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Primate Orbitofrontal Cortex Codes Information Relevant
for Managing Explore-Exploit Tradeoffs

Vincent D. Costa! and Bruno B. Averbeck?
"Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon 97239-3098, and ?Laboratory of Neuropsychology,
National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-4415

Reinforcement learning (RL) refers to the behavioral process of learning to obtain reward and avoid punishment. An important compo-
nent of RL is managing explore- exploit tradeoffs, which refers to the problem of choosing between exploiting options with known values
and exploring unfamiliar options. We examined correlates of this tradeoff, as well as other RL related variables, in orbitofrontal cortex
(OFC) while three male monkeys performed a three-armed bandit learning task. During the task, novel choice options periodically
replaced familiar options. The values of the novel options were unknown, and the monkeys had to explore them to see if they were better
than other currently available options. The identity of the chosen stimulus and the reward outcome were strongly encoded in the
responses of single OFC neurons. These two variables define the states and state transitions in our model that are relevant to decision-
making. The chosen value of the option and the relative value of exploring that option were encoded at intermediate levels. We also found
that OFC value coding was stimulus specific, as opposed to coding value independent of the identity of the option. The location of the
option and the value of the current environment were encoded at low levels. Therefore, we found encoding of the variables relevant to
learning and managing explore- exploit tradeoffs in OFC. These results are consistent with findings in the ventral striatum and amygdala
and show that this monosynaptically connected network plays an important role in learning based on the immediate and future conse-

quences of choices.
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Significance Statement

Orbitofrontal cortex (OFC) has been implicated in representing the expected values of choices. Here we extend these results and
show that OFC also encodes information relevant to managing explore- exploit tradeoffs. Specifically, OFC encodes an exploration
bonus, which characterizes the relative value of exploring novel choice options. OFC also strongly encodes the identity of the
chosen stimulus, and reward outcomes, which are necessary for computing the value of novel and familiar options.

Introduction

How do humans and animals decide when to explore a new op-
portunity or stick with what we know? Decisions to forego im-
mediate rewards to explore options whose value is uncertain is
known as the explore—exploit dilemma (Sutton and Barto, 1998).
Exploration allows biological and artificial agents to resolve un-
certainty and potentially discover more profitable alternatives
(Daw etal., 2006; Wittmann et al., 2008; Djamshidian et al., 2011;
Averbeck et al., 2013; Costa et al., 2014, 2019). Exploitative strat-
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egies emphasize an agents’ ability to predict the immediate out-
come of its choices. Exploitative strategies are effective in stable
learning environments, but excessive reliance on prior knowl-
edge impedes performance when circumstances change. Explo-
ration facilitates learning when agents must make decisions
under uncertainty. Excessive exploration, however, can impede
performance by preventing agents from exploiting what they
have newly learned. Managing explore—exploit tradeoffs is there-
fore a fundamental component of behavioral flexibility.

To balance exploration and exploitation biological agents
need to know when exploration is advantageous. An efficient
strategy for managing explore—exploit tradeoffs is to predict the
immediate and future outcomes of each available choice option
(Wilson et al., 2014b; Averbeck, 2015). Predicting whether
choices will be immediately rewarded or unrewarded is easily
computed based on past experience. Predicting how often choices
are rewarded or unrewarded in the future is a more difficult compu-
tation, because it relies on prospection. Yet these predictions can be
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Task and recording locations. 4, Structure of anindividual trial in the three-arm bandit task where monkeys indicated their choice by making a saccade to one of three options. Following

each choice, the monkeys received either a fixed amount of juice reward with a probability conditioned on the stimulus or no reward. B, Each block of 650 trials began with the presentation of three
novel images. This set, s, of visual choice options was repeatedly presented to the monkey for a series of 10 —30 trials. On a randomly selected trial between 10 and 30 one of the existing options was
randomly selected and replaced with a novel image. This formed a new set of options that were presented for a series of 1030 trials. Novel options were randomly assigned their own reward
probabilities (0.2, 0.5, 0.8). Configurations in which all three options had the same reward probability were not allowed. This process of introducing a novel option to create a new set was repeated
32 times within a block. €, MRI guided reconstruction of recording locations. Coronal T1-weighted MRI of electrodes lowered to specific depths for neuroimaging, were used to verify the trajectories
and placement of the recording electrodes in each monkey. The number of cells recorded in the OFC at each site were projected on to template views from a standard macaque brain atlas.

integrated to decide when exploration is advantageous. During ex-
plore—exploit decision-making, such computations are encoded
by neural activity in prefrontal cortical areas in humans (Daw et
al., 2006; Zajkowski et al., 2017), as well as in the amygdala and
ventral striatum in nonhuman primates (Costa et al., 2019).

