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Abstract

Therapeutic monoclonal antibodies have the potential to work as biological therapeutics.

OKT3, Herceptin, Keytruda and others have positively impacted healthcare. Antibodies

evolved naturally to provide high specificity and high affinity once mature. These characteris-

tics can make them useful as therapeutics. However, we may be missing characteristics that

are not obvious. We present a means of measuring antibodies in an unbiased manner that

may highlight therapeutic activity. We propose using a microarray of random peptides to

assess antibody properties. We tested twenty-four different commercial antibodies to gain

some perspective about how much information can be derived from binding antibodies to

random peptide libraries. Some monoclonals preferred to bind shorter peptides, some lon-

ger, some preferred motifs closer to the C-term, some nearer the N-term. We tested some

antibodies with clinical activity but whose function was blinded to us at the time. We were pro-

vided with twenty-one different monoclonal antibodies, thirteen mouse and eight human IgM.

These antibodies produced a variety of binding patterns on the random peptide arrays.

When unblinded, the antibodies with polyspecific binding were the ones with the greatest

therapeutic activity. The protein target to these therapeutic monoclonals is still unknown but

using common sequence motifs from the peptides we predicted several human and mouse

proteins. The same five highest proteins appeared in both mouse and human lists.

Introduction

Monoclonal antibodies can bind a variety of targets: lipids, LPS, sugar moieties, phosphorylated

or myristoylated residues, conformational or multimeric targets. Therapeutic antibodies often

possess characteristics that promote some desired activity in vivo. Measurements of affinity can

be done using ELISA, SPR or other biochemical assays. However, the human body is a complex

environment of proteins, buffers, pH, temperatures, and competitors. Specificity is a measure of

off-target binding under very controlled conditions. In the human body, if specificity is high,

the antibody might not bind its target in vivo due to competition or unsuitable presentation of

the target. If too low it might riddle an otherwise effective therapeutic antibody with side effects.
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Peptide microarrays have long been used to analyze antibodies against linear epitopes. Til-

ing epitope arrays can demonstrate the specificity of both polyclonal and monoclonal antibod-

ies [1]. Phage display uses even larger libraries of peptides providing more epitopes to pan, but

in both cases the results generally answer the same question: which linear peptide sequences

bind to a given monoclonal? A few limitations should be mentioned: antibodies to non-linear

epitopes may bind peptides, but they would likely be a mimotope, a sequence unrelated to the

sequence of the antigen. Additionally, the peptide arrays likely contain only those peptides

needed to cover a single proteome or even just the protein(s) under investigation.

We think it is possible to use a peptide microarray of random sequences to characterize

antibodies to both linear and non-linear epitopes. Mimotopes can bind as strong or stronger

to an antibody than its original antigen and may exist in a random peptide array of only a few

hundred thousand sequences [2]. We have demonstrated that antibodies to linear sequences

can find motifs that match their antigen.

When peptides are arrayed on a solid surface, such as a microarray, peptide-antibody inter-

actions can be measured by detecting bound antibody after stringently washing the array. Typ-

ically, an antibody is bound strongly when 4–5 residues make a perfect match, generally

~50kCal/mol. Fewer than that and antibodies are washed off. This is how most tiling arrays

work; it is undesirable to retain antibodies from imperfect matches. We found that peptides

spaced <1nm apart on a solid surface could create a dense forest that enables weakly captured

antibodies to be trapped, re-binding to the peptides creating a high local avidity that antibodies

with only 2–3 residues need to be a perfect match, being retained even following a stringent

wash [3]. This allowed us to see thousands of binding events on arrays with only 125,000 to

330,000 peptides [4].

Materials and methods

Training on commercial antibodies

In order to gain understanding of how different antibodies behave on random-peptide arrays,

we selected 4 different peptide microarrays that utilize random-sequence peptides, but use dif-

ferent lengths and numbers of peptides (see Table 1). We then purchased 24 different commer-

cial monoclonal antibodies to test on these four peptide microarrays (see Table 2). The

epitopes for these antibodies varied substantially, by design. One target is against a hapten,

three targets are against proteins in the phosphorylated and dephosphorylated form, eleven are

against linear peptides, four of which are<13 residues, and seven are against putative but

unmapped regions of proteins. We prioritized our analysis of linear epitopes against the eleven

monoclonals to linear peptides.

Testing blinded therapeutic antibodies

Our collaborators at the Mayo Clinic in Rochester, MN supplied us with thirteen different

therapeutic antibodies (Table 3). The characteristics of these antibodies were blinded to us

Table 1. Description of peptide libraries used in this project. Four libraries were constructed using mask-based lithography synthesis. Each library is synthesized on sili-

con wafers coated with silicon oxide. Every library is made in a 0.49cm2 area, 24 separate assays are arrays on a standard 25mm x 75mm slide in an 8x3 design. Every array

was assayed under the same conditions.

Library name # unique peptides Mean peptide length SD peptide length Min, Max Feature size Refs

CIM 330K (short) 329239 12.19 1.76 3,17 8um diameter [9, 14, 16]

CIM 330K (long) 328794 17 0 17 8um diameter

HT 124K 126051 9.00 1.37 3, 13 14um square [19]

CIM 125K 122927 12 0 12,12 14 um square [17, 20, 21]

https://doi.org/10.1371/journal.pone.0229080.t001
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Table 2. Table of commercially-sourced antibodies used. Ab Name is the title of the antibody as sold by the manufacturer. Protein target is the gene name of the protein

that served as the antigen. Ab Clone is the nomenclature the manufacturer uses to identify the hybridoma cell lineage. Epitope is the target of the antibody, generally the

position in the Protein Target (when known) that contains the exact epitope. Generally, a short Epitope implies a linear peptide was used as the immunogen. aa is the num-

ber of amino acids included in the linear immunogen. Source is the manufacturer, along with the catalog number. Host is the mammalian animal host. Last, isotype is the

class of antibody produced.

