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Behavioral/Cognitive

But Still It Moves: Static Image Statistics Underlie How We
See Motion

Reuben Rideaux and ““Andrew E. Welchman
Department of Psychology, Downing Street, University of Cambridge, CB2 3EB, United Kingdom

Seeing movement promotes survival. It results from an uncertain interplay between evolution and experience, making it hard to isolate
the drivers of computational architectures found in brains. Here we seek insight into motion perception using a neural network (Motion-
Net) trained on moving images to classify velocity. The network recapitulates key properties of motion direction and speed processing in
biological brains, and we use it to derive, and test, understanding of motion (mis)perception at the computational, neural, and perceptual
levels. We show that diverse motion characteristics are largely explained by the statistical structure of natural images, rather than motion
per se. First, we show how neural and perceptual biases for particular motion directions can result from the orientation structure of
natural images. Second, we demonstrate an interrelation between speed and direction preferences in (macaque) MT neurons that can be
explained by image autocorrelation. Third, we show that natural image statistics mean that speed and image contrast are related
quantities. Finally, using behavioral tests (humans, both sexes), we show that it is knowledge of the speed-contrast association that
accounts for motion illusions, rather than the distribution of movements in the environment (the “slow world” prior) as premised by
Bayesian accounts. Together, this provides an exposition of motion speed and direction estimation, and produces concrete predictions
for future neurophysiological experiments. More broadly, we demonstrate the conceptual value of marrying artificial systems with
biological characterization, moving beyond “black box” reproduction of an architecture to advance understanding of complex systems,
such as the brain.
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Using an artificial systems approach, we show that physiological properties of motion can result from natural image structure. In
particular, we show that the anisotropic distribution of orientations in natural statistics is sufficient to explain the cardinal bias for
motion direction. We show that inherent autocorrelation in natural images means that speed and direction are related quantities,
which could shape the relationship between speed and direction tuning of MT neurons. Finally, we show that movement speed and
image contrast are related in moving natural images, and that motion misperception can be explained by this speed-contrast
association not a “slow world” prior. j

ignificance Statement

ping between sensations (e.g., changing patterns of light) and
their physical causes (e.g., a nearby object’s movement) is shaped

Introduction
Humans use sensory systems to extract meaning from the envi-

ronment: for instance, whether food is worth eating; the fitness of
a mate; or the risks associated with particular actions. The map-
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by evolution and experience. Yet, it is difficult to isolate the causes
and drivers of functional architectures found in nervous systems
as evolution often eludes empiricism.

Perceptual illusions, where sensations appear decoupled from
physical reality, question the relationship between environmental
stimulation and our perceptual apparatus. In the barber pole illusion
(Guilford, 1929; Wallach, 1935), for instance, viewers report that
striped lines move upward in contrast to the objective rightward
rotation of the pole (see Fig. 1a). This illusion reflects the ambiguity
of local motion signals (Wallach, 1935); yet it remains a puzzle to
understand the principles that dictate why our neural architecture is
susceptible to this misperception in some situations but not in oth-
ers. Moreover, we are challenged to explain a biological architecture
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molded by an uncertain combination of evolution and experience
using isolated point estimates of network activity (e.g., electrophys-
iology) or gross population responses (e.g., fMRI).

Here we develop an artificial neural network trained as a toy
system with which to interrogate the origin of functional archi-
tectures within the primate brain. Because we have complete con-
trol of the network’s experience (i.e., its “visual diet”) and full
access to the system, we can expose the processes that may under-
lie the perception and misperception of motion. This enables us
to test key ideas about the influence of Bayesian priors and past
experience. We assess how motion direction and speed are esti-
mated to provide insight at the computational, neural, and per-
ceptual levels. We use this new understanding to develop and test
predictions from the artificial system against neurophysiological
and psychophysical data to suggest the core biological computa-
tions of motion perception.

Using this analytical approach, we identify plausible drivers of
biases in motion perception. In contrast to previous work, we
show that the statistical structure of natural images per se, rather
than the statistics of motion, can account for misperceptions of
movement. First, we show that the overrepresentation of cardinal
directions (i.e., up-down or left-right) in visual cortex is consis-
tent with the structure of static images, not the statistics of
environmental motion. Second, we reveal a statistical interde-
pendency between movement speed and direction that can ac-
count for tuning properties of MT neurons. Third, we show
(theoretically and empirically) that image contrast is a key “lurk-
ing variable” in motion estimation in ways not previously under-
stood. Finally, we show that the brain appears not to have
internalized the statistics of environmental motion (the “slow
world” prior), but rather has learnt the statistics of image contrast
dependent on the mutual information of natural images. In the
process, we show that a neural network, optimized on one set of
moving images, reproduces a host of biological neuron proper-
ties and perceptual behaviors, and supports concrete predictions
for future experimental investigation.

Materials and Methods

Naturalistic motion sequences. To train a neural network to classify the
image velocity, we generated motion sequences using 200 photographs
from the Berkeley Segmentation Dataset (https://www2.eecs.berkeley.
edu/Research/Projects/CS/vision/bsds/). Images were grayscale indoor
and outdoor scenes (converted from RGB using MATLAB’s rgb2grey
function, The MathWorks). Motion sequences (six frames) were pro-
duced by translating a 32 X 32 pixel cropped patch of the image (see Fig.
1b). Eight motion directions (four cardinal; four oblique) and eight lin-
early spaced speeds between 0.8 and 3.8 pixels/frame were used. Images
were translated in polar coordinates; for example, an image moving at a
speed of 1 pixel/frame in 0° (right) direction was translated by [x =1,y =
0] per frame, whereas an image moving at the same speed in 45° direction
was translated [x = 0.7071, y = 0.7071]. Image translation was per-
formed in MATAB using Psychtoolbox version 3.0.11 subpixel rendering
extensions (Brainard, 1997; Pelli, 1997) (http://psychtoolbox.org/). The
speeds used to train the network were selected because they did not
exceed the image dimensions (32 X 32 pixels), and all required subpixel
rending; for example, if we had used a speed of 1 pixel/frame, subpixel
rendering would have been required for cardinal, but not oblique, direc-
tions. We therefore ensured that all directions necessitated subpixel ren-
dering to ensure that this did not provide a direction cue. We generated
64,000 motion sequences; 1000 for each of the (8) directions and (8)
speeds. Image sequences were scaled so that pixel intensities were be-
tween —1 and 1, and randomly divided into training, validation, and test
sets, as described in Training procedure.

MotionNet architecture. All the networks described in the study were
implemented in Python version 3.6.4 (https://python.org) using Tensor-
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flow (www.tensorflow.org), a library for efficient optimization of math-
ematical expressions. We used a convolutional neural network that
comprised an input layer, one convolutional-pooling layer, and an out-
put logistic regression layer (see Fig. 1b). The input was convolved with a
series of kernels to produce one output map per kernel (which we refer to
as convolutional maps). The use of convolution means that each kernel is
applied at all valid locations of the input space; valid locations refer to
those in which the convolutional kernel does not exceed the input space.
This significantly reduces the number of parameters that need to be
learned (i.e., we do not parametrize all possible pairwise connections
between layers) and allows the network to extract a given image feature at
all different positions of the image.

Inputs were image patches (32 X 32 X 6 pixels; the last dimension
indexing the motion frames). In the convolutional layer, inputs passed
through 128 3D kernels (6 X 6 X 6 pixels), producing 128 2D output
maps (27 X 27 pixels). This resulted in 36,992 units (128 maps of 27 X 27
pixels) forming 20,155,392 connections to the input layer (128; 27 X
27 X 6 X 6 X 6 pixels). Since mapping is convolutional, this required that
27,776 parameters were learned for this layer (128 filters of dimensions
6 X 6 X 6 plus 128 offset terms; we refer to these parameters as offset
terms, rather than the standard “bias terms,” to avoid confusion with
“perceptual bias”). We chose units with rectified linear activation func-
tions to model neurophysiological data (Movshon et al., 1978). The ac-
tivity, a, of unit jin the k" convolutional map was given by the following:

a;k) = (w(k)sj + b](-k))+ (1)

where w® is the 6 X 6 X 6 dimensional 3D kernel of the k™® convolu-
tional map, s; is the 6 X 6 X 6 motion sequence captured by the 7™ unit,
bj is an offset term, and (. . .) , indicates a half-wave rectification. Param-

eterizing the motion image frames separately, the activity aj(-k) can be
alternatively written as follows:
k) — k) k
af = (X)) + biP) . (2)
where w'"® represents the k" kernels applied to motion image frames

n

(i.e., receptive fields at times 1-6) and s;
captured by the receptive field of unit j.
Finally, a logistic regression layer (2,367,552 connections; 46,656 per
feature map, resulting in 2,367,488 parameters, including the 64 offset
terms) mapped the activities in the pooling layer to 64 output decision
units. The vector of output activities r was obtained by mapping the
vector of activities in the convolutional layer a via the weight matrix W
and adding the offset terms b, followed by a softmax operation as follows:

represents the input images

r = softmax (Wa + b) (3)

where the predicted class was determined as the unit with highest activity.
Training procedure. Motion sequences were randomly divided into
training (70%, n = 44,800), validation (15%, n = 9600), and test (15%,
n = 9600) sets. No sequences were simultaneously present in the train-
ing, validation, and test sets. To optimize MotionNet, only the training
and validation sets were used. We initialized the weights of the convolu-
tional layer as Gaussian noise (mean, 0; SD, 0.001). The weights in the
logistic regression layer and all offset terms were initialized to 0.
MotionNet was trained using mini-batch gradient descent, with each
batch comprising 100 randomly selected examples. For each batch, we
computed the derivative of the categorical cross entropy loss of function
with respect to parameters of the network via back-propagation, and
adjusted the parameters for the next iteration accorded to the update rule

as follows:
oL > @
W,

Wit = Wi — C‘f<

where « is the learning rate and < P > is the average over the batch D;,

Wby
of the derivative of the loss of function with respect to the w, evaluated at

w;. The learning rate a was constant and equal to 1.0e ~*. After evaluating
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all the batches once (i.e., completing one epoch), we tested MotionNet
using the validation image dataset. We repeated this for 2500 epochs.