The orbitofrontal cortex (OFC) is known to be important for
encoding the subjective value of choices (Padoa-Schioppa and
Assad, 2006; Schoenbaum et al., 2009; Padoa-Schioppa and Cai,
2011). It is also important for updating predictions about the
outcomes of choices based on unobservable or partially observ-
able information (Schuck et al., 2016). For instance, people and
animals with OFC damage have difficulty learning unsignaled
reversals in the contingencies between choices and outcomes
(Iversen and Mishkin, 1970; Dias et al., 1996; Schoenbaum et al.,
2003b; Groman et al., 2019), although in monkeys this is likely
mediated by neighboring ventrolateral prefrontal cortex (Rude-
beck et al., 2017a). OFC lesions also lead to deficits in realizing
that a once valuable choice is no longer desirable, after the out-
come it predicts is devalued outside the decision context (Rude-
beck et al., 2013b, 2017a). OFC is hypothesized to be critical for
integrating multisensory representations of choices and out-
comes with information about past choices and outcomes in par-
tially observable choice scenarios, to infer the current task state
and make accurate predictions about the likely outcome of a
particular choice (Wilson et al., 2014a). Although this theoretical
view focuses on the role of OFC in making predictions about
immediate outcomes it can be extended to its role in representing
task states to make predictions about how current choices influ-
ence future outcomes. This suggests that OFC should encode
computations relevant for managing explore—exploit tradeoffs.
However, its role in exploratory decision-making has largely
gone unexamined.

To determine the computational role of the OFC in explore—
exploit decisions, we recorded neural activity from monkeys as
they performed a task where explore—exploit tradeoffs were in-
duced by introducing novel choice options. We used a model-
based reinforcement learning algorithm, a partially observable
Markov decision process (POMDP), to quantify the value of ex-

ploration and exploitation and related these values to the activity
of individual neurons (Averbeck, 2015; Costa et al., 2019). We
found that neuronal activity in OFC not only encodes the imme-
diate value of choices based on what the monkeys had already
learned, consistent with its known role in encoding economic
value (Padoa-Schioppa and Cai, 2011), but also the potential
future gains and losses associated with exploring novel choice
options and the overall richness of the reward environment.

Materials and Methods

Subjects. The experiments were performed on three adult male rhesus
macaques (Macca mulatta), aged 6—8 years and weighing 7.2-9.3 kg. The
monkeys were pair-housed when possible, and they had access to food 24
h/d. On days when recordings were performed, the monkeys earned their
fluid through performance on the task. On non-testing days the monkeys
were given ad libitum access to water. All procedures were reviewed and
approved by the NIMH Animal Care and Use Committee.

Experimental setup. The monkeys were operantly trained to perform
an oculomotor three-armed bandit task. The monkeys were seated in a
primate chair facing a 19 inch LCD monitor (1024 X 768 resolution, 40
cm from the monkey’s eyes), on which the visual stimuli were presented.
Task control was performed using the Monkeylogic behavioral control
system (Asaad and Eskandar, 2008). The monkey’s eye movements were
monitored using an Arrington Viewpoint eye tracking system (Arrington
Research) and sampled at 1 kHz. Juice rewards (0.08—0.17 ml) were
delivered using a pressurized juice delivery system (Mitz, 2005).

