome. 

Cruciform cleavage and resolution at PATRR11 and PATRR22 was proposed to be the basis 

of chromosomal translocations between these sequences (103). PATRR-mediated 

translocations occur de novo in sperm cells but not in somatic cells, implying that these 

translocations are not mediated by the process of replication (104, 105). Interestingly, 

PATRR11 resides within the CFS FRA11G sequence, which indicates that the region is also 

prone to fragility in somatic cells (106). Additionally, mild replication stress by siRNA 

against DNA polymerase α leads to deletions but not translocations at PATRR11 in cultured 

cell lines (107). These data suggest that translocations at PATRRs in germ cells and 

deletions in somatic cells occur through separate mechanisms. PATRRs 11 and 22 are both 

associated with non-recurrent translocations as well, and have been proposed to play a role 

in genome evolution (108).

Inverted repeats (IRs) are two sequences with complementary DNA on the same strand that 

are facing towards one another across a center of symmetry (Figure 2). Note that many 

dinucleotide repeats are also inverted repeats. IRs can form hairpins in ssDNA and certain 

IRs can form cruciforms in supercoiled dsDNA (109, 110). IRs form hairpins in vivo in S. 
cerevisiae when complementary sequences are as short as 7 bp (111). Due to their secondary 

structure, IRs stall replication forks in prokaryotes and eukaryotes, including mammalian 

cells (112, 113). Fork stalling decreased along with decreased percent homology and 

increased spacer length between the IRs, implying that the more stable a secondary 

structure, the more difficult it is for replication machinery to traverse (112). Similarly, the 

spacer distance between IRs inversely correlates with deletion and recombination rates in S. 
cerevisiae (114). IRs are sites of recombination and deletions both on yeast chromosomes 

(114, 115) and in human cells (113). Computational analysis of almost 20,000 translocation 

and 46,000 deletion breakpoints from cancer genomes revealed that small IRs of 7–30 bp in 

length were enriched within 200 bp of breakpoints. (45). Alu-repeats are roughly 300 bp in 

length and are the most common type of long IR in the human genome. Closely spaced Alu 
IRs form hairpins that stall forks and cause chromosome breakage (112, 116). Reduced 

levels of polymerases α and δ in S. cerevisiae show increased chromosome loss, 

recombination, and translocations at transposons that can form long IRs (117, 118).

A recent genome-wide analysis of break sites in conditions of ATR inhibition alone or in 

combination with low-dose aphidocolin was accomplished using two different methods: 

RPA ChIP and a new high-resolution break detection method, Breaks Identified by TdT 

Labeling (BrITL) (48). In mouse embryonic fibroblasts, there was a strong enrichment for 

microsatellite repeats CAGAGG and CACAG (and derivatives), which were shown to form a 
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structure and pause replication, as well as IRs and quasi-palindromes. In human breast 

cancer cells, structure-forming repeats were also highly enriched at break sites, but 

interestingly the repeat sequences were different from those identified in mouse cells. In 

human cells there was a significant bias for AT-rich repeats that form stable stem-loop 

structures, including perfect AT repeats and PATTRs, with a greater-than-expected overlap 

with CFSs. Other quasi- and perfect palindromes, including inverted Alu elements, were also 

identified. This study reinforces the link between DNA structures and fragility and indicates 

that the exact type of structure and base composition can differ among organisms. 

Interestingly, poly (dA:T) sequences were not enriched in this study (48) as they were in 

(47). This could be due to the break detection methods used, which had significant 

differences. Notably, the End-seq method starts with an end resection step followed by dA 

tailing and ligation of a hairpin adaptor, whereas BrITL labels ends directly by addition of a 

ddUTP-biotin conjugate. The latter may work better for recovering hairpin-capped ends, 

which can form when breaks occur within a stem-loop structure (see section VII).

IV. Secondary structures at CFSs: indirect and direct connections to 

fragility

CFSs are large regions compared to the defined DNA structures listed above, and the basis 

of their fragility is less well understood. CFSs tend to finish replication late in the cell cycle 

(3, 119, 120). Several lines of evidence suggest CFSs are enriched in their ability to form 

secondary structures, and that those structures play a role in CFS expression (121).