Generalization of motion classification. To test generalization by Mo-
tionNet, we used sequences from a realistic movie depicting the view
from a car driving through a busy urban environment (“driving” dataset;
https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlow
Datasets.en.html) (Mayer et al., 2015). The motion scenes comprise both
self-motion generated optic flow and object motion, with ground truth
provided. To extract sequences to test MotionNet, we segmented the
movie (960 X 540 pixels, 800 frames) into smaller sections, equal to the
input shape used by the network (32 X 32 pixels, 6 frames). We then
removed motion sequences for which the average velocity was more or
less than those used to train MotionNet, or for which the SD of the
velocity exceeded 0.2 in terms of direction (degrees) or speed (pixels/
frame). To increase the sample size, each motion sequence was rotated
and repeated at each motion direction. This yielded 640 motion se-
quences (10 for each motion velocity used to train the network).

Generation of test stimuli. A range of stimuli were used to test the
response of the network after it had been trained on natural images. With
the exception of sinewave and plaid stimuli, which were generated in
Python using in-house scripts, all stimuli were generated using the Py-
thon toolbox Psychopy (Peirce, 2007) version 1.90.3 (http://www.psy-
chopy.org). Except where stated otherwise, all sinewaves and plaids (90°
component separation) had a spatial frequency of half the image size (16
pixels/cycle) and were presented at full contrast (—1 to 1 pixel values). In
line with Stocker and Simoncelli (2006), contrast was defined as the ratio
between the maximal intensity difference in the image sequence and the
maximum intensity difference that could be input to the network (Mo-
tionNet) or displayed on the monitor (human observers).

Decoding continuous measures of direction and speed. MotionNet was
trained to perform discrete velocity classifications. To generate continu-
ous estimates of speed and direction, we fit descriptive models to the
activity of the MT units. For direction, we fit a von Mises distribution to
the activity of units tuned to the same speed as that of the unit with
maximum response according to the following:

G(x) =p — A exp (cos((x — x0)0)) (5)

where G(x) denotes the unit response at location x, p is a constant offset,
and A, x,, and o are the amplitude, location, and width of the peak,
respectively.

Similarly, for the speed model, a Gaussian distribution was fit to the
activity of units tuned to the same direction as that of the unit with
maximum response, according to the following:

G(x) = p— A exp (— (M)) (6)

oa

where G(x) denotes the unit response at location x, p is a constant offset,
and A, x,, and o are the amplitude, location, and width of the peak,
respectively.

For simulations in which velocity was computed from the MT unit
population activity, stimuli were presented in each of the 8 (cardinal/
oblique) directions, and the response of the MT units was aligned to a
common direction (0°) and averaged.

Anisotropy in direction of motion responses. To compare the properties
of V1 units that emerged within the MotionNet with those of V1 neurons
in biological systems, we extracted neurophysiological data of mouse V1
neurons selective for cardinal and oblique directions from Salinas et al.
(2017, their Fig. 7D). That figure contains data presented separately for
high (=0.24 ¢/d) and low (<<0.24 c/d) spatial frequency; we averaged
those to capture the distribution of direction selectivity across all neurons
(see Fig. 2a). To establish the direction tuning preferences of MotionNet
V1 units, we tested the network with drifting sinewave gratings. The
direction preference of each unit was determined as the stimulus
movement direction that produced maximal activity (see Fig. 2b).
Eight directions (four cardinal and four oblique), spatial frequencies
(logarithmically space between 2 and 64 pixels/cycle), and temporal fre-
quencies (logarithmically space between 2 and 64 cycles/frame) were
tested, resulting in 512 (8 X 8 X 8) stimulus types. For each stimulus
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type, we computed the average activation of 32 gratings at evenly spaced
starting phase positions between 0 and 360°. From these data, the spatial
and temporal frequency selectivity of the V1 units was also derived and
used in other analyses.

To test hypotheses about the cause of anisotropies in the distribution
of V1 unit preferences, we used the mapping procedure on networks
trained on both natural and artificial image sequences. A MotionNet (45°
image rotation) network was trained on (the same) natural images, fol-
lowing a 45° clockwise rotation (see Fig. 2¢). A MotionNet (isotropic
dots) network was trained on artificial random dot motion stimuli com-
prising a variable number of dots (number between 1 and 10, randomly
selected) of different size (8—16 pixel diameter, randomly selected) and
contrast (pixel values between —1 and 1, randomly selected) on a mid-
gray background (pixel value 0) (see Fig. 2d). Dots were randomly posi-
tioned within the image (32 X 32 pixels) * the maximum distance that a
dot could traverse over the sequence (6 frames X 3.8 pixels). During the
motion sequence, dots translated across the image without wrapping
around at the edges. For each of the eight directions and eight speeds, we
generated 500 images on which to train the networks. MotionNet (car-
dinal anisotropy) and MotionNet (oblique anisotropy) networks were
trained on similar image sequences, but the dots were distorted along
cardinal or oblique axes by a factor of 4 (see Fig. 2e,f). This was achieved
by reducing the width of the dots by half and increasing the height by a
factor of 2, and then (randomly) rotating each dot to align with either the
cardinal or oblique axes. To demonstrate and ensure consistency in
training outcomes, we trained 10 networks on each set of image se-
quences. In Figure 2, we present the mean values, with error bars indi-
cating SD.

To establish the direction tuning width of MT units (see Fig. 2¢), we
used random dot stimuli: tested directions, 0°-360° in 16 steps; speed,
0.8-3.8 pixels/frame in 8 steps. Dot motion stimuli consisted of 12 ran-
domly positioned white dots (pixel value, 1; radius, 5 pixels) on a black
background (pixel value, —1), which were allowed to overlap (with oc-
clusion) and wrapped around the image when their position exceeded
the edge. Responses were then aligned to the preferred direction and
averaged across MT units tuned to either cardinal or oblique directions.

We measured the sensitivity of MotionNet to changes in direction
around cardinal and oblique directions, and fit a descriptive model (von
Mises distribution) to obtain a continuous output from the network to
dot motion stimuli moving in a range of offsets (=20° from the target
direction in 10 steps; speed, 3.8 pixels/frame). To generate “psychophys-
ical performance” from MotionNet, each offset was repeated 10 times
and the proportion of “clockwise” responses; that is, decoded (continu-
ous) direction clockwise relative to 0, was plotted as a function of offset
(see Fig. 2h). These data were then averaged for cardinal or oblique
directions to produce one measure of psychophysical performance for
cardinal directions and one for oblique. The MATLAB toolbox Psignifit
(Friind et al,, 2011) (http://psignifit.sourceforge.net/) was used to fit
psychometric functions. Measures of sensitivity were calculated as
follows:

o 1
S \/5 (7)

where s denotes sensitivity and o is the SD of the psychometric curve. For
comparison with human data, we extracted the psychometric data points
from Matthews and Qian (1999, their Fig. 1, top left) and used the same
method used to calculate the psychometric functions and measures of
sensitivity of MotionNet (see Fig. 21).

Biological and artificial visual system responses to component and pattern
motion. To assess MotionNet’s response to barber pole stimuli, we tested
the network with obliquely oriented drifting sinewave gratings (speed,
0.8 pixels/frame) that were masked at the edges (pixel value, 0) to obtain
16 height to width ratios from 1:1 to 16:1 (see Fig. 3a). To obtain ratios
that could not accurately be achieved by masking one pair of edges (e.g.,
the left and right edges), due to the limited number of pixels within the
image, the other pair of edges (e.g., the top and bottom edges) were also
masked in a manner that maximized the total number of pixels left un-
masked while accurately achieving the desired ratio. This process was
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repeated for each of the four cardinal directions, and the response was
aligned and averaged to a common direction before decoding. This was done
to ensure equality of responses between units tuned to directions within
cardinal/oblique direction groups (e.g., responses of units tuned to up-
ward motion were similar to those tuned to downward motion). Finally,
we decoded (continuous) direction from MT activity for stimuli as a
function of height to width ratio (see Fig. 3b). To visualize V1 unit activ-
ity in response to the barber pole stimuli, we considered an array of units
across the V1 layer that receive input from specific regions of the stimulus
and labeled each point with the direction corresponding the maximally
active V1 unit (see Fig. 3a). Only a portion of this activity is shown, as the
stimulus and corresponding activity were symmetrical around the
midline.