Task design and stimuli. The monkeys performed multiple blocks (650
trials each) of a three-armed bandit reinforcement learning task (Fig. 1)
used previously (Costa et al., 2014, 2019) and based on a task originally
used to study learning in human subjects (Wittmann et al., 2008; Djam-
shidian et al., 2011; Averbeck et al., 2013). During the task the monkey
had to choose among three images. Each image had an associated prob-
ability of juice reward. In each trial, the monkey first acquired and held
central fixation for a variable length of time (500—750 ms). After the
fixation period, three peripheral choice targets were presented at the
vertices of a triangle. To minimize spatial preferences, the main vertex
of the triangle was randomly chosen to point up or down on each trial
and the locations of the three stimuli were randomized from trial-to-
trial. The monkeys were required to saccade to and maintain fixation on
one of the peripheral targets for 500 ms. We excluded trials on which the
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monkey made more than one saccade (<1% of all trials). After the re-
sponse, a juice reward was delivered probabilistically. Within each block
of 650 trials, 32 novel stimuli were introduced. A novel stimulus was
introduced every 1030 trials, with the interval chosen pseudorandomly.
No single choice option could be available for >160 consecutive trials.
When a novel stimulus was introduced it randomly replaced one of the
existing choice options. At the start of a block, the three initial choice
options were assigned reward probabilities of 0.2, 0.5, or 0.8. Novel op-
tions were pseudorandomly assigned one of these reward probabilities
when they were introduced. The assigned reward probabilities were fixed
for each stimulus. The only constraint was that there could not be three
cues with the same probability of reward.

The visual stimuli were naturalistic scenes from the website Flickr
(http://www.flickr.com). They were screened for image quality, discrim-
inability, uniqueness, size, and color to obtain a final daily set of 210
images (35 images per block, up to 6 blocks). Images were never repeated
across sessions. To avoid choices driven by perceptual pop out, choice
options were spatial frequency and luminance normalized using func-
tions adapted from the SHINE toolbox for MATLAB (Willenbockel et al.,
2010).

Neurophysiological recordings. Monkeys were implanted with titanium
headposts for head restraint. In a separate procedure, monkeys were fit
with 28 X 36 mm recording chambers oriented to allow bilateral vertical
grid access to the amygdala, ventral striatum and orbitofrontal cortex.
The amygdala and ventral striatum data have been published separately
(Costa et al., 2019). The OFC recordings were performed in partially
overlapping recordings sessions. We recorded the activity of 146 single
neurons from the OFC of 3 monkeys (N = 12, 63, and 71 single neurons
across Monkeys H, F, and N). Chamber placements were planned and
verified through MR T1-weighted scans of grid coverage with respect to
the target structures.

In all three monkeys, we recorded from OFC using single tungsten
microelectrodes (FHC or Alpha Omega; 0.8—1.5 M() at 1 kHz). The
electrodes were advanced to their target location by an 8-channel micro-
manipulator (NAN Instruments) that was attached to the recording
chamber. Additional MR T1-weighted scans with lowered electrodes
were performed to verify recording trajectories (Fig. 1). Multichannel
spike recordings were acquired with a 16-channel data acquisition system
(Tucker Davis Technologies). Spike signals were amplified, filtered
(0.3—8 kHz), and digitized at 24.4 kHz. Spikes were initially sorted online
on all-channels using real-time window discrimination. Digitized spike
waveforms and timestamps of stimulus events were saved for sorting
off-line. Units were graded according to isolation quality and multiunit
recordings were discarded. Neurons were isolated while the monkeys
viewed a nature film and before they engaged in the bandit task. Other
than isolation quality, there were no selection criteria for deciding
whether to record a neuron.

Data analysis. The values of choice options in the task were modeled
using an infinite horizon, discrete time, discounted, POMDP. Details of
this model were published separately (Averbeck, 2015). The model esti-
mates the utility, u,(s,) associated with individual states, s,:

us) = maxaem{r(s,, a) + s p(jl s a)u,+1(j)}.