Ab Name Protein Target Ab Clone Epitope aa Source Cat # Host Isotype

AKT1 (B-1) huAKT1 B-1 aa345-480 135 Santa Cruz Biotech sc-5298 Mouse IgG1

AKT1 (7) huAKT1 7 aa71-184 113 Santa Cruz Biotech sc-135829 Mouse IgG1

AKT2 (D-17) huAKT2 Sc-7127 aa445-470 25 Santa Cruz Biotech sc-7127 Goat IgG1

p53 Ab1 huTP53 PAb240 aa376-380, RHSVV 5 EMD Millipore Mouse IgG1

p53 Ab8 huTP53 BP53-12 aa20-26, SDLWKL 7 Invitrogen MA1-19055 Mouse IgG1

DM1A huα-tubulin Sc-32293 aa 426–432, AALEKDY 7 Santa Cruz Biotech sc-32293 Mouse IgG1

JNK2 huJNK2 D-2 aa1-424 424 Santa Cruz Biotech sc-7345 Mouse IgG1

hnRNP-A1 huRNA-A1 4B10 aa1-320 320 Novus Biologicals NBP1-99106 Mouse IgG1

FDFT1 huFDT1 3092621 N-term FDFT1 N-term Abgent BP2417a Mouse IgG1

p21 huP21 187 unknown unknown Santa Cruz Biotech E2705 Mouse IgG1

p-p21 huP21 �P Ser 146-R Phos Ser146 unknown Santa Cruz Biotech Sc-12902 Mouse IgG1

p27 huP27 F-8 aa 1–197 197 Santa Cruz Biotech Sc-1641 Mouse IgG1

p-p27 huP27 �P Thr 187-R Phos Thr187 unknown Santa Cruz Biotech Sc-16324-R Rabbit IgG

p38 huP38 A-12 aa 213–360 143 Santa Cruz Biotech Sc-7972 Mouse IgG1

p-p38 huP38 �P Sc-7973 unknown unknown Santa Cruz Biotech Sc-7973 Mouse IgG1

p-ERK huERK1 �P E-4 Tyr 204 unknown Santa Cruz Biotech A0606 Mouse IgG2a

Cyclin B1 huCyclin B1 D-11 aa 1–433 433 Santa Cruz Biotech L0604 Mouse IgG1

IFN-y huIFN-y unknown unknown Pharmingen 551216 Mouse IgG1

biotin IFN-y huIFN-y biot IFN-y Iml unknown Pharmingen 554410 Rat IgG

6A7 Bax huBAX unknown FL FL Pharmingen 556467 Mouse IgG1

Anti-BrdU Bromo-uracil BrU 1 Thermo-Fisher A23210 Mouse IgG1

SR 1H4 xlSR 1H4 FL FL Santa Cruz Biotech Sc-13509 Mouse IgG1

Clk1 huCLK1 G313-1 FL FL BD Biosciences 556388 Mouse IgG1

LNKB B2 huIL2 A641 KPLEEVLNL 9 Geneway GWB-A641EC Mouse IgG1

https://doi.org/10.1371/journal.pone.0229080.t002

Table 3. List of therapeutic antibodies from Mayo. These antibodies were shipped from Mayo (Rochester, MI) to ASU (Phoenix, AZ) blinded, labeled only by the source

(human or mouse) and the number (Antibody ID). The Code, Specificity in CNS and the Function were known only to Mayo prior to unblinding. Human IgM-6 (Code

22) is in human trials for remyelination. Mouse IgM-5 (Code 94.03) was shown to promote remyelination, and was identified as a natural autoantibody.

Antibody DeID # Source Code Specificity in CNS Function

Hu IgM-1 Human 201 Neurons Neuronal Extension

Hu IgM-2 Human 236 Neurons Neuronal Extension

Hu IgM-3 Human 242 Neurons Neuronal Extension

Hu IgM-4 Human 248 Neuron Neuronal Extension

Hu IgM-5 Human 263 Neurons Neuronal Extension

Hu IgM-6 Human 22� Oligodendrocyte Remyelination

Hu IgM-7 Human 42 Oligodendrocyte Remyelination

Hu IgM-8 Human 297 Neuron Neuronal Extension

Mm IgM-1 Mouse A2B5 Progenitor Remyelination

Mm IgM-2 Mouse O4 Oligodendrocyte Remyelination

Mm IgM-3 Mouse O9 Oligodendrocyte Remyelination

Mm IgM-4 Mouse 79.08 Oligodendrocyte Remyelination

Mm IgM-5 Mouse 94.03�� Oligodendrocyte Remyelination

https://doi.org/10.1371/journal.pone.0229080.t003
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other than to state that they were of mouse or human origin and that they were IgM. These

antibodies had previously been tested for their ability to remyelinate the central nervous sys-

tem (CNS) as an approach to remediate symptoms from Multiple Sclerosis[5]. These monoclo-

nals were sourced from Waldenstrom’s myeloma cells, and are IgM rather than IgG[6]. They

were selected due to their unusual properties that causes remyelinating activity in vivo [7, 8].

Mayo’s experiments revealed that the most efficacious of these antibodies did not halt demye-

lination, rather it initiated remyelination of neurons during periods of remission. This effect

could potentially be leveraged to restore function to humans recovering from MS. Five mouse

and eight human antibodies were selected, deidentified, and sent to Arizona State University

for processing on the 330,000 peptide immunosignature array.

We followed the same procedure used for the commercial monoclonals: exploratory data

analysis of the data distributions, general patterns and commonality among the antibodies.

Peptide synthesis and array printing

Four different random peptide microarray libraries were used (Table 1), two with ~330,000

peptides and two with ~125,000 peptides. Some arrays had peptides shorter or longer length;

some libraries had fixed length peptides; some had peptides of variable length. Each library

was treated the same relative to sample processing and analysis. Each array is repeated 24

times on one standard slide with a gasket separating the assays. Synthesis of the peptides on

the silicon wafers was performed as described [9], using shadow-mask lithography and BOC

peptide synthesis. The assay is performed as follows: first, arrays are incubated in the presence

of sample buffer (SB = 1x PBS pH 7.3 + 0.05% Tween20 (Sigma-Aldrich, St. Louis. MO) for

one hour at 25˚C with gentle agitation. Antibodies were added by multichannel pipette to the

arrays to a final concentration of 4nM in 150ml of sample buffer. The primary incubation is

done at 37˚C in a rotating hybridization oven (Agilent, Santa Clara, CA) for 1hr. The gasket is

removed, the slide washed 3x in SB for 5 minutes with agitation, then 3x5 minutes each in

deionized 50MW water with agitation. The slides are placed in a 5ml tray without the gasket,

where 2ml of SB + 5mg/ml casein (Fisher Scientific, Fair Hills, WI) at pH 7.3 is added and fluo-

rescent anti-mouse (Jackson Lab AlexaFluor555 goat anti-mouse IgM Fc) or anti-human (Life