To compare the responses of MotionNet units to electrophysiological
recordings from neurons in macaque V1/MT (Movshon et al., 1983,
extracted and replotted neurophysiological data from their Figs. 11-13),
we measured the activity of VI/MT units in response to sinewave gratings
and plaids (135° separation) moving in 16 evenly spaced directions be-
tween 0° and 360° at its preferred speed (see Fig. 3e). The preferred speed
of the V1 units was established as the spatial and temporal frequency to
which they responded maximally, and the preferred speed of the MT
units was the speed for which they were designed to classify. To ensure
consistency with the empirical data, we used the same methods as
Movshon et al. (1983), to measure the responses of V1 and MT units,
with the only exception that we tested plaid stimuli with an angular
separation of 90° (rather than 135°).

To classify each unit as component-selective (i.e., selective for the
motion of the individual components comprising a plaid pattern),
pattern-selective (i.e., selective for the motion of the plaid pattern), or
unclassed (see Fig. 3¢), we used the method described by Movshon et al.
(1983). Briefly, we compared the unit responses with ideal “component”
and “pattern” selectivity using goodness-of-fit statistics. As the compo-
nent and pattern selectivity responses may be correlated, we used the
partial correlation in the following form:

(rp - rcrcp)

K= =m0 - )

where R,, denotes the partial correlation for the pattern prediction, r,, is
the correlation of the data with the pattern prediction, r,is the correlation
of the data with the component prediction, and r,, is the correlation
between the two predictions. The partial correlation for the component
prediction was calculated by exchanging r, for r, and vice versa. We
labeled units as “component” if the component correlation coefficient
significantly exceeded either 0 or the pattern correlation coefficient,
whichever was larger. Similarly, we labeled units as “pattern” if the pat-
tern correlation coefficient significantly exceeded either 0 or the compo-
nent correlation coefficient. Units were labeled as “unclassed” if either
(1) both pattern and component correlations significantly exceed 0, but
did not differ significantly from one another, or (2) neither correlation
coefficient differed significantly from 0.

To compare the weights MotionNet’s V1 and MT units to the synaptic
weights connecting V1 and MT neurons proposed by Rust et al. (2006,
extracted and replotted from their Fig. 3), we first averaged all weights
across speed, so that for each V1 unit there were eight weights corre-
sponding to the eight cardinal/oblique directions. For each V1 unit, we
then aligned the averaged weights to the preferred V1 unit direction (see
Fig. 3g). That is, we rotated the weights of each V1 unit in direction space
such that all their preferred directions were aligned to 0°. To further
explore the weights, we repeated this process and aligned the weights to
either the direction corresponding to the maximum or minimum weight,
regardless of V1 unit direction preference (see Fig. 3h). Specifically,
rather than rotating the weights of each V1 unit in direction space such
that all their preferred directions are aligned to 0°, we aligned them such
that their maximum (i.e., excitatory) or minimum (i.e., inhibitory)
weight was aligned to 0°.

Decoding the direction of movement. To compare the velocity estimates
from MotionNet to those predicted by the intersection-of-constraints
(I0C) rule (see Fig. 4a), we tested MotionNet with plaids with a range of

(8)
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component speed ratios (base speed, 0.8 pixels/frame; ratios, 0.5:1 to 2:1
in 16 linear steps) and decoded the direction and speed (see Fig. 4¢,d).
The IOC rule velocity was computed as follows:

T
m = tan(@ + 5) 9)

where 6 denotes the angular directions of the two components,
c=y— mx (10)

where y and x denote the vertical and horizontal velocity of the compo-
nents, respectively,

. €~ 6
=— 11
= (11)

and
i, =myi, + c, (12)

where i, and i, are the horizontal and vertical velocity of the IOC solu-
tion, respectively.

When human observers view unikinetic plaids (i.e., plaids comprising
one stationary and one moving component), they report perceiving the
direction as parallel to the orientation of the static component. To com-
pare human perception with MotionNet’s response, we decoded the es-
timated direction of the network in response to plaid stimuli in which
one of the components moved at 3.8 pixels/frame and the other was
static, over a range of plaid separation angles (0°-45° in 20 linear steps)
(see Fig. 4e,f). To understand why MotionNet made these estimates, we
tested it with sinewave gratings with increasing motion steps, from 0 to 6
(speed, 0.8 pixels/frame) (see Fig. 4¢). That is, for 0 motion steps, the
grating was static, for one motion step the grating moved between the
first and second frames then remained static, and so on.

To compare MotionNet’s estimates of plaids comprising two compo-
nents of different contrast with those made by human observers (Stone et
al., 1990, their Fig. 11a), we used plaids (speed, 3.8 pixels/frame) in which
the relative contrast of the components varied from 0 to 0.6 log contrast
ratio in 8 steps. This was repeated at four different levels of total contrast
(0.005, 0.01, 0.02, and 0.04), where total contrast is the summed contrast
of the two component gratings (see Fig. 4h,i). To understand why Mo-
tionNet was not invariant to the total contrast of the plaids, we tested the
network with moving sinewave gratings (speed, 3.8 pixels/frame) at four
different contrast levels (0.0016, 0.0032, 0.0064, and 0.0128) and mea-
sured the (aligned and averaged) responses of V1 and MT units (see Fig.
4j).

Interactions between direction and speed tuning. To compare the mo-
tion opponency mechanisms (i.e., suppressive activity between V1 and
MT) of MotionNet with those found in biological systems (Snowden et
al,, 1991, data extracted and replotted from their Fig. 11), we tested the
network with dot motion stimuli where most (66%) of the dots moved in
the preferred direction/speed of a particular V1/MT unit, while the re-
maining dots moved at the same speed in either the same direction or one
of the other seven cardinal/oblique directions. Dot motion stimuli con-
sisted of 12 randomly positioned white dots (pixel value, 1; radius, 5
pixels) on a black background (pixel value, —1), which were allowed to
overlap (with occlusion) and wrapped around the image when their
position exceeded the edge. We measured the activity of each V1 and MT
unit in response to these stimuli before aligning to a common preferred
direction and then averaging across all the V1 or MT units (see Fig. 5b).
The location of maximum suppression was calculated by first taking the
average of the responses from the preferred direction to +180° from
preferred direction to create a measure of response as a function of dis-
tance from preferred direction; for example, responses at +45° from the
unit’s preferred direction were averaged to produce a measure of motion
opponency at distance 45°. From these data, we then calculated the dis-
tance from the preferred direction of minimum activation.

We established the direction tuning curves shown in Figure 5¢ using
the approach described in “Anisotropy in direction of motion responses”
above. That is, for each speed, the responses of all MT units tuned to that
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speed were aligned to the preferred direction and then averaged. We
reanalyzed previously collected neurophysiological data (Wang and
Movshon, 2016) by correlating the logarithm of direction tuning width
and preferred speed using the Pearson correlation, implemented with a
correlation analysis MATLAB toolbox (Pernet et al., 2013) (https://
sourceforge.net/projects/robustcorrtool/). We tested the normality as-
sumption for the data with the Henze-Zirkler test. The boxplot rule,
which relies on the interquartile range (Frigge et al., 1989), was used to
reject bivariate outliers (see Fig. 5d).

To compare the structure of MotionNet MT units with that of natural
image statistics, we computed the Pearson correlation between each nat-
ural image sequence from the training set and the same image moving in
different directions (0—180°, in 8 steps). This was repeated for each of the
speeds (0.8-3.8 pixels/frame, in 8 steps) (see Fig. 5¢). To assess the rela-
tionship between the image statistics and the direction/speed tuning of
MT units (see Fig. 5f), we computed the Pearson correlation between
normalized MT unit responses to stimuli moving in near-to-preferred
directions (22.5°,45° 67.5°) for all speeds (i.e., responses that defined the
width of the MT unit direction tuning curve) with the correlation values
between natural images moving in the corresponding directions/speeds.

Demonstrations of MotionNet misestimates at low contrast. To assess
MotionNet’s estimates of stimuli whose direction is misperceived by
humans, we decoded the direction estimated by the network in response
to narrow (height-width ratio, 0.1) and wide (height-width ratio, 0.8)
moving rhombi for 8 logarithmically spaced contrast levels between 1
and 0.2 (see Fig. 5¢,h). Rhombi were 16 pixels high, oriented 40° clock-
wise from vertical, moved at 3.8 pixels/frame, and presented on a black
background (pixel value, —1). To uncover the basis of MotionNet’s mis-
estimates, we visualized the network activity of MT units tuned to the
(fast) speed of the rhombus (3.8 pixels/frame) or a slow speed (0.8 pixels/
frame), for a thin rhombus presented at either high (1) or low (0.05)
contrast (see Fig. 5i). To compare MotionNet’s speed estimates for stim-
uli that are misperceived by human observers (Stocker and Simoncelli,
2006, data extracted and replotted from their Fig. 5, top left), we decoded
the speed estimated by the network for moving sinewave gratings (speed,
2.5 pixels/frame) at five logarithmically (base 2) spaced contrast levels
between 0.002 and 0.04. We compared these with the speed estimated for
a sinewave grating moving at full contrast stimulus (see Fig. 5k).

Relationship between image contrast and speed. To identify the presence
of the low-speed bias in the MT layer of MotionNet, we calculated the
Pearson’s correlation coefficient of MT unit offset parameters (averaged
across preferred direction) as a function of preferred speed (see Fig. 6a).
For the V1 layer units, we identified the presence of the bias by comput-
ing an independent ¢ test between the offset parameter of V1 units with
maximum weights connected to either “slow-preferring” (i.e., the lowest
four speeds) or “fast-preferring” (i.e., the highest four speeds) MT units.
For this analysis, we ordered V1 units by their absolute weight and only
considered the top 50% most influential V1 units (units with near 0
weights had very little influence on the network’s performance).