In the task, states are defined by the number of times each option has
been chosen, ¢;, and the number of times it was rewarded when chosen, r;.
From these values for each option the immediate reward value is given
. r,+1
0= iy
denominator comes from a 3 prior. The future expected value (FEV) is
calculated from the expected value of the next state. In this task, when an
option is chosen, its value is incremented, ¢; <= ¢; + 1 and the reward is
correspondingly incremented if it is delivered r; <—r; + 1, or not if itis not
delivered r; <= r,. In this way choices and rewards drive state transitions.
The model was fit using value iteration (Puterman, 1994). For additional
details, see Averbeck (2015).
We use three quantities, IEV, FEV, and Bonus to characterize the values
of choice options. The immediate expected value (IEV) used in the paper

by, r(spa = The extra 1 in the numerator and 2 in the
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is given by the immediate reward value for action a, IEV, = r(s,, a) which
is the first term in the utility equation. The IEV is an estimate of the
probability that choosing an option will lead to a reward. The future
expected value, FEV is given by the second term in the utility equation,
FEV, = ySie, p(j | s» @)1+, (j). The FEV is the discounted sum of the
future expected rewards, when one chooses optimally, where the dis-
count is given by y. The FEV is higher if options with higher IEVs are
available, because the animal can earn more rewards by picking these in
the future. The FEV of each option also depends on how often the mon-
key has sampled the available options. On each trial, the difference in the
FEV of each option relative to the average FEV of the three options
quantifies the relative gain or loss in future rewards resulting from explo-
ration. We refer to this quantity as the exploration Bonus.

Bonus,—; = FEV,_; — (FEV)),.

For example, each time a novel option is chosen and an outcome is
observed the Bonus associated with that option decreases, whereas the
Bonus values of the alternative options are already low, or even negative,
because they have (usually) already been sampled. Behaviorally, the
monkeys often explored novel options. Therefore, novel options were
often chosen and the Bonus associated with novelty decreased over
trials. At the same time the Bonus value for the alternative options
became less negative because the monkeys frequently explored the
novel options rather than exploiting the familiar options, in the first
few trials. This dissociates sampling and habituation and therefore
exploration value and simple perceptual novelty. An option must be
chosen and not simply seen for its exploration Bonus to decrease.
To predict choices the IEV and Bonus values from the POMDP
were passed through a softmax function to generate choice probabilities,
plchoice = i) = exp(bjiev; + b,Bonus)/Z;-sexp(biiev; + b,Bonus). The
parameters b, and b, were optimized to predict choices using fminsearch
in MATLAB, as done previously (Costa et al., 2019).

We quantified choice behavior by computing the fraction of times the
monkey chose either the novel choice option, best alternative option, or
worst alternative option. The best alternative option was defined as the
option with the highest IEV, not including the most recently given op-
tion. In cases in which the remaining alternative options had equivalent
IEVs, the best alternative was defined as the option with the higher action
value as estimated by the POMDP model. We also computed the fraction
of times the monkeys chose novel options based on the a priori assigned
reward probabilities of those options.

For neural data analysis, all trials on which monkeys chose one of the
three stimuli were analyzed. Trials in which the monkey broke fixation,
failed to make a choice, or attempted to saccade to more than one option
were excluded (<1% of all trials). On valid trials, the firing rate of each
cell was computed in 200 ms bins, advanced in 50 ms increments, time
locked to the monkey’s initiation of a saccade to the chosen option, or in
some cases delivery of the juice reward. We fit a fixed-effects ANOVA
model to these windowed spike counts for each individual cell. The
ANOVA included factors for IEV, Bonus, FEV, chosen stimulus, reward
outcome of current trial, reward outcome of previous trial, saccade di-
rection to select option, and trials since the novel option were introduced
to control for perceptual familiarity. Two ANOVA models were fit. In the
first, IEV was modeled as two factors. The a priori reward rate of the
option (i.e., 0.8, 0.5 or 0.2, modeled as a fixed effect) and the difference
between the current estimate of reward and this IEV value, which mod-
eled the learning of value. In this model chosen stimulus was nested
under a priori reward rate. This allowed us to analyze the separate effects
of reward value and stimulus on neural activity. Al IEV significant effects
plotted include significance of either factor that was used to model IEV.

In the second model, IEV was used as a continuous factor, and inter-
acted with stimulus identity. In both models, FEV, Bonus, and trial were
continuous factors. All other factors were modeled with factor levels.