Technologies AlexaFluor555 mouse anti-human Fc) secondary antibody is added to a final

concentration of 4nM. The secondary binds to the primary antibodies for 1hr at 25˚C with

gentle agitation. Slides are washed as above, dried by centrifugation at 1500g for 10 minutes,

then scanned at 1um resolution in an Innopsys Innoscan 910 two-channel scanner at high

laser power, 20% PMT. A 16-bit TIFF image is stored for each array (24 images per slide),

aligned using GenePix Pro 6.0, data analyzed using GeneSpring 7.3.1 (Agilent, Santa Clara,

CA) or R (CRAN Repository).

Analysis methods

We first asked whether there were any generalizable measures of binding that could differenti-

ate the 24 antibodies. We first analyzed the data distributions for trends or patterns using EDA

(exploratory data analysis) across all four different peptide libraries. We then asked whether

there were differences in these trends on libraries with shorter or longer peptides (330K long

and 330K short libraries), or on arrays with fixed length (HT124K) vs. variable length

(CIM125K). We compared Shannon’s entropy, data distribution, binding promiscuity, and

dynamic range. Finally, we asked whether we could find evidence of the eliciting linear epitope

for those monoclonals raised to them in the short, random peptides. Once we competed these

preliminary experiments, we tested a collection of antibodies blinded to us provided by a col-

laborator at Mayo, Rochester.
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To capture sequence information from the peptides per monoclonal, we analyzed the top

200 peptides that uniquely bound to each monoclonal. These peptides and their binding inten-

sities are shown in the heatmaps in Fig 4. The test to identify peptides specific to each mono-

clonal used a correlation score that compared a vector that simulates a pattern representing

the highest signal for that monoclonal but the lowest possible signal for every other monoclo-

nal. Any peptide that matched this hypothetical pattern produced a high correlation and

appeared at the top of the list. This list produced peptides that bind strongly to just one mono-

clonal. We used CLUSTALW (GNU General Public License, v2) to group the peptide

sequences into clusters, and asked GLAM2 [10] to align the peptides from CLUSTALW using

gaps (if necessary) to find the most conserved positions in a motif. The resulting motifs were

searched for the peptide when known. This was done for 10 of the monoclonals (bold/under-

lined in Table 2).

Results

Immunosignature training on 24 monoclonals

The peptide arrays produce binding data between antibody and peptides. This pool of data is

called an immunosignature. An immunosignature is compilation of the steady-state binding

affinities between the library peptides and the antibody (or collection of antibodies, as found

in serum). Immunosignatures are generally log10 normal [3, 11]. However, a single antibody

can have a broad range of binding characteristics and the binding data may deviate from log10

normality. This measure of the data distribution can be considered the first of many general

observations. As in epitope mapping experiments, the highest-binding peptide sequences for

antibodies raised against linear peptides can be measured, clustered, and examined for motifs

that should correspond to the linear epitope for that antibody.

Fig 1 shows images from the four peptide libraries that were used: the 330K (short) library

consisted of peptides of varying lengths, aveage length was 12.2 residues. The 330K (long)

library consisted of peptides of length 17 residues. The HT 124K is a commercial peptide array

made by HealthTell (San Ramon, CA) with a mean length of 9 residues. The CIM 125K is simi-

lar to the HealthTell arrays, with a mean length of 12aa. Previous reports indicate that even

short motifs found in an immunosignature peptide can be statistically relevant to the linear

epitope of an antibody [12–16] but it was unknown how the size of the library impacted the

ability to predict epitopes.

Table 4 and Fig 2 illustrate a method that uses Information Theory to determine whether

there is a difference in the diversity or randomness found in the binding pattern. Table 4 lists

several descriptors of data distributions (mean, stdev, upper 95th percentile, skewness, kurtosis,

dynamic range). We settled upon Shannon’s Entropy as it provided a wide range of values that

should indicate diversity of information content. We applied Shannon’s Entropy [17] to the

patterns of data for each monoclonal for each random peptide library. Entropy is highly depen-

dent on the composition of the library, thus there are larger differences in the score between

libraries than between antibodies using the same library. Entropy scores are constrained by

each library. Therefore, the rank order of scores for antibodies is the best way to compare each

antibody across the different peptide libraries. Entropy was found to be more sensitive to sub-

tle changes in the relationship between the peptide binding pattern and biological associations.

For example, the entropy score for an immunosignature increases (more randomness) as addi-

tional monoclonals were added to the solution that bound to the microarray. Thus, for a single

monoclonal, an entropy score would be high if that monoclonal were more promiscuous, but

also a strong binder [17]. The antibody p53 Ab8 had the highest relative entropy score across

all libraries and has shown strong and very specific binding to very few peptides, generally
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when at least 2–3 amino acid residues of its cognate epitope are present and only when they

contain the tryptophan (SDLWKY). By comparison, anti-BrdU antibody was raised against a

small hapten and binds many peptides strongly.

Fig 3 shows the distributions plotted as density maps. It is easier to view these densities as

general patterns rather than try to examine the finer details per distribution. As seen, there is

substantial variation in the shape of the curves, and the breadth. The wider the distribution

plot, the higher the dynamic range of the peptide binding scores. The plots also give an indica-

tion of normality, with some plots like hnRNP A1, p21, and BAX showing the most deviation

from log10 normality on all libraries tested. Further, the CIM125K library and the HT124K

library tended to produce distributions closer to log10 normality, but also provided less

dynamic range.