Computational analysis revealed that CFSs have high A/T content (>70%) and are enriched 

in interrupted runs of AT/TA dinucleotide repeats that are predicted to form stem-loop and 

hairpin structures by Mfold (122, 123). The programs TwistFlex and FlexStab were created 

to identify DNA regions with high flexibility between bases, and thus flexibility peaks in the 

program tend to be AT-rich and capable of forming secondary structures (122). TwistFlex 

identified the Flex1 and Flex5 subregions of FRA16D as likely to be forming secondary 

structures (124). Flex1 is the highest flexibility peak predicted in FRA16D by the FlexStab 

program. It is a roughly 300 bp subregion of FRA16D that contains a perfect AT 

dinucleotide repeat that is highly polymorphic in humans (125) and predicted to form a 

cruciform structure (102). The Freudenreich lab showed that as AT repeat length increased at 

Flex1 replication fork stalling increased, as measured by observing replication intermediates 

in yeast by 2D gels (102). We recently obtained direct evidence that increased numbers of 

AT repeats within the Flex1 region cause higher levels of chromosome fragility, in a manner 

consistent with cruciform formation (36). These results directly link AT repeat length, fork 

stalling, and fragility.

The Flex1 AT dinucleotide repeats within FRA16D coincides with deletion breakpoints in 

multiple cancer cell lines: AGS, HCT116, CO-116, KM12C (primary) and KM12SM 

(metastasis) cell lines all had Flex1-spanning deletions (124–126). An analysis of 3,131 

cancer specimens in one study and 746 cancer cell lines in a separate study determined that 

WWOX (which contains FRA16D) was the third most common site of deletions in the entire 

human genome (126, 127). An intriguing possibility is that longer AT alleles at FRA16D 
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Flex1 are associated with an increased likelihood of deletion in cells undergoing replication 

stress, such as cancer cells. Allelic imbalance and loss of heterozygosity (LOH) occurs 

preferentially at CFSs in both cancerous and pre-cancerous cells, and thus they may play a 

role in cancer development (128–130). In fact overexpression of oncogenes results in 

replication stress, termed oncogene-induced replication stress, which results in fragility, 

deletions, and rearrangements at CFSs ((131) reviewed in (120, 132, 133)). Interestingly, 

40–80% of cancer cell lines with a deletion in FRA16D also contain a deletion in FRA3B 

and vice versa, which supports the idea of shared mechanisms of CFS fragility (125, 134, 

135).

Consistent with the studies that showed that the Flex1 AT repeat stalls replication in yeast, 

DNA replication dynamics in human cells indicates that AT-rich sequences with the 

potential to form secondary structures block replication forks traversing CFSs. DNA 

combing of FRA16C revealed that replication forks are blocked under normal replication 

conditions in a lymphoblastoid cell line at long (>400 bp) AT-rich sequences (136). The 

correlation of block sites and AT flexibility peaks was statistically significant and occurred 

both without and with aphidicolin replication stress (136). Notably, FISH probing of CFSs 

FRA16C and FRA10E found that they colocalize to the same regions as rare fragile sites 

FRA16B and FRA10B, respectively, which contain expanded AT-rich repeats predicted to 

form stem-loop structures (123, 137, 138). FRA7E also contains a long interrupted AT/TA 

dinucleotide repeat (~300 bp) predicted to form multiple stem-loop structures (123). At 

FRA18C, a paternal aphidicolin-sensitive fragile site coincided with a chromosome 

truncation in the daughter, and the breakpoint was in a region that was highly enriched in 

AT-rich sequences (139). This case implicates in vivo fragility at AT/TA dinucleotide repeat 

sequences in genome rearrangements.

Single molecule analysis of replicated DNA (SMARD) through CFS FRA16D revealed that 

stalling occurred at multiple pause sites within the FRA16D AT-rich fragility core in 

FANCD2−/− lymphoblasts, instigating activation of dormant origins (140). The activation of 

the origins in the region adjacent to the fragility core generated the 3’ to 5’ replication forks 

required to complete replication and compensate for the 5’ to 3’ replication stalling observed 

in the fragility core. Similarly, SMARD through the FRA6E fragility core revealed 

replication fork pausing in FANCD2−/− lymphoblasts (140). A previous study of FRA6E 

using molecular combing analysis of primary human peripheral lymphocytes also showed a 

switch from bidirectional to unidirectional replication upon aphidicolin treatment (141). 