Results

Task and recordings

We recorded neural activity from three monkeys while they per-
formed a three-armed bandit task (Fig. 1). In each trial, the mon-
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Behaviorand model. 4, Fraction of times the monkeys chose the novel option as a function of the number of trials since the novel option was introduced. Data plotted separately for novel

options assigned reward probabilities of 0.2, 0.5, and 0.8. B, Fraction of times the monkeys chose the novel option as a function of trials since novel, relative to the best alternative and worst
alternative familiar options. Best and worst were defined as the option with the best IEV and worst IEV, not including the novel option. C, Fraction of times the novel option was selected, relative to
the best and worst familiar options, as a function of the IEV of the best alternative option. D, Average IEV of novel options estimated by POMDP model, as a function of trials since the introduction
of anovel option. Data are plotted separately for options with IEV 0f 0.8, 0.5, and 0.2. Note that these are model value estimates, and not behavioral choices. The IEV should asymptotically approach
the true value of the choice, which is 0.8, 0.5, or 0.2. E, Average Bonus of novel option, relative to best and worst familiar option, as a function of trials since introduction of novel option. F, Average
FEV of the chosen option, as a function of the IEV of the best option currently available. G-/, Predicted versus measured choice probabilities for individual Monkeys H, F, and N, respectively. These
values are for all choices, not just for the novel options. Correlation between predicted and measured for G:r = 0.48 = 0.079 (N = 9sessions); H:r = 0.29 = 0.052 (N = 23 sessions); I:r = 0.60 ==

0.033 (N = 42 sessions).

keys fixated a central location (Fig. 1A). After a hold period, three
stimuli were presented around fixation. The monkeys made a
saccade to one of the stimuli to indicate their choice. Reward was
then stochastically delivered, depending on an a priori reward
probability assigned to the stimulus. The task was run in 650 trial
blocks (Fig. 1B). At the beginning of each block, we introduced
three novel stimuli the monkey had not seen before. The initial
stimuli were assigned reward probabilities 0£0.2,0.5,and 0.8. The
monkey had to learn by exploring each of the stimuli, which was
the best. Every 10-30 trials during the block, one of the stimuli
was randomly selected and replaced by a novel stimulus with a
randomly assigned reward probability of 0.2, 0.5, or 0.8. The only
constraint was that all three stimuli could not have the same
reward probability. There were 32 novel stimuli introduced in
each block. When a novel stimulus was introduced, the monkeys
had to decide whether to explore the novel option or continue to
exploit one of the familiar options. While the monkeys per-
formed the task, neural activity was recorded in OFC (Fig. 1C).

Analysis of behavioral data

The task was challenging, because there were three options, and
options were frequently replaced. However, the monkeys were
able to learn to differentially choose the options depending on
their a priori defined reward values (Fig. 2A; Value: F, 5, = 9.0,
p = 0.024). They also showed a novelty preference (Fig. 2B; Nov-
el/Best/Worst: F(, 5y = 218.1, p < 0.001) and this evolved across
trials (Trial X Novel/Best/Worst: Fi, 43190 = 3.2, p < 0.001).
Although they had a preference for the novel option, their choices
did depend on the value of the best alternative (Fig. 2C; Fg 774) =
4.7, p = 0.007), such that they chose the best alternative more
when it had higher value.

We used a model-based reinforcement learning algorithm
(POMDP; see Materials and Methods) to quantify the behavior.
The algorithm generates three values for each chosen option. The
IEV (Fig. 2D; note these are the IEV of the chosen option, these
values do not reflect the monkey’s choices), which is the esti-
mated reward probability associated with the object (i.e., the
number of times the option has been rewarded divided by the
number of times it has been chosen). An exploration Bonus
associated with that option (Fig. 2E, Bonus), which is the relative
additional value that can be obtained in the future, if an option is
explored in the current trial (i.e., the FEV of the option relative to
the other 2 options). The Bonus comes about because the model
assumes that any option that has not been explored might have a
high reward probability assigned to it. The distribution over re-
ward probabilities of novel options, before they have been cho-
sen, is given by a broad prior, which allows a probability for
reward rates >>0.8. It is also possible that an unexplored option
has a reward rate <0.2 because the prior is symmetric. But a low
reward rate option would not be selected by an optimal agent
once its reward rate was known. Therefore, if an option is
explored and found to be better than other available options, it
can be selected until it is replaced. However, if an option is
explored and found to be worse than the other available op-
tions, one can switch back to selecting the best alternative.
Therefore, an unexplored option might be better than any
other options currently available. If it is it will be selected. And
if it is not better than the other options it will not be selected.
This tradeoff is reflected in the exploration Bonus. After an
option has been explored, a better estimate of its true reward
probability can be formed, and this leads to a decrease in the
exploration Bonus.
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option.