In the lower half of Fig 3, the data distributions are plotted together, which highlights how

few antibodies deviate from the general plot shape. For the libraries with variable peptide

Fig 1. Raw images of a small portion of the upper-left portion of four different peptide microarrays showing four

different monoclonal antibodies. The X axis is four different peptide libraries; CIM330K (short) is a library of 330,000

random-sequence peptides of length 12.2 residues; CIM 330K (long) is a library of 330,000 random-sequence peptides

of length 17 residues. HT124K is a library of 124,000 random-sequence peptides of length 9 residues; CIM125K is a

library of 125,000 peptides of mean length 12 residues. The Y axis is four commercially-sourced monoclonal

antibodies. Row 1: anti-human TP-53 (Ab1) has low binding to most peptides but very high binding to a small subset

of peptides, especially to those containing the sequence RHSVV. Row 2: anti-human hnRNP monoclonal has an

intermediate binding prevalence, with approximately 15% of the total peptides binding at>2SD above background.

Row 3: anti-human p38 monoclonal has low binding pattern but at least 15% of all peptides bind at least 2SD above

background with a few high binders. Row 4: anti-AKT1(7) monoclonal has more promiscuous binding with>40% of

all peptides binding>2SD above background for HT124K and CIM125K. This visual display is intended to

demonstrate qualitatively how diverse the binding patterns are.

https://doi.org/10.1371/journal.pone.0229080.g001
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Table 4. List of selected characteristics of the data distributions from each of the peptide array formats. The table below lists seven different numerical descriptors of

the full dataset from each peptide microarray library (330K short peptide, 330K long peptide, 125K short peptide, 124K short peptide), and for each antibody. In order, the

descriptors are: Shannon’s Entropy [17], 95th percentile coefficient of variance (calculated from the standard deviation / mean of the 95th upper percentile of all observed

fluorescence intensities for each antibody per peptide library), the mean of all intensities, the stdev of all intensities, the measured kurtosis of all raw intensities, the skew-

ness of the raw intensity data distribution, and the dynamic range of the raw intensities.

Antibody CIM330K short CIM330K short CIM330K short CIM330K short CIM330K short CIM330K short CIM330K short

Entropy 95th%ile var mean stdev kurtosis skewness DR

AKT1(B-1) 6.59699095 0.94827464 997.931681 663.127174 2854.00735 34.8141055 4.97326203

AKT1(7) 6.40821724 0.43249303 742.91363 603.430384 5633.04555 55.6273088 6.21982759

Akt2(D-17) 6.34880064 0.16847798 872.804152 612.759423 3395.00949 38.431947 5.66894198

p53 Ab1 6.43404063 0.89970233 839.422526 749.430333 3689.28369 47.0647225 6.72727273

p53 Ab8 6.67474666 0.58985062 743.369711 720.764303 3992.68735 50.5967494 5.98739496

DM1A 6.58937783 0.35993306 1000.65025 955.97848 2427.36127 40.1117727 4.96216216

JNK2 6.57656755 0.16700709 960.27086 700.313264 2740.54469 35.8329888 5.55246914

hnRNP-A1 7.00998041 0.77525392 847.922562 548.851338 2770.05958 27.4521631 7.05416667

FDFT1 6.5936509 0.42609586 938.274437 1196.20813 1629.28596 34.6819536 6.56183746

p21 6.45104349 0.46370076 1569.97092 1591.95415 630.053602 18.1557846 9.49470899

p-p21 6.48341516 0.5038796 1857.37495 4592.18497 107.793395 9.53785444 10.1113924

p27 6.37471234 0.9331044 718.065902 866.060381 2911.37616 44.2815305 10.1081081

p-p27 7.31495785 0.68156289 746.468132 551.025209 2665.77271 30.1878272 7.95336788

p38 6.46027583 0.31336035 727.846199 588.212965 5505.69919 54.531433 6.19736842

p-p38 6.5446979 0.09138093 983.501078 2071.57046 700.793202 24.828498 5.57377049

p-ERK 6.44468899 0.70707617 913.976836 890.949155 2365.7115 37.6924918 6.92015209

Cyclin B1 6.64415963 0.50225685 912.835678 826.054839 3050.90059 43.6578988 5.60128617

IFN-y 6.45587552 0.34102307 826.167115 544.492649 4009.04013 36.653937 6.69262295

biotin IFN-y 6.42640065 0.13482229 1244.56755 1613.80366 563.224489 18.281687 8.80906149

6A7 Bax 6.69588997 0.75509245 912.086591 1216.86118 2346.99294 45.0626643 5.07854985

Anti-BrdU 7.87462317 0.20935228 2624.61493 6649.98001 51.3294253 6.52958368 31.1350575

SR 1H4 6.43766881 0.66607249 763.409327 685.3969 4534.99939 52.4777171 6.48695652

Clk1 6.45874743 0.8520575 759.433941 618.395681 5340.39725 54.3463068 6

LnkB B2 6.76805579 0.14024813 759.700558 496.349923 578.518773 9.01597547 10.6933333

Antibody CIM330K long CIM330K long CIM330K long CIM330K long CIM330K long CIM330K long CIM330K long

Entropy 95th%ile var mean stdev kurtosis skewness DR

AKT1(B-1) 6.59699095 0.28557628 4554.77322 1300.73519 622.307065 13.5654982 2.14203317

AKT1(7) 6.40821724 0.21273616 4104.46845 873.168854 838.54933 14.029646 1.84681881

Akt2(D17) 6.34880064 0.1995204 4411.52709 880.18965 1240.02572 19.8666298 1.69823386

p53 Ab1 6.43404063 0.24515575 4647.1139 1139.2667 1048.33146 21.9729809 1.73474044

p53 Ab8 6.67474666 0.3634331 4424.55606 1608.03013 286.62671 11.3306855 2.10854583

DM1A 6.58937783 0.36094758 4415.52644 1593.77357 563.688905 15.318917 2.61970256

JNK2 6.57656755 0.32165721 4352.02409 1399.85992 506.28591 12.0138395 2.74750357

hnRNP-A1 7.00998041 0.38475586 5347.05528 2057.31086 93.9357374 5.06685171 2.65914319

FDFT1 6.5936509 0.29834674 4274.13257 1275.17352 361.444301 7.32255294 2.7878202

p21 6.45104349 0.24655935 4927.17232 1214.84041 893.585872 21.018091 1.69355698

p-p21 6.48341516 0.44809185 4725.45688 2117.43872 648.486626 23.0610095 1.78139269

p27 6.37471234 0.211287 4191.46674 885.602419 1198.53625 18.8510712 1.77690289

p-p27 7.31495785 0.37818719 6757.56846 2555.62585 189.910928 9.03702438 2.4589372

p38 6.46027583 0.25272441 3713.48359 938.487955 1043.38512 16.7504264 2.06378601

p-p38 6.5446979 0.24457169 4408.19167 1078.1189 802.593762 16.2704786 1.94568151

p-ERK 6.44468899 0.20026886 4262.81051 853.708201 381.353761 7.32271088 1.84014502