To illustrate the relationship between image contrast and speed, we
computed the spatiotemporal contrast of sections of a natural image
captured within an aperture moving at three different speeds (see Fig.
6b). Spatiotemporal contrast was defined as the SD of all pixel values
within the motion sequence (i.e., the SD across x, y, t of the image se-
quence); thisis similar to root mean squared contrast across time, and the
same results are found using either measure. To systematically investi-
gate the relationship between spatiotemporal contrast and movement
speed, we sampled 5000 natural image sequences (taken from those used
to train MotionNet). Images (16 X 16 X 6 pixels) moved in the same
(rightward) direction at randomly selected speeds between 1 and 16 pix-
els/frame. We then computed the Pearson correlation between speed and
the spatiotemporal contrast of each sequence (see Fig. 6¢).

To test the prediction that the slow-speed bias observed in MotionNet
was a product of the relationship between image speed and spatiotem-
poral contrast present in natural image sequences, we modified the nat-
ural image sequences used to train MotionNet to artificially reverse this
relationship (see Fig. 6d—f). We first calculated the strength of the rela-
tionship in the natural images used to train MotionNet. We then applied
the inverse of this relationship to the images, increasing the luminance
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contrast of slow image sequences and reducing the contrast of fast se-
quences. Image contrast was increased/decreased by multiplying/divid-
ing the value of all pixels within an image sequence around the average
pixel value. This modified training set was then used to train the reverse
contrast network. As a further test, we manipulated the degree of spatial
autocorrelation between pixels by blurring (convolution with a Gaussian
with SD = 20 pixels) or sharpening (convolving with inverted form of the
blurring Gaussian) the natural image sequences, and training new net-
works on these modified training images (see Fig. 6g).

To test the idea that the perceptual speed bias observed in human
observers when viewing low-contrast moving images is the product of a
prior, which reflects the anisotropic distribution of speeds in the envi-
ronment (i.e., the “slow world” prior) (Weiss et al., 2002; Stocker and
Simoncelli, 2006), we trained two new networks on image sequences in
which the distribution of speeds was uneven. For the “slow world” net-
work, the proportion of image sequences as a function of speed decreased
linearly such that there were twice as many slow speeds as fast speeds
included in the training set. For the “fast world” network, the opposite
was true (see Fig. 6h,i). For the reverse contrast (see Fig. 6f) and “slow/
fast world” networks (see Fig. 6j), we used the same method for the
simulation of the standard MotionNet network (see Fig. 5k) with the
exception that the contrast levels used for the reverse contrast network
were between 0.0015 and 0.005. The contrast range that best demon-
strated the bias was different in the reduced contrast network as a result
of having altered the contrast of the training images.

Psychophysical experiment. A priori sample size was established using
the effect size from Stocker and Simoncelli (2006) to achieve >90%
power. Four female and four male human participants (age, 27.6 * 4.7
years) with normal or corrected-to-normal vision (tested using a Snellen
chart) participated. Experimental procedures were approved by the Uni-
versity of Cambridge Ethics Committee. Observers provided written in-
formed consent. Seven subjects were naive to the purpose of the study.

Stimuli were generated in MATLAB using Psychtoolbox extensions
(Brainard, 1997; Pelli, 1997) and displayed on a calibrated ViewPixx
monitor (VPixx Technologies) running at a framerate of 120 Hz and an
average background luminance of 84 cd/m?. Participants viewed the
visual display binocularly from a distance of 58 cm, using a chin rest to
stabilize their head position.

The experimental procedure was similar to that used by Stocker and
Simoncelli (2006). Subjects were presented with two circular patches
containing horizontally drifting sinewave gratings (spatial frequency, 1°/
cycle; random start phase). Patches were 2.5° in diameter, centered 6°
either side of the fixation dot. The mean luminance of both gratings was
held constant at 84 cd/m?. Subjects were instructed to fixate a central
fixation dot while each stimulus was presented for 700 ms. Following
stimulus presentation, subjects selected the stimulus that appeared to be
moving faster, on average, during the presentation. Response duration
was unrestricted.

Each pair of stimuli consisted of a reference and a test grating that were
assigned to the left and right presentation locations. On each trial, both
gratings moved in the same direction (left or right). The reference grating
had a contrast of 0.5. Three different types of test gratings (baseline,
low-contrast, and variable speed) were interleaved throughout each
block. The baseline test grating was identical to the reference test grating,
the low-contrast grating had a contrast of 0.1, and on each frame the
speed of the variable speed grating was altered by a pseudo-randomly
selected value from a Gaussian distribution (mean, 0; SD, 0.2°/cycle).
Importantly, we ensured that the average speed, across the presentation,
of the variable speed grating was not altered by the manipulation. The
speed of the reference grating was 1°/cycle, and the baseline and variable
speed test gratings moved at 1 of 7 evenly spaced speeds between 0.25 and
1.75°/cycle, and the low-contrast test grating moved at 1 of 7 evenly
spaced speeds between 0.65 and 2.15°/cycle (method of constant stimuli
procedure). The speed range was established during pilot testing. Each
participant completed nine blocks, with each block comprising 168 trials.
Test grating location, direction, condition, and speed were all pseudo-
randomly selected on each trial, in a counterbalanced manner across
each block. Psychometric functions were fit with Psignifit (Friind et al.,
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becomes clearer when the size is increased); nine examples, selected at random, are shown.

2011). Speed bias was derived from the threshold of the psychometric
function and estimate uncertainty from the slope.

Simulation of experimental predictions. To generate MotionNet predic-
tions of speed in response to low-contrast or variable speed stimuli (see
Fig. 7a), we calculated the following:

r, toes
= (13)

rmt
J'rvl + e
where r

e 18 the MT unit population response, r,, is the response from V1,
and e, denotes the low-speed bias. The low-speed bias was defined as a
linear gradient with maximum at speed 0 (maximum value = 0.5,
slope = —0.5); however, the same pattern of results is found if a Gaussian
prior centered on 0 is used. The response of each MT unit is divided by
the sum of activity across the population to represent divisive normaliza-
tion (Heeger, 1992). For reduced contrast simulations, three different V1
responses were simulated, intended to represent different levels of con-
trast. In particular, r,; was defined as a Gaussian distribution where the
offset (p) was 0, the mean (x,)) was 1, and the widths (o) and amplitudes
(A) were [0.3,0.6, 1.2] and [1, 0.2, 0.15], respectively.

For variable speed simulations, we used the same parameters as used in
the first and last r,, of the reduced contrast simulation (i.e., high and low
contrast), except that the same A was used for both (i.e., 1). This was
intended to represent the manipulation of signal uncertainty without the
changing amplitude. The “slow world” prior predictions were computed
using the same parameters, except that r,; and e, were combined through
multiplication, rather than addition as follows:

T, €
Pt = (14)

jrvles

To generate predictions of the experimental results, we defined three
Gaussian distributions (one for each of the conditions in the psychophys-
ical experiment) (see Fig. 7b). Distributions were created using Equation
6, where the offset (p) was 0 and the mean (x,) was 0.5. The baseline
distribution had an amplitude (A) of 1 and a width (o) of 0.2. The
reduced contrast distribution had a lower amplitude (0.05) and larger

ambiguous feature

disambiguated feature

Barber pole illusion and MotionNet architecture. @, When obliquely oriented stripes are rotated around a vertical axis,
observers perceive upward motion. The local motion produced by features at the center of the pole is ambiguous (blue example),
but features at the edge appear to move unambiguously up (red example). b, MotionNet was initialized with an input layer, and
convolutional and output layers representing V1 and MT, respectively. ¢, Following training on motion sequences, kernels (V1
units) that were initialized as Gaussian noise formed 3D Gabors (the structure is partially obscured by the small kernel size but
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width (0.5) than the baseline, to reflect the re-
duced activation and lower certainty of a low-
contrast moving stimulus. The variable speed
distribution had the same amplitude as the
baseline distribution and the same width as the
reduced contrast distribution, to reflect selec-
tively reduced certainty in this condition. We
modeled the low-speed bias as a linear gradient
with maximum at speed 0. For the “slow
world” prior simulations, we combined the
conditional distributions with the bias distri-
bution through multiplication; and for the “re-
duced contrast prior,” we combined these
through addition. To generate psychometric
functions, we simulated the psychophysical ex-
periment using the “slow world” and “speed-
contrast” distributions. For each condition, we
simulated 20 speed offsets between —1 and 1
on 500 simulated trials. On each trial, we
pseudo-randomly sampled one speed value
from the baseline distribution and one value
from one of the three condition distributions
(baseline/reduced contrast/variable speed).
We then summed the offset value with the
value sampled from the conditional distribu-
tion and determined whether it was larger than
the baseline sampled value. From this, we were
able to plot the proportion of trials in which the
conditional value was larger than the baseline
value as a function of speed offset, and used
Psignifit to fit a psychophysical function to obtain threshold values.

Data reanalysis. Data in Figures 24, 1, 3d, f, 41, and 5a, d were extracted
from previous studies (Movshon et al., 1983; Stone et al., 1990; Snowden
et al., 1991; Matthews and Qian, 1999; Rust et al., 2006; Stocker and
Simoncelli, 2006; Salinas et al., 2017) using WebPlotDigitalizer (autom-
eris.io/WebPlotDigitizer). Data in Figure 5d are a reanalysis of archived
data (https://archive.nyu.edu/handle/2451/34281) from Wang and
Movshon (2016).