Thus when forks stall in conditions of replication stress, such as inhibition of polymerase by 

aphidicolin or the absence of the FANCD2 protein that facilitates replication of paused 

forks, this results in an altered replication program for the region.

The Wang lab used Mfold (142) to computationally predict the secondary structure forming 

capability of CFS DNA (143). The capability of 300 nt segments to form secondary 

structures were analyzed, as this is the size of an Okazaki initiation zone in mammalian cells 

and thus could reasonably be single-stranded during DNA replication. Windows of fragile 

versus non-fragile DNA on human chromosome 10 were grouped to look for clusters of 

sequences forming stable secondary structures with a more negative ΔG. CFSs FRA10G, 

FRA10D, and FRA10F were identified as enriched in low free-energy segments per section 
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compared to non-fragile DNA. They confirmed the ability of these sequences to form 

hairpins or cruciforms by an in vitro assay, denaturing the DNA fragments predicted to form 

secondary structures and allowing them to re-duplex in various concentrations of NaCl. 

These data validate the use of Mfold to predict secondary structure formation by DNA 

sequence. FRA3B and FRA16D were also evaluated and each had eight and three regions, 

respectively, predicted to form stem loop structures in ssDNA. These regions correlated with 

known breakpoint and LOH regions in various types of cancers (143). Another genome-wide 

computational approach by the Eckert and Makova labs found that aphidicolin-induced 

CFSs have high DNA flexibility and are enriched in Alu repeats and mononucleotide 

microsatellites (144). Cytogenetically mapped aphildicolin-inducible CFSs co-located with 

evolutionarily conserved chromosomal breakpoints (144). Collectively, these data show a 

correlation between structure-forming capability, replication fork blockage, and fragility at 

CFSs.

V. Secondary structures and their relation to other theories for CFS 

expression

In contrast to the studies listed above, analysis of replication dynamics through a 1.5 Mb 

region of the FRA3B region by molecular combing led to the conclusion that there were no 

specific fork stalling regions, but rather that the late replication was due to a paucity of 

origins in the region (145). This is consistent with one of the findings from the analysis of 

FRA16C that there is a lack of back-up origins available to fire in the fragile region (136). 

The region of FRA3B analyzed spanned a roughly 1.5 Mb portion of the 4.5 Mb site, and 

did not include two long AT-rich sequences that would be predicted to cause fork stalling 

and impair fork speed due to an ability to form abnormal secondary DNA structures (136). 

One reason that replication is not completed in the core of FRA3B until G2 phase could be 

due to fork stalling at these secondary DNA structures at the boundaries of the fragile 

region. The long distance from an origin approaching from the other direction could 

exacerbate the situation, leading to incomplete replication. Indeed, it may take a 

combination of fork stalling at DNA structures and origin paucity to create a recurrent 

fragile site; since there are many origin-poor regions and many potential DNA structures in 

the human genome it is unlikely that just one of these elements would lead to a failure to 

finish replication. Nonetheless, it is clear that widely spaced origins can be an important 

contributing factor to creation of a fragile site.

Another element that influences CFS expression is transcriptional status of the gene, as 

transcription and transcription-replication collisions have been linked to CFS expression. 

CFSs tend to be in present in large genes between 300 kb and 2 Mb in length (3, 146–149). 

Some very long genes that contain CFSs take more than one cell cycle to transcribe (150). 

CFS expression also varies by cell type when tested in epithelial, erythroid, and fibroblast 

cell lines (148, 151, 152). As it is known that transcriptional profiles vary across cell types, 

transcription through CFSs was proposed to play a role in their fragility. Interestingly, 

FRA16D is fragile in multiple cell types, though not to the same extent, suggesting that its 

fragility is at least partly governed by something inherently fragile in its sequence or 

genomic location (148). The presence of a fork-stalling structure within a CFS region could 
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synergize with the likelihood of occurrence of transcription-replication collisions. For 

example, if a structure-induced stall occurred at a co-directional replication fork within the 

gene body, this would increase the likelihood that the converging replication fork would 

approach, which would then be head-on with transcription and more likely to collide with 

RNA polymerase and cause a break (Figure 3).