Cyclin B1 6.64415963 0.30382729 4395.02676 1335.32909 336.369724 7.53027933 2.883585

(Continued)
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Table 4. (Continued)

IFN-y 6.45587552 0.20864676 4468.47338 932.332503 208.361855 5.46462466 1.81229385

biotin IFNy 6.42640065 0.21276461 4075.07667 867.03208 443.965119 8.29371879 1.86209262

6A7 Bax 6.69588997 0.28923639 4457.08591 1289.15144 389.869412 8.34131925 2.77285319

Anti-BrdU 7.87462317 1.04819122 9360.77698 9811.88428 17.6028326 3.91314999 6.89076795

SR 1H4 6.43766881 0.28279005 3832.10196 1083.68032 1228.81542 23.5580461 1.95700576

Clk1 6.45874743 0.20236299 4026.64226 814.843357 126.800971 2.54476741 1.92880376

LnkB B2 6.76805579 0.32786603 4695.37197 1539.45295 418.000148 12.2604133 2.22320025

Antibody HT124K HT124K HT124K HT124K HT124K HT124K HT124K

Entropy 95th%ile var mean stdev kurtosis skewness DR

AKT1(B-1) 3.6388709 2.12000013 172.084868 364.819943 26306.4389 154.975997 2.53465347

AKT1(7) 4.33674097 1.01457968 236.252576 239.697063 57.2347386 5.49309364 6.84210526

Akt2(D17) 3.09156101 7.96233657 99.5903922 792.972222 5887.25715 74.611924 2.87755102

p53 Ab1 4.09079536 2.71704953 260.076266 706.640097 7458.35971 83.2355533 2.8707483

p53 Ab8 5.39118295 1.56358319 666.653349 1042.36797 428.188284 12.1835834 11.33

DM1A 3.72867736 2.82387858 142.715166 403.010301 18058.3269 127.906169 3.92753623

JNK2 3.05772087 4.98656856 94.1531951 469.501363 17414.857 129.406235 2.64150943

hnRNP-A1 3.74197272 1.10982143 169.803894 188.452 23264.3056 121.881413 3.09782609

FDFT1 2.87791212 0.45522638 78.6092266 35.7849934 6202.12906 48.1048494 2.55319149

p21 4.88056159 1.68084853 393.470917 661.365011 4580.52622 48.8499872 9.21804511

p-p21 3.56907199 0.45462944 152.14079 69.1676822 149.452867 8.20823774 2.64044944

p27 3.8794242 0.82617176 169.275086 139.850295 6939.03407 44.9492098 4.17647059

p-p27 3.18314358 2.5335869 97.6363798 247.370252 53415.3941 221.336524 2.7962963

p38 3.50561153 0.65966101 141.976199 93.6561625 20155.9907 96.2479979 2.71084337

p-p38 3.64849878 1.7776175 161.28086 286.695679 37134.4212 182.895648 2.7311828

p-ERK 4.61384818 1.2271232 291.994153 358.3128 10823.1069 68.0910883 6.7800885

Cyclin B1 3.26447123 2.69397794 104.030158 280.25495 36949.8652 182.207299 3

IFN-y 4.8490326 1.63623531 415.251753 679.449578 56.9535342 6.07266769 11.7723577

biotin IFNy 4.7279444 1.39308613 337.57957 470.277415 3010.19085 25.3004702 10.2293578

6A7 Bax 4.44449254 1.48090943 230.309572 341.067618 6035.3077 57.5689551 8.11392405

Anti-BrdU 3.63407385 3.90077997 129.479389 505.070606 14506.1405 117.222898 3.67741935

SR 1H4 3.2696181 1.79397273 131.299509 235.547738 51648.0352 205.542601 2.26829268

Clk1 3.11953784 7.31745995 126.44449 925.252493 4679.6103 67.7634574 2.26760563

LnkB B2 3.50192613 1.38543046 143.405965 198.678993 94781.8251 288.355356 2.67073171

Antibody CIM125K CIM125K CIM125K CIM125K CIM125K CIM125K CIM125K

Entropy 95th%ile var mean stdev kurtosis skewness DR

AKT1(B-1) 2.7304762 9.56982994 45.2389304 432.92887 21488.5224 144.901688 21.0285445

AKT1(7) 3.96246833 2.19201832 126.868797 278.098727 24682.4368 114.187669 23.6168285

Akt2(D17) 2.60484067 8.25812471 43.3103286 357.662095 29163.4835 166.275502 20.6748661

p53 Ab1 2.80146844 2.8860048 44.1978863 127.555312 45700.074 189.930883 22.4974253

p53 Ab8 3.26418745 4.88039295 68.4303708 333.967099 34156.1048 178.224829 19.630186

DM1A 2.88766904 1.64499373 53.2250516 87.5548762 12896.8206 73.1321188 27.4205021

JNK2 2.98492852 1.89638275 54.1953277 102.775084 15832.7989 99.6436487 20.361336

hnRNP-A1 3.50630798 2.41101314 90.1888438 217.446487 62303.2699 207.955481 28.9977876

FDFT1 3.1782642 3.38281418 74.1013955 250.671251 43175.8734 180.552818 17.1889727

p21 4.21970354 3.3232106 268.050998 890.789917 1227.63171 22.8112489 19.184719

p-p21 3.39455331 1.19360386 78.1222364 93.2470027 7338.86079 45.3496167 30.2004608

p27 4.55717389 2.17699657 250.41672 545.15634 212.4138 10.4702714 14.9222973

p-p27 4.61752958 2.11107401 248.856763 525.355046 7398.48255 62.1267913 14.3288193

(Continued)
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length, the distribution of lengths is plotted as a histogram within the density plots. The

CIM330K short library has a wider distribution of lengths than the HT124K library. This effect

is seen in the total number of peptides for a given length; the 330K library has a higher percent-

age of lengths at different discrete values relative to the mean length than the HT124K library,

meaning that there is a wider range of peptide lengths.