Significance testing. For analysis of the psychophysical data, we used
the repeated-measures ANOVA and ¢ test; all tests were two-sided. We
first used repeated-measures ANOVAs to test for main effects; we then
followed up with ¢ tests as appropriate to determine the precise relation-
ship between conditions. The normality and sphericity assumption was
tested with the Shapiro—Wilk test of normality and the Mauchly’s test of
sphericity. For speed bias, but not estimator uncertainty, the assumption
of sphericity was violated; thus, we used the Greenhouse—Giesser-
corrected F value. For estimator uncertainty, the distribution in the vari-
able speed condition was found to violate the assumption of normality.
Thus, a nonparametric repeated-measures ANOVA (Friedman test) was
used to test for main effects of uncertainty. To determine the significance
of data generated by MotionNet, we used independent-samples ¢ test and
the Pearson’s correlation.

Data availability. We performed analyses in Python using standard
packages for numeric and scientific computing. All the code and data
used for model optimization, implementations of the optimization
procedure, and behavioral data are freely and openly available at
www.repository.cam.ac.uk/handle/1810/300898.

possible directions

V1 unit receptive fields

Results

Network architecture and training

We created a neural network (MotionNet) tasked with decoding

motion (Fig. 1b). The input was a sequence of image frames (x-y)

depicting a scene moving through time (#). This was convolved

with 3D kernels (x-y-t), analogous to spatiotemporal receptive

fields in area V1. This activity was read out by decision units

selective to direction and speed, analogous to MT/V5 neurons.
We trained MotionNet to classify the velocity of natural im-

ages moving with 8 different speeds (0.8 3.8 pixels/frame) in 1 of
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of the just noticeable difference) to changes in direction around cardinal and oblique axes. i, Replotted data from Matthews and Qian (1999) showing human sensitivity for direction discrimination

around cardinal and oblique directions. b—f, Error bars indicate SD.

8 directions (4 cardinal; 4 oblique). Following training, it could
classify novel sequences with high accuracy (~80% vs chance =
1.56%). V1 units were initialized with Gaussian noise, but after
training they resembled (Fig. 1¢) receptive fields in primary visual
cortex (Movshon et al., 1978; Rust et al., 2005). Although Mo-
tionNet was trained on translating natural images, its perfor-
mance generalized to complex movies comprising optic flow and
object motion (~50% accuracy vs 1.56% chance) as well as sinu-
soidal gratings (accuracy = 100%).

What is the basis for estimating motion direction?

We start by examining the direction preferences of MotionNet’s
V1 units. Biologically, more V1 neurons respond to cardinal than
oblique motion directions (Salinas et al., 2017) (Fig. 2a). Intui-
tively, this might reflect past experience: movement over the
ground, and the effects of gravity, would cause biological systems
to experience more cardinal motion. However, we observed non-
uniform preferences in MotionNet (Fig. 2b) despite being trained
on a uniform distribution of directions.

What accounts for this difference between the direction dis-
tribution of the training set and MotionNet? We hypothesized
that the dominance of cardinal orientations in natural images
(Girshick et al., 2011) might be responsible. We therefore trained
a new network using images rotated by 45°. In line with our
reasoning, this network had a preference for oblique directions
(Fig. 2¢). As a control, we trained another network on random
dot patterns (which convey no systematic orientation). In this
case, V1 unit preferences were uniformly distributed, mirroring
the direction statistics of the training set (Fig. 2d). However, bi-
ased distributions were restored if dots were distorted in the car-
dinal (Fig. 2e) or oblique (Fig. 2f) directions. We infer that the
overrepresentation of cardinal motion directions in V1 neurons
is likely to be explained by natural image orientations per se,
rather than motion statistics.

What are the consequences of V1 direction anisotropy? We
examined MT units’ sensitivity to cardinal versus oblique direc-
tions, finding sharper tuning for cardinal directions (Fig. 2g).

This produces greater sensitivity for cardinal motion (Fig. 2h),
mirroring human perceptual judgments (Matthews and Qian,
1999) (Fig. 2i).

How are motion signals integrated to estimate direction?
Judging an object’s movement depends on integrating signals
from across the stimulus as local motions are often ambiguous
(“the aperture problem”; Fig. la, blue bars). For instance, the
barber pole’s illusory motion results from integrating ambiguous
signals from the center with disambiguated signals from the
edges. Consistent with human perception (Fisher and Zanker,
2001), MotionNet estimated horizontally translating stripes as
moving upward, contingent on the width of the “pole” (Fig.
3a,b). Inspecting MotionNet’s V1 units revealed that activity at
the center signaled motion orthogonal to the stripes, whereas
activity at the edges signaled motion either parallel to the stripes
or in the opposite direction. Pooling of this information by MT
units produces an upward motion estimate.

Experimental tests of motion integration often use plaid pat-
terns composed of two sinewave components (Fig. 3¢). The indi-
vidual components can move in different directions from the
overall plaid (Adelson and Movshon, 1982) and V1 neurons sig-
nal motion of the components (Movshon et al., 1983; Gizzi et al.,
1990). For example, the V1 neuron shown in Figure 3d responds
most strongly to a leftward moving grating; but when shown a
plaid, it responds most strongly to motion above or below left-
ward such that one of the component gratings moves leftward.
The same behavior is observed for MotionNet V1 units (Fig. 3e).
By contrast, MT neurons show pattern-motion selectivity (Fig.
3d, bottom), responding to the plaid’s features, rather than the
individual components. MotionNet’s MT units showed the same
behavior (Fig. 3e).

This shows that training MotionNet to classify movement
using brief natural image sequences reproduces key properties
of biological V1 and MT (Fig. 3d,e). MotionNet’s units were
classified as component- or pattern-selective more consis-
tently than neurons (Movshon et al., 1983). Higher noise
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within the biological system may make true tuning preferences
harder to reveal.

Having identified strong parallels between the artificial and
biological system, we next studied how V1 component-selective
activity is transformed into MT pattern selectivity. Previously, a
readout scheme was proposed with maximum excitatory connec-
tions between V1 and MT units of the same direction preference
(Rust et al., 2006) (Fig. 3f). However, when we organized Mo-
tionNet’s connections according to V1 preferences, the average
weights were primarily inhibitory with bimodal peaks +90° from
the preferred direction (Fig. 3g). Why might this be so? To find
out, we ordered inputs according to the maximum or minimum
weight, without consideration of V1 unit preferences. That is,
rather than aligning the preferred directions of each V1 unit in
direction space to 0°, we aligned them such that their maximum
(i.e., excitatory) or minimum (i.e., inhibitory) weight is aligned
to 0°. Whereas the preferred direction of a V1 unit is defined by

0.01 0.01

Biological and artificial visual system responses to component and pattern motion. a, lllustrations of barber pole
stimuli and the evoked responses in MotionNet. Arrow colors represent different directions. b, MotionNet's estimate of the
movement direction as a function of the aspect ratio of the stimulus. ¢, lllustration of how two “component” sinewave gratings
moving in different directions form a plaid “pattern,” which moves in a (different) third direction. d, Data from Adelson and
Movshon (1982) showing single-neuron responses in V1 (top) and MT (bottom) to a sinewave grating versus a plaid stimulus. The
distribution plot shows the population of single-neuron responses, and whether they are classified as component-motion or
pattern-motion selective. e, Sameasin d, but for MotionNet V1 and MT units. f, lllustration of the V1 to MT neuron readout weights
proposed by Rust et al. (2006). g, The average weights from MotionNet's V1 to MT units organized by preferred V1 direction. h,
Same asin g, but organized such that the weights between V1and MT units are all aligned to direction 0 at either their maximum

blue line) revealed a pattern similar to
aligning with the V1 preference (Fig. 3g).
This shows that the network acts primar-
ily to inhibit nonpreferred directions,
rather than promoting the preferred di-
rection. Specifically, a V1 unit’s preferred
direction is more predictive of maximum
inhibition of the MT unit (i.e., in nonpre-
ferred directions) than maximum excita-
tion in the preferred direction. This
explains the local suppressive trough
when weights are aligned to V1 unit pref-
erence (Fig. 3h): the opposite direction

MotionNet . o ltlter . .
align to max Z::-exﬁg?mn drives 1r}h1b1t10n resulting 1n‘ stronger
e ;”_ﬂ‘ suppression. More generally, this suggests
s’ /'@’\ N\, , that the properties of V1 direction selec-
o " tivity are better understood in relation to
/ \ their readout by MT units, rather than the
- way in which their direction properties
0 180 have been functionally characterized. In

drrection (degrees) particular, the specificities ascribed to V1

and MT units may look equivalent within
the context of a particular parameter
space (e.g., movement direction), but the
computational purposes of V1 versus MT
representations will be different. While it
is intuitively appealing to map a preferred
response to a given stimulus across layers
of a network, this can provide a mislead-
ing impression of their computational
purposes. For instance, we previously
showed (in a different context) that V1
responses are better understood as pro-
viding evidence for and against particular interpretations of a
scene, rather than acting as detectors for a particular binocular
disparity (Goncalves and Welchman, 2017; Rideaux and Welch-
man, 2018).

Why is motion direction misperceived?
Having found strong parallels with neurophysiology, we next
examined similarities to perception by manipulating plaids in
ways that bias human judgments away from the physical motion
direction. Although the perception of a plaid’s direction typically
follows the IOC rule (Adelson and Movshon, 1982) (Fig. 4a), this
does not always occur. We tested MotionNet with a variety of
plaids and examined its estimates (Fig. 4b).