R-loops can form co-transcriptionally and are stabilized by G-rich DNA and the formation 

of secondary structures on the opposite DNA strand (reviewed in (25)). There is evidence to 

support a role for R-loops in CFS fragility. Helmrich et al. found evidence for in vivo R-

loops at FHIT/FRA3B which were reduced upon the addition of RNaseH (150). It is now 

known that R-loops are ubiquitous in the human genome, so their presence alone is not 

diagnostic of a problem that will lead to breaks (153). However, siRNA knockdown of 

RNaseH1 resulted in an increase in the number of breaks detected at CFSs FRA3B, 

FRA16D, and FRA7K, indicating that RNaseH1 functions to protect CFS regions by 

removing RNA:DNA hybrids (150). In addition, treatment with RNaseH1 reduced the 

number of fork stalls in the FRA16D and FRA6E regions in FANCD2−/− cells, implicating 

R-loops in causing fork stalling in this region (140). R-loops form stably at several structure-

forming repetitive DNA sequences and there is evidence of an interplay between R-loops, 

DNA structure formation, and fragility (27, 30). R-loops are associated with both replication 

fork stalling (154) and DNA breaks. For example, at CAG repeats, R-loop-dependent 

cytosine deamination occurs, leading to base excision repair (BER) processing and APE1/

Apn1-dependent breaks (33). Nucleotide excision repair (NER) nucleases XPF and XPG can 

also process R-loop DNA structures, as well as cruciform and triplex DNA structures, 

resulting in DSBs and genomic instability (27, 155, 156). Given the interplay between DNA 

structure and R-loop formation, it is possible that these two mechanisms are working 

together to cause fragility, or they could be independent events.

Some very recent publications have connected transcription to replication origin usage. The 

Debatisse lab found that high transcription of large genes resulted in a shift in their 

replication pattern from late to mid-S phase, likely giving the cells more time to complete 

synthesis of the regions before M phase (Blin et al., 2018 BioRxiv.org https://doi.org/

10.1101/286807). The Smith lab reported that replication stress by HU results in 

redistribution of replication termination relative to transcription, setting up a situation where 

replication and transcription are no longer co-directional, so that head-on collisions are more 

likely to occur (Chen et al., 2018 BioRxiv.org https://doi.org/10.1101/324079). In cells 

exposed to oncogene-induced replication stress, inappropriate activation of intergenic origins 

leads to transcription-replication conflicts and fork collapse (157). Thus, other types of 

replication stress, such as inhibition of DNA polymerase progression by DNA structures, 

could also lead to a re-programming of origin firing, resulting in collisions between 

replication and transcription (Figure 3). This would further impact the ability of genes 

containing DNA structure-induced stalls to finish replication. For example, FRA16D is 

within one of the last introns of the very large WWOX gene. A replication stall at the Flex1 

AT repeat could lead to activation of a dormant origin towards the end of the gene or simply 

allow time for the fork from the next intergenic origin to enter the 3’ end of WWOX. This 

would lead to a head-on orientation of transcription and replication for the region 

downstream of the Flex1-induced stall (Figure 3). A replication-transcription collision in this 
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area would result in a second stall, preventing replication of the intervening region and 

appearance of a metaphase gap. This model could explain why there is evidence for both 

structure-induced fork stalling and transcription-replication collisions as the cause of 

fragility at CFSs.

VI. Cleavage at secondary structures within CFSs is a cause of fragility

Breakage at secondary structures could occur due to exposure of associated ssDNA, which is 

labile and prone to environmental damage and strand breaks. Another potential mechanism 

is physical breakage of unreplicated sister chromatids that persist into mitosis (158). 