Fig 4 is a heatmap showing the relationship of the binding intensity per peptide per mono-

clonal relative to those peptides binding to the other 23. This serves to highlight the specificity

of the assay–for each monoclonal there are 200 peptides that bind only to that antibody and do

not bind any other antibody.

Table 4. (Continued)

p38 3.4471677 3.98325087 92.5377642 368.60113 12266.5409 91.6929588 27.7616279

p-p38 2.80426187 7.66093095 69.5453262 532.781941 12536.7642 105.415318 24.4554335

p-ERK 3.29293995 5.27297172 71.8309949 378.762805 19803.3187 130.168903 21.3205298

Cyclin B1 3.15329576 2.60616442 59.6286291 155.402012 93376.3096 281.279467 18.8500387

IFN-y 4.75572062 2.14758346 362.463633 778.420904 424.884236 9.97913068 16.8441989

biotin IFNy 2.77340883 14.9757514 68.9829021 1033.07079 3481.86931 58.0367062 20.5053191

6A7 Bax 4.16781141 4.05548264 240.430834 975.063073 2365.29238 38.5653819 26.9137577

Anti-BrdU 3.61209451 5.95437037 88.4579233 526.711238 12990.5474 110.402725 23.5296572

SR 1H4 3.00625783 1.5817682 56.1568498 88.8271193 24601.5136 108.767101 22.9143357

Clk1 2.28663955 3.19223835 33.3028729 106.310708 36342.3158 165.64905 25.9708353

LnkB B2 3.53470995 4.48848749 182.78519 820.429041 381.626817 15.7874471 17.5305079

https://doi.org/10.1371/journal.pone.0229080.t004

Fig 2. Entropy measures of each of the 24 different monoclonals tested. Shannon’s Entropy was calculated for each of the

monoclonals and each of the 3 different peptide libraries. Since each peptide library is different, entropy calculations will differ as

well, however a general trend shows that p53Ab8 has generally high measured entropy and anti-BrdU the lowest.

https://doi.org/10.1371/journal.pone.0229080.g002
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To understand whether this method can provide information about unknown antibodies,

we asked a collaborator for a collection of clinical monoclonals that were tested for their ability

to remyelinate the central nervous system (CNS) in patients who were in remission from mul-

tiple sclerosis. These monoclonals were sourced from human Waldenstrom’s myeloma cells.

Notably they are IgM rather than IgG. These were selected due to the properties of remyelinat-

ing activity in vivo. Their effects in laboratory mice infected with Theiler’s virus, a picornavirus

that persists in the CNS and causes demyelination, demonstrated that no antibody stopped

demyelination but they initiated remyelination of damaged neurons. This is the clinical effect

that was being sought. If the immunosignature data from the commercial monoclonals is rele-

vant, it should work for ANY monoclonal, not just well-characterized IgG molecules. We

assayed the five human and five mouse antibodies, but were left blinded to their clinical data.

Fig 3. Data distribution for 24 monoclonals, for each peptide microarray library. Every peptide is shown as raw data for each of

the 3 different peptide microarray libraries. Distribution kurtosis and 75th percentile distributions are correlated to binding

promiscuity.

https://doi.org/10.1371/journal.pone.0229080.g003

Fig 4. Hierarchical clustering of the top 50 peptides for each of the 24 monocloanls tested. The top 200 peptides for each

monoclonal were selected by filtering via pattern-matching to a perfectly discriminatory pattern (i.e. high for each monoclonal, low

for the other 23 monoclonals). This filter produced peptides that are unique to each monoclonal, if possible. The values for these

50�24 = 1200 peptides is shown for the three microarray libraries. The peptides were clustered using Pearson’s correlation coefficient

to group peptides on the Y axis, the X axis lists each monoclonal, and was ordered manually Common reactivity is seen as colored

bars off the diagonal axis.

https://doi.org/10.1371/journal.pone.0229080.g004
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One of the antibodies (HIgM22) completed phase I clinical trials in multiple sclerosis

patients without any serious complications. Whether this antibody that promotes remyelina-

tion in animals also promotes remyelination in multiple sclerosis patients is unknown. The

dataset was analyzed blinded and reported to the collaborator who then interpreted the IMS

data relative to each antibodies efficacy to promote CNS remyelination.

The concept that antibodies can promote remyelination comes from previous experi-

ments in the Mayo/Rodriguez lab where adoptive transfer of antisera raised against purified

mouse spinal cord homogenate was able to induce remyelination in animals with CNS

demyelination induced by Theiler’s virus. As a result, spleens from those animals that pro-

duced this remyelinating antisera were fused to produce mouse monoclonal antibodies.

These monoclonals were then screened for their ability to bind to CNS by immunofluores-

cence. Those that bound to myelin were then injected into mice infected with Theiler’s virus

to determine which antibodies promote remyelination. It was shown that those antibodies

that promote repair were polyreactive and had similar DNA sequences to germline making

them natural antibodies. Once this was known, then human patients with monoclonal gam-

mopathies were screened for their ability to bind the CNS myelin by immunofluorescence

and then to promote remyelination in the Theiler’s virus model of demyelination. One of

these antibodies that promoted consistent remyelination (rHIgM22) was sequenced and

cloned to obtain a recombinant protein which is now being used in the multiple sclerosis

clinical trial.

Informatic analysis of 24 monoclonals

We first wished to test the general characteristics of the 24 monoclonals. Antibodies were

assayed according to Materials and Methods. An image of 3 sample antibodies was taken from

each of the three libraries. The 9 images are shown in Fig 1. Note that some antibodies have

very restricted binding patterns, as exemplified by JNK2, where few peptides are bound by the

monoclonal. This is the opposite of p21, where many peptides are bound by the monoclonal.

Fig 2 shows a bar-chart of the 24 antibodies’ entropy calculation. Values range from 5 to 7 for

all three libraries, but the range of values differs by the peptide library. The entropy scores

should be compared non-parametrically using rank rather than absolute scores. The composi-

tion of the peptide library has a large effect on entropy, more than the differences across anti-

bodies. Therefore each library should be analyzed relative to the antibodies tested, rather than

a direct comparison of entropy across libraries. The highest entropy for all libraries was p21.