First, we studied direction estimates by varying the compo-
nent gratings’ speeds (Fig. 4c). We found that MotionNet’s esti-
mates, like perception, follow the IOC (Fig. 4d). We then tested
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“unikinetic” plaids, in which one compo-
nent is static (Gorea and Lorenceau,
1991). This is interesting because per-
ceived direction varies, even though the
physical direction remains unchanged.
Consistent with human perception, Mo-
tionNet estimated the direction of a uni-
kinetic plaid as parallel to the static
component’s orientation (Fig. 4e,f). To
understand why, we titrated movement of
the “static” component. We found that a
static grating evokes the most activity
from V1 units with preferred directions
orthogonal (e.g., leftward and rightward)
to its orientation (e.g., vertical); this pro-
duces mutual inhibition of MT units with
preferred leftward and rightward direc-
tions so that there is no overall excitatory
contribution to the direction estimate
(Fig. 4g). However, as the grating begins
to move, activity of V1 units preferring the
opposite direction (e.g., leftward) col-
lapses, releasing MT units tuned to right-
ward motion from inhibition, and
thereby shifting the peak of activity to-
ward the right. Thus, static gratings in-
hibit MT wunits tuned to directions
orthogonal to their orientation, biasing
the direction of the moving component so
that it is seen moving parallel to the static
component. In biological systems, this in-
hibition may affect neuronal gain, rather j
than directly suppressing the firing rate of
MT neurons (Wallisch and Movshon,
2019) (i.e., inhibition that affects gain
without evoking a suppression).

Finally, we tested the relative contrast
of the components (Fig. 4h) as humans
show a perceptual bias toward the compo-
nent with higher contrast (Stone et al,,
1990). Mirroring human judgments, Mo-
tionNet’s estimates were biased away
from the IOC solution and varied as a
function of total contrast (Fig. 4i). This
was unexpected. In particular, we antici-
pated that MotionNet’s direction esti-
mates might be influenced by the contrast
ratio, as this could lead to more activity in
one component direction than the other.
However, we expected the artificial sys-
tem, unlike biological systems, to be largely invariant to the ab-
solute contrast of the stimulus when the relative contrast of the
components was held constant (the relationship between lumi-
nance contrast and neuronal response is nonlinear; Albrecht and
Hamilton, 1982), whereas MotionNet applies no compressive or
expansive nonlinear computations to the image. To understand
why this occurs, we tested gratings with increasing contrast. At
low contrast, gratings produced narrower peaks of activity across
V1 and MT units than at high contrast (Fig. 47). The difference in
peak width is due to signal rectification. That is, when stimulus
contrast is low, the activity of V1 units tuned to the nonpeak
direction is rectified (Fig. 4k, left), which sharpens the response
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Judging motion direction. a, Intersection of constraints: the true motion of the component gratings could fall any-
where along the dotted constraint lines; their intersection determines perceived velocity. b, MotionNet MT units’ response to a
rightward-moving plaid. We fit a descriptive model (von Mises function) to the MT units’ activity to decode motion as a continuous
variable. ¢, MT unit activity in response to plaids with different speed ratios. d, MotionNet's responses follow the I0C solution over
different component grating speed ratios. e, Responses to a unikinetic plaid (one component s static). f, Bias in direction estimates
for unikinetic plaids (i.e., bias away from the direction of the moving grating) as a function of the orientation of the static grating.
g, Response dynamics in V1 and MT units as a “static” component starts to move (frames 0—5). h, Varying the relative contrast of
the component gratings. #, Data from Stone et al. (1990) showing bias in human direction judgments as a function of component
contrast ratio at different total contrast levels, and direction decoded from MotionNet. j, The response of V1 and MT units,
normalized to the maximum activity, to a moving grating with increasing contrast. k, A diagramillustration showing how V1 unit
responses are sharpened by rectification when contrast is reduced.

that is transmitted to the MT units (Fig. 4k, right). Thus, when
total contrast is reduced, the activity produced by the two com-
ponents comprising the plaid becomes narrower, which re-
sults in greater dominance of the stronger (high-contrast)
component when combined.

Interactions between direction and speed processing

We have seen that inhibition plays an important role in shaping
responses to plaids. To test inhibitory responses in vivo, experi-
menters have presented moving dot patterns and then overlaid
dots moving in a different direction. V1 neurons are not substan-
tially affected by this manipulation; however, MT neurons show
motion opponency and are suppressed by dots moving in a non-
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Figure 5. Interactions between misperceptions of direction and speed. a, The average normalized response of macaque MT neurons to motion in the neuron’s preferred direction when dots
moving in nonpreferred directions are introduced. Data from Snowden et al. (1991). b, The same as in a, but for MotionNet MT and V1 units. Error bars in @ and b indicate SEM and SD, respectively.
¢, Motion direction tuning curves of MotionNet MT units with different preferred speeds. d, Reanalysis of data from Wang and Movshon (2016) showing the relationship between speed preference
and direction tuning width of macaque MT neurons. Empty circles represent outlier data. e, Similarity analysis showing Pearson’s correlation coefficient (p) between MotionNet training images
moving at direction 0 with the same image moving in other directions, as a function of speed. f, Relationship between the image similarity and MT unit normalized responses indicated by the dotted
lines in cand e. Solid line indicates the linear regression. g, Moving rhombus illusion: a narrow rhombus is perceived in the 10C direction at high contrast but the VA direction at low contrast. h,
MotionNet's direction estimates as a function of the rhombus’ contrast. Dashed lines indicate 10C and VA solutions. i, MT units, tuned to fast and slow speeds, responding to a moving rhombus
presented at high or low contrast. j, Speed bias: the perceived speed of a moving grating is reduced at low contrast. k, Data from Stocker and Simoncelli (2006) showing the relative matching speed
of two moving gratings as a function of contrast. Values on the y axis indicate how many times faster observers matched the speed of the low-contrast grating to that of the high-contrast grating.
Error bars indicate SD of 30 bootstrapped sets of trial data. /, Same as in k, but for speed decoded from MotionNet.

preferred direction (Snowden et al., 1991; Qian and Andersen,
1994; Rust et al., 2006) (Fig. 5a). We found comparable responses
within MotionNet: V1 units are only weakly affected, whereas
MT units show motion opponency (Fig. 5b). We then tested the
relationship between speed preferences and the direction that
evoked maximal suppression. There was a weak relationship for
V1 (n =128, p = —0.21, p = 0.02), but a strong relationship for
MT (n =64, p = —0.87,p = 1.9¢ ~2%): MT units tuned to fast
speed are maximally suppressed by closer-to-preferred directions
than slow speed units. In particular, MotionNet learnt sharper
direction tuning for fast speed M T units (Fig. 5¢).

This set up a clear prediction to test against biological data. We
reanalyzed a neurophysiological dataset (Wang and Movshon,
2016), finding that direction tuning and speed preference are
related for macaque MT neurons (n = 48, p = —0.45, p = 0.001;
Fig. 5d). Specifically, MT neurons tuned to fast speeds have
sharper direction tuning than those tuned to slow speeds. Why
does direction tuning sharpen with speed? We analyzed the image
statistics of MotionNet’s training set and found that, as speed
increases, the similarity between images moving in different di-
rections is reduced (Fig. 5¢). Thus, a slow-moving sequence will
produce more activity in adjacent-to-preferred directions of
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direction-selective units with the result that tuning curves are
broader. Formally, image similarity is highly correlated with MT
unit direction tuning (n = 24, p = 0.93, p = 4.6e ~''; Fig. 5); this
may explain previous neurophysiological evidence suggesting
that motion opponency in MT is related to speed tuning (Krekel-
berg and van Wezel, 2013). To rule out the possibility that fast-
moving images evoked activity in the opposite direction due to
spatiotemporal aliasing, we trained and/or tested new networks
on lowpass filtered images, finding the same pattern of results.

Human observers’ ability to discriminate between directions
improves with increasing speed, over a wide range of speeds
(0.5-64 deg/s) (De Bruyn and Orban, 1988). This has been at-
tributed to the static orientation information that is produced by
sensory persistence of fast-moving stimuli (i.e., motion streaks)
(Geisler, 1999; Tong et al., 2007). However, there is no persis-
tence that could produce something equivalent to motion streaks
within MotionNet, yet the network develops the same relation-
ship between direction and speed tuning. This result does not
preclude the role of sensory persistence in supporting human
motion perception, but it shows that the spatial autocorrelation
in natural images could be sufficient to explain the relationship
between direction and speed at the perceptual and neurophysio-
logical level.

Next, we explored why human observers are susceptible to
illusions of direction and speed using two classic examples. First,
when a rhombus moves to the right (Fig. 5¢), the IOC solution
from its edges indicates rightward motion. However, the vector
averaging (VA) solution (the mean of the two motion vectors
from the edges) is consistent with diagonal motion down and to
the right. If the rhombus is wide or the contrast high, observers’
judgments follow the (veridical) IOC solution. However, if the
rhombus is narrow and low contrast, observers report the (false)
VA direction (Weiss et al., 2002). MotionNet exhibited the same
pattern (Fig. 5h): a narrow rhombus is estimated in the I0C
direction at high contrast, and the VA direction at low contrast.
However, a wide rhombus is estimated in the IOC direction even
at low contrast. Why does this occur? MT units tuned to fast
speeds decode the rhombus’ motion in the IOC direction, but
units tuned to slower speeds decode its motion in the VA direc-
tion. When the rhombus is presented at high contrast, the fast
units are most active; but at low contrast, the slow units become
more active and the decoded motion shifts from the IOC to the
VA direction (Fig. 5i). To the best of our knowledge, physiolog-
ical data on this motion illusion have not yet been published.
Weiss et al. (2002) provide a theoretical Bayesian model to ex-
plain the illusion, whereas here we provide a biologically explicit
explanation. Future work could test this prediction by comparing
the activity of MT neurons tuned with slow or fast motion in
response to these stimuli.