Alternatively, breakage at secondary structures can occur actively by targeted cleavage of 

DNA by nucleases (Figure 4). There are many nucleases that cleave stalled replication forks 

and recombination intermediates that can arise from broken forks (159, 160). This 

mechanism can be either replication-associated or not. For example, XPF-ERCC1 (S. 
cerevisiae Rad1-Rad10) cleaves both cruciform structures and H-DNA independently of 

replication, suggesting that structures are recognized as DNA damage by the cell and 

subsequent NER results in their cleavage (97, 113, 161).

Work from the Hickson, Rosselli, and Debatisse labs showed that human complexes 

MUS81-EME1 (S. cerevisiae Mus81-Mms4) and ERCC1 (S. cerevisiae Rad1-Rad10) are 

required for CFS expression and sister chromatid separation (162, 163), pointing to a role 

for structure-specific endonucleases (SSEs) at CFSs. These SSEs are known to target both 3-

way junctions that occur at stalled forks and recombination intermediates (160, 164). It was 

proposed that SSEs induce local fragility at CFSs to avoid global genomic fragility that 

could occur if the sister chromatids are mechanically separated while still unreplicated and 

attached to one another (163, 165). If CFSs do not undergo SSE-induced cleavage and sister 

chromatid separation, DNA bridges can persist during nuclear division, resulting in 

mechanical breakage of DNA, chromosome mis-segregation and 53BP1 body formation in 

G1 phase (162, 163, 166). Mammalian cells depleted for MUS81 by short hairpin RNA had 

increased FRA16D-containing micronuclei and decreased appearance of metaphase breaks 

and gaps (162, 163). Since these studies used whole chromosomes, they could not point to a 

specific DNA sequence or sequences that were targeted by SSEs. However, it is interesting 

to note that Mus81 resolves a cruciform formed on a plasmid in vivo in S. cerevisiae (101). 

New data from our lab show that Mus81 causes fragility at the Flex1 secondary structure 

forming subregion of FRA16D, but only when the AT repeat number is sufficient to cause 

cruciform formation and fork stalling. These results implicate SSEs directly in cleavage of 

secondary structures at CFSs or replication stall sites caused by the structure (36) (Figure 4). 

Depending on the location and number of cleavage events, several types of repair can be 

envisioned, some conservative (e.g. retaining the DNA sequence) and some resulting in 

deletions or chromosome rearrangements (Figure 4). If multiple secondary structures or 

stalled forks are cleaved, deletions of the intervening DNA can occur. It is possible that 

cancer cells gain a replicative advantage by accumulating deletions at CFSs since they are 

impediments to efficient replication fork progression. Multiple cleavage sites can result in 

multiple secondary structure-capped DNA ends that will need to be processed, for example 

by MRN-CtIP/MRX-Sae2 or XPF/Rad1, before healing at regions of homology (Figure 1C). 
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In this case, the location and usage of regions of homology flanking the break will determine 

the extent of deletion.

CFSs have difficulty replicating, and the Hickson lab found that under replication stress, 

CFSs incorporate the DNA synthesis label 5-ethynyl-2’-deoxyuridine (EdU) during mitosis 

(167). This mechanism, Mitotic DNA Synthesis (MiDAS), is dependent on MUS81 activity 

and its recruitment by the SLX4 scaffold protein. MiDAS is a mechanism for cells to avoid 

the negative consequences of going through mitosis with unreplicated DNA, which would 

lead to DNA bridges connecting sister chromatids and subsequent DSBs. Stalled replication 

forks can be stabilized to prevent Exo1-mediated degradation of the DNA, allowing for 

rescue by a converging fork or by homologous recombination. In S. pombe, Rad51 and 

Rad52 prevent arrested replication forks from being degraded, and in their absence mitotic 

sister chromatid bridging is increased (168). We have found that S. cerevisiae SSEs Mus81, 

Rad1-Rad10, and Slx1-Slx4 are all important in causing fragility at the Flex1 structure-

forming subregion of FRA16D (36). The involvement of all of these components suggests 

that they are functioning in a SSE super complex as has as has been shown for the human 

complex in vitro (169), and that one important target of SSEs at CFSs in human cells is forks 

stalled at DNA structures.