The lowest for the two 125K libraries was actin B and phospho-p21. The lowest for the 330K

library was anti-human p53 Ab8.

Fig 3 shows the density plots for each of the monoclonals. Density distributions reflect

the binding variance and deviation from log-normal. As before, the CIM330K library shows

some difference in the antibody profiles, suggesting that the older array may have properties

unique to that library and synthesis method. The two newest array platforms show similar

profiles.

Fig 4 is a display of the peptide intensities for 50 of the most unique peptides for each anti-

body. 1200 peptides are shown in total. As seen, there is little overlap in the peptides that each

antibody bound well.

Fig 5 is an analysis of the Shannon’s entropy score for the Mayo monoclonal antibodies. In

this figure the highest entropy scores resulted from Human 6 and Mouse 5.

In Fig 6 we see that these two monoclonals (IgMh6 and IgMm5) had the broadest distribu-

tion plots regardless of the method used to generate the smoothed histograms (Fig 6 top and

Fig 6 bottom).
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In Fig 7 we show the results from the same method used previously to obtain peptides that

bind uniquely to each monoclonal. The heatmap on the left shows that only 1/3 of the peptides

selected to be uniquely bound by each monoclonal were in fact unique–the rest were generally

common to all of the tested antibodies. This was most apparent in the mouse monoclonals

(right side of heatmap). The heatmap on the far right shows the peptides that were selected for

the human and the mouse antibodies. The common high binders were different for mouse and

for human, suggesting that there were different epitopes being bound by the antibodies. These

200 peptides for mouse and separately 200 peptides for human were BLASTed against their

respective proteomes using BLASTP with a low stringency E<0.01 cutoff. Each of the 200 pep-

tides was used to obtain a list of matching proteins. For the human antibodies, there were 118

different protein targets found, for mouse there were 172 different proteins found. Table 5 lists

the top four proteins that were found more often than any other protein. These four common

proteins which were found both in mouse and human were identified by 400 different pep-

tides. We do not know the identity of the actual biological targets for these antibodies but the

common targets for both mouse and human appear to be cytoskeletal in nature. It is possible

the size of these proteins plays a role in finding them using this probabilistic approach, but

there are other large proteins in the human and mouse proteomes and both found similar pro-

teins at approximately the same rate.

Fig 8 is an example of how a library of random-sequence peptides can identify a linear

sequence of protein that defines the eliciting epitope, similar to the way standard epitope map-

ping experiments work. This relates to the previous analysis of the Mayo monoclonals suggest-

ing that there may be some capacity of the random peptides to find actual epitopes from

antibodies–we previously explored this capacity [12, 14, 16] with similar results.

Fig 5. Entropy measures for 8 human therapeutic monoclonals and 5 mouse therapeutic monoclonals (IgM).

Experimental IgM monoclonals used for therapeutic remyelination in human and mouse. IgM6 and IgM1 and IgM5

were shown by clinical trial significant efficacy in remyelinating human and mouse neurons, respectively. No other

monoclonal showed efficacy.

https://doi.org/10.1371/journal.pone.0229080.g005
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Discussion

We introduced a method for investigating binding properties of monoclonal antibodies. We

examined the binding of 24 different commercially sourced monoclonal IgG antibodies to

four different random-peptide immunosignature microarrays. Some monoclonals had pub-

lished and defined targets, most only reported the protein as the immunogen. DM1A is a

human anti-Tubulin IgG that was created by immunizing with the peptide AALEKDY while

others like Akt1 antibody were raised to a segment of protein representing amino acids 345–

480 in human Akt1. Some targets were not detailed by the manufacturer, a common practice

for many commercial antibodies. We analyzed all but could not confirm whether our informa-

tion about the target is correct. Some targets such as p-p21 were phosphorylated, and the non-

phosphorylated pair, i.e. p-21, was also tested.

We first used a general exploratory analysis. We asked whether information theory could

provide some insight into the behavior of the monoclonals. Here we used Shannon’s entropy

[17] to explore how many independent binding events could be examined together to form a

picture of antibody behavior. When examined along with the histograms of the data, a picture

emerges of how a given antibody responds to random sequences. Some antibodies prefer to

bind to many different peptides strongly, some to many peptides weakly, but most bound to

Fig 6. Data distribution for monoclonals shown in Fig 4. Data for all 125,000 peptides from CIM125K are shown as a density plot, either one by one

(top plots) or side-by-side (bottom plot). For the distributions shown along the bottom, blue color indicates low intensity binding while yellow and red

indicate higher binding at least above the median signal for that array. Antibodies are shown in the same order as Fig 4. Wide/broad distributions

match promiscuous binding of specific antibodies, narrow distributions suggest more specific binding. No other serological test performed on any of

these antibodies led investigators to predictions of efficacy, but therapeutic efficacy of these IgM antibodies correlated perfectly with the broad

distributions and relatively high entropy scores.

https://doi.org/10.1371/journal.pone.0229080.g006
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several hundred to several thousand peptides strongly, regardless of the peptide library that

was used. The 330K long array highlighted that some antibodies prefer to bind to longed pep-

tides as evidenced by the increased number of high-binding events on the 330K long vs. the

HT 124K library. A sequence analysis of the 200 highest binding peptides per antibody

Fig 7. Heatmap for the 13 different clinical monoclonals. Each of the clinical monoclonals was tested exactly like the

24 commercial antibodies, to find 50 peptides that were unique for each antibody (see Fig 4). Left: For each of the

antibodies, some unique peptides were identified but for the human antibodies, many peptides overlapped suggesting a

common target. The mouse antibodies had less overlap with either the human or other mouse antibodies. Right: We

applied a general filter for high binding peptides. Here there are 200 peptides identified for the human antibodies (left)

and 200 for the mouse antibodies (right). These high-binding peptides overlap with each other, but not between mouse

and human reinforcing the possibility that these two sets of antibodies are against different protein targets. These 200

peptides were used to BLAST all human and all mouse proteins, respectively (see Table 4).

https://doi.org/10.1371/journal.pone.0229080.g007

Table 5. List of most common hits from mouse and human peptides (from Fig 7). The Mayo monoclonals from

Table 3 were tested on the 330K immunosignature array. 200 peptides that were common for the human and 200 pep-

tides common for the mouse antibodies were used to compare the GeneBank human (hs) or mouse (mm) protein data-

base using BLASTP and a cutoff of 0.01. The protein hits for each peptide were compiled and sorted. The table below

contains proteins from both mouse and human that were hit at least 2-fold more often than the next most common

protein. The first column lists the protein common name, the second column lists the number of times the 200 peptides

aligned with each protein for human (column 2) and mouse (column 3). The next highest number of hits for human

was 61 and for mouse was 47.