This demonstrates how perceived direction can be biased at
low image contrast. However, misperceptions of speed also oc-
cur: low-contrast gratings appear to move slower (Hiirlimann et
al., 2002; Stocker and Simoncelli, 2006) (Fig. 55,k). Consistent
with human judgments, we found that MotionNet computed the
speed of a moving grating as slower as its contrast was reduced
(Fig. 51). We next explain why image contrast is a critical variable
when perceiving motion.

How is the speed of movement estimated?

The illusions in Figure 5 were previously explained by a Bayesian
model that assumes humans internalize the motion statistics of
the environment. It was suggested that net motion of the envi-
ronment is close to 0 (a “slow world” prior), and that this informs

Rideaux and Welchman e Static Image Statistics Underlie Motion Perception

motion judgments (Weiss et al., 2002; Stocker and Simoncelli,
2006). Under the Bayesian framework, the influence of a prior
becomes more apparent when the stimulus is uncertain. Specifi-
cally, lowering image contrast reduces the reliability with which
motion is estimated, increasing the prior’s influence (centered on
0 speed) and thus biasing perception toward slower motion. If
bias toward slow motion results from natural motion statistics,
MotionNet should not reproduce these phenomena as the train-
ing set contained an equal distribution of speeds. However, Fig-
ure 5 shows that lowering contrast results in slower speed
estimates for humans and MotionNet. Why?

MotionNet consists of weight parameters, which are multipli-
cative, and offset parameters, which are additive/subtractive. As
the contrast of the image is reduced, so too is the influence of the
weights, while the influence of the offsets remains constant. Thus,
reducing contrast increases the relative influence of the offset
parameters. Inspecting MotionNet’s offset parameters shows a
clear trend favoring low speeds (MT: n = 8, p = —0.99, p =
4.3e "% Fig. 6a; V1: n = 64, independent t test = 6.95,p = 2.8¢ ~~,
d = 1.75). As the proportion of motion speeds used to train the
network was equal, bias cannot be the network’s response to an
environment with more slow speeds. Instead, the network learnt
a relationship between contrast and the speed of moving images.

Luminance values in natural images tend to be highly corre-
lated between adjacent pixels as physical objects are typically con-
tiguous in form and reflectance (the basis for efficient encoding)
(Attneave, 1954; Barlow, 1961; Simoncelli and Olshausen, 2001).
This association also has implications for motion (Dong and
Atick, 1995). Figure 6b illustrates an image with samples ex-
tracted from an aperture moving at different speeds: spatiotem-
poral contrast (indexed by the SD of luminance values across
pixels and frames) becomes higher as speed increases. Specifi-
cally, the relationship between luminance and proximity dictates
that, when the distance between samples is low, they will be more
correlated and thus have lower spatiotemporal contrast, than
when the distance between samples is high. To demonstrate this
relationship, we sampled motion sequences for a range of speeds
using natural images. We found a positive relationship between
speed and spatiotemporal contrast (n = 5000, p = 0.19, p =
1.6e ~*; Fig. 6¢).

To test whether the speed-contrast association accounts for
MotionNet’s slow speed estimates, we trained a new network on
sequences in which the relationship was artificially reversed (Fig.
6d); that is, low-speed sequences were altered to have higher spa-
tiotemporal contrast than high-speed sequences. Consistent with
our hypothesis, the offset parameters learned by this network
were reversed, showing a bias for high speeds (n = 8, p = 0.95,
p = 3.2e * Fig. 6e). We repeated the speed matching experiment
and found that low-contrast images were now judged as faster
(Fig. 6f).

If the correlation structure of the viewed images is critical, we
reasoned that modifying spatial correlation should alter the asso-
ciation between speed and contrast. Specifically, we created stim-
uli that were either blurred or sharpened versions of the original
images. This has the effect of increasing or reducing the images’
spatial autocorrelation. We trained new networks with these
stimuli, finding that the slow-speed bias was increased for the
network trained on blurred stimuli, but reduced for the network
trained on sharpened images (Fig. 6¢). Thus, the correlation
structure of natural images appears critical in determining mo-
tion estimation.

As a further test, we instantiated new networks trained under
“slow world” or “fast world” conditions. We trained these net-
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Figure 6.

The relationship between image speed and contrast. a, MotionNet MT unit offset parameters as a function of speed tuning, averaged across directions. b, Motion sequence spatio-

temporal contrast (indexed by the SD of luminance values across pixels and frames) as a function of speed, for images sampled from a natural image using a moving aperture. ¢, Spatiotemporal
contrastas a function of speed for samples from the training set used for MotionNet. d, Diagram of modifying spatiotemporal contrast to reverse the relationship between motion speed and contrast
for a “reverse contrast” network. e, Same as in a, showing data for the reverse contrast network. f, Relative matching speed for the modified network: low-contrast images are estimated as faster.
g, Same as in a, but for networks trained on natural images that were blurred (to increase autocorrelation) or sharpened (to reduce autocorrelation). h, The proportions of slow- and fast-moving
image sequences used to train “slow world” and “fast world” networks. i, Same as in a, showing data for the “slow world” and “fast world” networks. j, Same as in f, but for the “slow world” and “fast
world” networks. a, e, f, g, i, j, Data and error bars/shaded regions represent the mean and SD of 10 network optimizations.

works on a higher proportion of either slow or fast speeds of
motion, while leaving the spatial autocorrelation and spatiotem-
poral contrast of the images unaltered (Fig. 6h). This directly
pitted the notion of motion statistics against our hypothesis re-
garding spatiotemporal contrast. Consistent with MotionNet,
both networks showed a bias toward slow speeds for low-contrast
stimuli. While changing the distribution of speeds presented to
the network will change what it learns to some extent, these re-
sults indicate that contrast, rather than “slow world” motion sta-
tistics, is central to the phenomenon (Fig. 6i,5).

Could these results be explained by motion energy mecha-
nisms? The original motion energy model (Adelson and Bergen,
1985) was sensitive to image contrast, but with biases much larger
than those observed psychophysically (Stocker and Simoncelli,
2006). Subsequent revisions of the model (Heeger, 1987) include
normalization that renders the model largely invariant to con-
trast. This allows the energy model to accurately predict the mo-
tion of plaids with high component contrast ratios; however, it
fails to capture perceptual biases.

Psychophysically testing predictions derived from MotionNet
Previous work showed that humans underestimate the speed of a
low-contrast stimulus (shift in subjective equality between test
and reference stimuli), and their responses are more variable
(shallower psychometric function) (Hiirlimann et al., 2002;

Stocker and Simoncelli, 2006). We used this paradigm to pit the
predictions of a “slow world” prior model against our hypothesis
about internalized knowledge of the speed-contrast relationship
(Fig. 7a). We developed a paradigm to reduce sensory reliability
without manipulating image contrast. We reasoned that, if ob-
servers rely on a speed prior, reducing sensory reliability in any
way should increase the prior’s influence, with the result that
movement is perceived as slower. However, if image contrast is
the key variable, a reliability manipulation that did not alter con-
trast should not affect speed judgments. The key differentiating
principle between these computations is that MotionNet sums
the offset with activity while the Bayesian model takes their prod-
uct (Fig. 7a).

We compared speed matching performance between three
conditions: the test stimulus was (1) baseline: the same as; (2) low
contrast: of lower contrast; or (3) variable speed: had variable
speed compared with the reference stimulus (Fig. 7b) (Bentvelzen
et al., 2009). If the slow prior is general, we expected the same
results for both types of motion uncertainty. However, if the
prior is restricted to low contrast, we would not expect bias in the
variable speed condition.

Figure 7c¢ shows the results of a representative observer. Con-
sistent with previous work, low-contrast stimuli appear slower
(n = 8, paired rtest = 4.64, p = 0.002, d = 1.64; Fig. 7d); however,
we found no evidence for bias in the variable speed condition
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Motion models and psychophysical tests of MotionNet predictions. a, lllustration comparing speed estimation by MotionNet versus a “slow world” prior model. Left, MotionNet

represents speed as a distribution of activity (r,;), which is summed with a constant offset (e,) to produce the final estimate (r,,;). The Bayesian model takes the product of the likelihood and prior
distributions. Right, Uncertainty can be manipulated by reducing image contrast or introducing variability in speed. For contrast, uncertainty is increased while signal amplitude is reduced, so
MotionNet and the Bayesian model make equivalent predictions. For speed variability, uncertainty is increased while signal amplitude remains unchanged, and MotionNet and the Bayesian model
make divergent predictions. b, Left, lllustrations of test stimuli, and their speed profiles, used in the psychophysical experiment. Right, Simulations showing the predictions made by the two models.
¢, Results of a representative human observer. d, e, Summary results of all observers for (d) speed bias and (e) estimate uncertainty. Separate repeated-measures ANOVA tests revealed main effects
of condition for both speed bias (Fip.14 = 14.37,p = 0.005) and uncertainty (X(22,14) =12.25,p = 0.002). Colors represent data from conditions shown in b (left). d, e, Dots indicate individual
datum. Colors represent corresponding observers. Error bars indicate SEM. **p < 0.01, ***p << 0.001.