VII. Healing of breaks within DNA structures can lead to inefficient and 

mutagenic repair

After DSBs occur, they must be healed properly in order to prevent genomic 

rearrangements. If a DSB occurs during the G1 phase of the cell cycle, end joining pathways 

of healing predominate, sometimes resulting in small insertions or deletions (indels) (170). 

In situations where DSBs are formed in S or G2 phases of the cell cycle, they are first 

resected to create RPA-coated ssDNA stretches through the action of MRE11-RAD50-NBS1 

(Mre11-Rad50-Xrs2 in S. cerevisiae) and CtIP (Sae2 in S. cerevisiae), followed by long 

range resection by Exo1 and Dna2 nucleases (the latter facilitated by a RecQ helicase such 

as Sgs1 in S. cerevisiae) (170, 171). RPA is then replaced with Rad51, to facilitate a 

homology search and strand invasion into an appropriate template, usually the sister 

chromatid (170, 171). If a sister chromatid template is not available, break-induced 

replication (BIR) can occur whereby the broken DNA invades a non-homologous 

chromosome. BIR can complete replication through the telomere, or be aborted and lead to 

further genome rearrangements by template switch or other alternate healing mechanisms 

(171–173). If a DSB occurs during replication, the broken DNA end can invade the sister 

chromatid in order to restart replication, also known as broken fork repair (BFR) (170, 174, 

175). MiDAS at CFSs may represent a BFR- or BIR-like mechanism of responding to breaks 

at CFSs where missing information is copied from the sister chromatid or homolog using a 

Rad52-dependent mechanism (167, 176, 177) (Figure 4).

Several TLS polymerases are recruited to CFSs in order to prevent their expression (178–

180). The Eckert lab investigated human polymerase δ holoenzyme transit throughout 

several subregions from CFSs that contain both poly(dA:dT) runs and sequences predicted 

to form hairpin structures. They investigated polymerase progression in vitro through a non-
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AT rich inverted repeat (IR) next to a A19 run from FRA16D, an (AT)25 repeat near an A22 

run from FRA3B, and an interrupted (AT)24 repeat followed by a A28 run (Flex5) from 

FRA16D. They found that human TLS polymerases η and κ can switch with the replicative 

polymerase δ holoenzyme to alleviate pausing at IRs and mononucleotide runs (44). Thus, 

TLS polymerases may be important in replicating through mononucleotide runs or gaps 

formed due to bypass of secondary structures. TLS polymerases are also involved in repair 

of DSB breaks and could be especially important when repair through DNA structures must 

occur (181).

Mammalian CtIP and S. cerevisiae Sae2 are required to stimulate MRN/MRX processing of 

DSBs. Both the mammalian and yeast proteins are important in situations where broken 

DNA is blocked with structure-forming DNA such as hairpins, in order to cleave the blocked 

end and avoid deleterious consequences such as deletions and genomic rearrangements (159, 

182, 183). We found that Sae2 is needed to heal after Flex1(AT)34-induced breaks in a yeast 

recombination-based system (36). Similarly CtIP is needed to heal after Flex1(AT)34-

induced breaks in a mammalian cell mitotic recombination assay whereas it is not needed at 

“clean” I-SceI breaks that do not have secondary structure forming sequences (184). Sae2 is 

also needed for the repair of a TALEN-induced DSB at a hairpin-forming CTG sequence 

(185). Our data at Flex1 led us to propose a new theory for CFS fragility – that the regions 

are not only prone to breakage but also have difficulty healing after fragility due to 

neighboring secondary structures (36). Fragile sites have long been known to be associated 

with gene amplification through a breakage-fusion-bridge cycle (186, 187). Indeed, after 

DSB induction next to an IR, 5’ to 3’ end resection exposes DNA to form hairpin-capped 

DNA ends, resulting in amplification and genomic rearrangements (188–190). These results 

all provide evidence for a connection between secondary structures, fragility, and genomic 

instability.