BLASTP hits Human Mouse

Kelch-like protein 123 126

Dynein heavy chain 535 768

Myosin family 350 322

Titin 202 88

https://doi.org/10.1371/journal.pone.0229080.t005
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revealed that some monoclonals bound to similar motifs but those motifs could appear closer

to the C-terminus (p53 Ab8) or to the N-terminus (p53 Ab1). These sorts of observations are

difficult to obtain using classic antibody binding measurements like ELISA. Phage display can

provide information like this, but unlike phage display, the immunosignatures can display

non-binding information. P53Ab8 was raised to SDLWKLL and binds to peptides that differ

substantially from this sequence as long as there is a tryptophan near the middle of the peptide.

Almost no peptide with no tryptophan bound to p53 Ab8.

We then examined 13 IgM antibodies from Mayo. The molecular target for the remyelina-

tion antibodies is unknown. Neither the human nor mouse antibody panel has yielded a con-

firmed in vivo target. In Hecker et al. [18] a tiled peptide microarray made by JPT Peptides

(Berlin, Germany) detected several candidate proteins with high antibody reactivity in relaps-

ing remitting Multiple Sclerosis (RRMS); ACTB, ACTG (human actin B and actin gamma)

were identified by several high-binding peptides in a majority of MS case samples. S100A1 and

CRYAB are a heat shock protein and a calcium binding protein, respectively and were also

identified by commonly binding peptides present in these proteins. Given the wide range of

possible targets for these therapeutic remyelination antibodies, we followed an unbiased search

using peptides that bound the monoclonals at the highest intensity.

Fig 8. Alignment of peptide data from JNK2 (top) and DM1A (bottom). JNK2 and DM1A were processed on 3 microarray platforms. 125K, 124K

and 330K array data were used to find epitopes using CLUSTALW and GLAM2. The large text figures represent the GLAM2 output. These motifs are

similar to the actual linear epitope shown underlined in the protein sequence. Right: Guitope [13] was used to identify a region of either JNK2 (top

three graphs) or tubulin (bottom three graphs). The red lines indicate the noise threshold, generated by testing all random peptides from each of the

peptide libraries. The green line is the signal from the 200 selected peptides unique to that antibody. The black vertical line indicates the position within

the protein where the epitope is likely to reside. For both proteins, the Guitope analysis predicted the exact location of the start of the epitope sequence.

72 residues from the C-terminus of JNK2 and 23 residues from the C-terminus of tubulin.

https://doi.org/10.1371/journal.pone.0229080.g008
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Mayo provided the antibodies blinded. Analysis showed that IgMhu6 and IgMMm5 had

the highest entropy values and the broadest and most non-normal density distributions. The

patterns in Fig 7 indicate that there were few peptides that were completely unique to each

antibody. The test to pick unique peptides is quite stringent as seen for the commercial anti-

bodies in Fig 4. The human IgM antibodies showed a great deal of overlap, even as the selec-

tion process actively discouraged any overlap. This may suggest a common target. IgMhu6

showed little overlap with other antibodies. This may be due to many peptides binding

simultaneously, decreasing specificity for a given set of peptides. The same pattern appears

in mmIgM6. It is worth noting that the mouse antibodies had more specificity across the dif-

ferent clones than the humans. There was little commonality between the mouse antibodies

in general vs. the human antibodies, as shown in Fig 8. Mayo demonstrated that Human 6

and Mouse 5 were most efficacious in promoting remyelination in animal models of demye-

lination, including both the Theiler’s virus model and direct lysolecithin injection into the

cord. Mayo tested lipid panels, pull-downs, western blots, and other discovery methods, but

the target remained elusive. Without a candidate protein, it is difficult to align motifs to

obtain a confident target but using an ab initio approach we simply BLASTed the peptides

against the human and mouse proteome, respectively. We identified Kelch-like (123 times in

human and 126 times in mouse), dynein heavy chain (535hu and 768mm), myosin family

protein (350hu and 322mm), and titin (202hu and 88mm). It may be that these overlapping

proteins contain the target sequence from another protein, or the repeating units enhanced

off-target alignments, but equally likely the Mayo antibodies are actually binding or stabiliz-

ing certain cytoskeletal components allowing remyelination. Dynein had hits along the

length of the protein, but dynein is a large protein (nearly 5000 amino acids); peptides are

likely to match it by random chance. However, a western blot study of these proteins might

prove informative.

Conclusions

The data provided here can be applied to any antibody. Epitope binning is a first and

important characterization of therapeutic antibodies, but it may be that immunosignature

analysis might provide insights not available with standard techniques. For example, infor-

mation about which peptide sequences bind can reveal motifs like the actual epitope. How-

ever, information about which peptides ablate binding can be as important. Single residue

changes that reverse a strong binder to a weak binder reveals a great deal about the

paratope and the epitope determinant. Information about promiscuity or polyreactivity

can be obtained in a single experiment on an immunosignature microarray. These facets

of antibody character, as demonstrated here, could profoundly affect clinical efficacy

such as promoting remyelination. A single value, entropy, could be used as a proxy for

polyreactivity.

There are several immediate practical benefits that arise from this study. First, epitope bin-

ning is time consuming. It may be that a rapid screen with a random peptide microarray can

narrow thousands of candidate monoclonals to a few that can be investigated more thor-

oughly. Polyreactivity was a strong indicator of clinical efficacy in this case, but there can be

many different outputs. The breadth of data provided by immunosignatures lends itself to

machine learning. By training an algorithm on data from successful or clinically useful mono-

clonals, that pattern, no matter how complex or convoluted, can be captured by sophisticated

machine learning analyses in a high-throughput manner. This increase in speed is the key to

increasing our ability to screen thousands or millions of antibodies, one of which could be the

next major blockbuster.
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