(n = 8, paired ¢ test = 1.50, p = 0.176, d = 0.53) relative to
baseline. Directly contrasting low contrast against variable speed
conditions showed larger bias in the low-contrast condition (n =
8, paired rtest = 3.72, p = 0.008, d = 1.31). Importantly, observ-
ers’ responses were more variable (i.e., shallower slope of the
psychometric function) in the variable speed condition than in
the low-contrast condition (n = 8, paired ¢ test = 7.38, p =
1.5¢ ~* d = 2.61; Fig. 7f), meaning that the motion prior frame-
work would predict a stronger bias for the variable speed condi-
tion. These results are consistent with the interpretation that the
slow-speed bias is specific to low contrast and support the idea
that the human visual system learns the relationship between
speed and spatiotemporal contrast.

Discussion
The ability to perceive movement is a key foundation of verte-
brate evolution (Walls, 1942). Human misperceptions are there-
fore surprising, and it is challenging to understand how these
emerge from evolution and experience. Here we use an artificial
system to understand the drivers that shape motion estimation: a
neural network trained on moving images recapitulates key phys-
iological and perceptual properties of biological brains. Using
complete access to the system, we propose why neurophysiolog-
ical properties emerge and the basis for misperceptions, as well as
making concrete predictions for future empirical study. Our re-
sults recast understanding of the statistics that are internalized by
the brain.

Importantly, the convergence we demonstrate between Mo-
tionNet and biology was far from certain a priori. While the net-

work’s architecture is loosely based on the brain, the similarities
are dwarfed by the differences (e.g., no eye movements or recur-
rent connections; presence of an explicit training signal; to name
but a few). Moreover, once MotionNet was trained on natural
images, its properties were fixed: subsequent tests using labora-
tory stimuli (gratings, plaids, random dots) on a range of tasks
referenced to both neurophysiology and perception formed no
part of the training objective. The parallels we observe between
the network and biology, despite manifold differences, therefore
point to the common element between them: the image structure
that optimizes visual systems. Specifically, we show that image
statistics determine encoding properties, interrelations between
movement direction and speed, spatiotemporal contrast, and the
relationship between speed and contrast.

Neural nets can advance neuroscience: specific predictions for
future experiments
There have been notable artificial intelligence successes in solving
tasks performed by the brain, from perception (Krizhevsky et al.,
2012) to cognition (Sutskever et al., 2014) and motor control (Ali
Eslami et al., 2018). However, the complexity of deep networks
makes it hard to interpret their operation and inform neuroscience.
The opportunity of using artificial systems is to use complete access
to track the chain of operations. Here, we purposefully implemented
a “shallow” network (one hidden layer), allowing us to interrogate
the relationship between inputs and outputs. We successfully tested
novel predictions against neurophysiological and perceptual data.
However, we also make concrete predictions for future experiments:
1. Excitatory and inhibitory projections from V1 neurons to
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MT neurons resemble a second derivative Gaussian as a function
of direction offset. Further, a V1 neuron’s preferred direction is
more predictive of maximal inhibition of MT in the opposite
direction, rather than maximal excitation.

2. A static grating evokes inhibition in MT neurons for direc-
tions orthogonal to the grating’s orientation.

3. The spread of activity across neurons in MT for a low-
contrast moving grating will be narrower than for a high-contrast
grating (due to signal rectification).

4. Direction opponency and speed are functionally related in
MT such that the angular distance between preferred and most
opponent directions and preferred speed is negatively correlated.

5. Integration of motion signals in the IOC versus VA direc-
tions is related to fast- versus slow-speed tuning. Further, lower-
ing contrast will lead to greater activity in MT’s slow-speed tuned
neurons.

6. Baseline activity/responsiveness of V1 and/or MT spatio-
temporal neurons tuned to low speeds will be higher than those
tuned high speeds. While there is some evidence in favor of this
idea (Krekelberg et al., 2006; Priebe et al., 2006), we have not seen
a systematic assessment of the relationship between spontaneous
firing rates and speed preferences.

Just as the methods we used to test MotionNet were inspired
by neurophysiological work, future experimental work can be
guided by the relationships in the artificial system. For example,
to test prediction 4, one could measure direction opponency
(Snowden etal., 1991) and speed preference (Mikami et al., 1986)
in a population of MT neurons, calculate the angular distance of
between the preferred direction and maximum opponency, and
then test whether these measures are negatively related. More
generally, testing MotionNet on different stimuli and tasks is
relatively easy and rapid. This suggests a useful empirical strategy
whereby new relationships can be detected and experimental par-
adigms then optimized to maximize the interpretability of tests.
In many cases, it is not feasible to run the same neurophysio-
logical experiment multiple times to best discriminate differ-
ing hypotheses. Marrying tests of an artificial system with
biological experiments offers an efficient means of uncovering
neural architectures.

Interpreting the role of Bayesian priors

We know human observers systematically misperceive the speed
and direction of low-contrast movements. Our findings indicate
that this is not due to learning the distribution of environmental
motions, as previously believed. Rather, the information struc-
ture of natural images means that movement speed and contrast
are related. Does this negate previous Bayesian formulations of
motion estimation? Our work clearly points to the importance of
internalized knowledge of the structure of images and how this
affects the visual system. This “prior” is represented by the weight
and offset parameters that make MotionNet successful in esti-
mating the speed and direction in most situations. This can be
conceptualized within a Bayesian formulation, while noting that
previous models are premised on the wrong source of prior
knowledge.

As well as proposing the cause of motion illusions in the in-
formation structure of natural images, our results suggest a phys-
iological mechanism. We show that bias results from differences
in the baseline activity of V1 and MT units (i.e., offset parame-
ters). This could be achieved biologically by differences in the
excitability of speed-tuned neurons. Specifically, bias for slow
speeds at low contrast may be instantiated through increased
excitability of cells tuned to slow speeds. This could be mediated
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through presynaptic (e.g., differences in excitatory vs inhibitory
dendritic connections) and/or postsynaptic mechanisms (e.g.,
differences in the membrane potential). While there is some ev-
idence for this from previous work (Krekelberg et al., 2006;
Priebe et al., 2006), future work is needed to directly test this
possibility (e.g., using threshold tracking methods to compare
the excitability of speed-tuned neurons in V1 and MT) (Burke et
al., 2001).

We previously modeled 3D motion estimation using a “slow
world” prior (Welchman et al., 2008). We did not manipulate
image contrast but rather exploited differences in the reliability of
lateral motion versus motion-in-depth signals. In light of insight
from the current paper, it is possible that luminance contrast is a
lurking variable in the Welchman et al. (2008) paradigm. Specif-
ically, binocular contrast summation (Meese et al., 2006) would
have been stronger for lateral motion trajectories than for motion
in depth, with the result that the binocularly higher-contrast lat-
eral movements were perceived as faster. Further experiments are
needed to test this possibility.

An alternative account for contrast-dependent misperception
hypothesized two speed channels (“slow” vs “fast”) (Thompson,
1982). Under this model, the “fast” channel is silenced at slow
speeds at low contrast producing a slower speed estimate. Con-
versely, at high speeds with low contrast, the “slow” channel is
silenced producing a faster speed estimate. This was motivated by
evidence that observers overestimate fast speeds when contrast is
reduced (Thompson, 1982; Thompson et al., 2006), although this
is controversial (Stone and Thompson, 1992; Hawken et al.,
1994). We found no evidence for distinct fast versus slow chan-
nels; rather, the proportion of MotionNet units as a function of
temporal frequency followed a log-normal distribution, similar
to macaque V1 and MT neurons (Mikami et al., 1986; Priebe et
al., 2006). Moreover, based on the statistical relationship between
speed and spatiotemporal contrast, it is not obvious why overes-
timating speed for low-contrast fast objects would occur. It is
possible that very fast motions produce behaviors not captured
by the distribution of speeds presented to MotionNet, which may
relate to flicker sensitivity rather than speed (Thompson and
Stone, 1997).

Complex motion

Here we trained a shallow network on simple 2D translating im-
age sequences, yet motion is perceived in three spatial dimen-
sions. By training a three-layer network with larger “receptive
fields” to make judgments on complex motion, such as optic
flow, it may be possible to extract insights that relate to informa-
tion processing in the medial superior temporal area. It would be
informative to observe whether/how altered task demands and
additional structure alters the properties of the V1 and MT layers
at the single- and population-unit levels. Further, including a
third layer releases the second (MT) layer from constrained ve-
locity mapping and allows the units in this layer to develop prop-
erties that most effectively support the third (medial superior
temporal) layer. Our preliminary work on this indicates that the
population-level distribution of direction and speed selectivity
among units in the unconstrained M T layer matches those in area
MT of biological systems.

Conclusion

Here we show the key role of image statistics in shaping visual
system responses and show how optimizing motion estimation
using natural images leads to misperceptions. We make concrete
predictions for future experiments, demonstrate the interrelation
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between movement speed, direction, and spatiotemporal con-
trast, and show that the human visual system appears to have
internalized this information. More generally, the work illus-
trates how artificial systems approaches can advance understand-
ing of biological computation.
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