VIII. Conclusions

Both common and rare fragile sites are associated with gaps and breaks on chromosomes 

that represent unreplicated regions prone to breakage. However, while rare fragile site 

fragility is generally caused by expanded repetitive DNA sequences that form secondary 

structures, the molecular basis of CFS fragility has been more elusive. Current evidence 

shows that CFSs are enriched in sequences with secondary structure forming capability, and 

the study of the Flex1 region of FRA16D supports a causative relationship between DNA 

structure formation, fork stalling, and fragility. This mechanism could synergize with 

additional issues at CFS regions, including late replication and co-occurrence of 

transcription and replication, increasing the chance of collisions. We propose that the 

characteristic expression of CFSs is a combination of a propensity for fork stalling, 

subsequent nuclease cleavage, and difficulty healing due to the presence of secondary 

structures at the broken ends. Thus, deletions of structure-forming, fork-stalling subregions 

of CFS sequences could give tumor cells a replicative advantage.
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Figure 1 . Formation of DNA secondary structures during normal cellular processes.
A) DNA secondary structures can form during replication, such as on the single-stranded 

lagging strand after DNA unwinding (left side) or on a ssDNA end created by fork reversal 

(right side). B) During transcription, RNA polymerase II (grey protein) passage results in 

increased negative supercoiling behind the polymerase, which can promote secondary 

structure formation, such as the cruciform depicted. Additionally, certain sequences form 

especially stable R-loops behind RNA polymerase II, which could allow secondary structure 

formation on the non-template strand. C) Secondary structures may also arise when DNA is 

single-stranded during repair. Hairpins formed on ssDNA ends exposed by resection can 

inhibit efficient DNA repair. Secondary structure formation on a displaced flap may render it 

unligatable, leading to nicks and DSBs (a 5’ flap is shown).
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Figure 2. DNA secondary structures and links to fragility.
DNA secondary structures are depicted on the left, corresponding sequences and locations in 

the human genome that have been linked to fragility listed in the middle, and references on 

the right. FS, Fragile Site.
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Figure 3. Model for how secondary structures could promote downstream transcription-
replication collisions at FRA16D and other CFSs.
Secondary structures in CFSs can result in replication fork stalling, which could lead to 

replication of the downstream sequence from the converging fork. Since CFSs tend to be 

located in large genes that take a long time to transcribe, unscheduled transcription-

replication collisions could occur, resulting in a region of unreplicated DNA between the 

structure-induced stall and the collision-induced stall.
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Figure 4. Secondary structures at CFSs can impede replication, resulting in fork stalling and 
cleavage to cause fragility.
Multiple secondary structures at CFSs may progressively impede replication. Replication 

impairment can potentially be resolved by helicases such as WRN and RecQ1 (191, 192). 

TLS synthesis could also facilitate replication, or gap filling if structures are bypassed. If the 

replisome becomes uncoupled from the replicative helicase, ssDNA stretches can result in 

RPA binding, activation of stalled fork sensors, and ATR signaling. A stalled fork (top left 

side) can result in the approach of a converging fork from the opposite direction (top right 

side) that in turn could stall at other DNA structures or due to a transcription-replication 

collision, leading to an unreplicated area. Impaired replication can be resolved by structure-

specific endonuclease (SSE) cleavage at secondary structures or at stalled and reversed forks 

caused by secondary structures. Cleavage of a stalled fork by MUS81-EME1/Mus81-Mms4 

would result in a one-ended break that could engage in break-induced replication (BIR) 

using another chromosome as a template for repair (left pathway). Alternatively, broken fork 

repair (BFR) using the other sister chromatid as a template for repair or gap filling will result 

in conservative repair without loss of sequence (middle pathway). Cleavage of forks by 

MUS81/Mus81 at two stalled forks (blue arrows), or across the base of a 4-way junction (not 

shown), will result in a two-ended break, which can heal with fidelity (for example using 

homologous recombination (HR); middle pathway) or in a manner that results in deletions 

(for example by single strand annealing (SSA), non-homologous end joining (NHEJ), or 

microhomology-mediated end joining MMEJ; right pathway). Other SSEs (e.g. XPF-

ERCC1/Rad1-Rad10 (pink arrows), or SLX1-SLX4/Slx1-Slx4 (not shown)) may also be 

involved in cleavage. Gap filling or HR-dependent mechanisms require DNA synthesis, 

which can manifest as MiDAS if it occurs in M phase. Human proteins are listed first, with 

S. cerevisiae homologs after the slash.
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