And, finally, the model also estimates the FEV of an option,
which is the sum of the future discounted expected rewards asso-
ciated with choosing an option in the current trial, and then
making optimal decisions in all future trials. The FEV primarily
reflects the IEV of the best option in the current set (Fig. 2F),
because one expects to obtain more rewards over the relevant
future time horizon if there is a good option (i.e., high IEV)
available, relative to when there is not a good option available
(i.e., the best option has a low IEV). The algorithm was able to
predict the choices of the individual monkeys, reasonably well
(Fig. 2G-I).

Analysis of neural data

Next, we performed a moving-window ANOVA to assess the
fraction of neurons that encoded the task-relevant variables. The
ANOVA was performed on spike counts in 200 ms bins, with 50
ms steps between bins. We found that all task relevant variables
were encoded in the population (Fig. 3A-F). We also examined
effect size and found that it was similar to the fraction of neurons
encoding each variable (Fig. 3, bottom), and comparable to re-
sults in the ventral striatum and amygdala (Costa et al., 2019).
Approximately 15% of neurons encoded the IEV of the upcom-
ing choice during the ITT and baseline hold periods (Fig. 3A).
This increased to 24% of the neurons at the time of choice. The

exploration bonus was encoded at chance levels during the ITI
and hold periods (Fig. 3B) and this increased to 17% of the neu-
rons at the time of choice. The FEV, which characterizes the
overall-reward environment, was represented by ~10% of
the neurons during the I'TT and baseline hold periods (Fig. 3C). The
encoding of FEV then increased to ~13% of the neurons at the time
of choice. FEV was therefore encoded, but not strongly.

We also found that the identity of the chosen stimulus was
encoded during the ITT and baseline hold period (Fig. 3D). Stim-
ulus encoding was the strongest factor represented in our popu-
lation, consistent with previous results (Wallis and Miller, 2003).
Approximately 30% of the neurons encoded the identity of the
chosen stimulus during the ITI and baseline hold periods, and
this increased to ~50% of the neurons at the time of choice. This
could be seen clearly in single example neurons, which showed
considerable variability in response to different high value stimuli
(Fig. 4).

The current and previous trial reward outcomes were strongly
encoded in the population (Fig. 3E). The current trial reward (i.e.,a
comparison of firing rate in rewarded and non-rewarded trials)
reached ~35% after reward outcome. The fraction of neurons rep-
resenting the reward remained elevated through the ITT and baseline
hold periods, with ~10-15% of the neurons representing the previ-
ous trial outcome at the time of the current trial outcome. Whether
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chosen stimulus in a window from 0 to 400 ms after cue onset. B, Spike density functions
showing average response to the 10 different high-valued stimuli. Each line represents the
mean for a different stimulus.

this is a neural effect, or more simply reflects binding of molecules to
peripheral taste receptors on the tongue is not clear, as it likely takes
the monkeys some time to swallow the juice.

Finally, we also examined encoding of the screen location of
the chosen option (Fig. 3F). Because the locations of the objects
were randomized from trial-to-trial, encoding was at chance dur-
ing the ITT and baseline hold. However, this increased to 11% of
the neurons at the time of choice.

In summary, both the value and identity of the to-be-chosen
option were represented during the ITI and baseline hold peri-
ods, reflecting the fact that monkeys learned the identities of the
good options and their associated values. There was a substantial
encoding of the reward outcome, and this continued through the
ITI and baseline hold, such that the previous trial outcome was
represented at the time of the current trial choice and outcome.
Finally, the strongest factor encoded by the neural population
was the perceptual identity of the chosen option. The IEV, FEV,
and Bonus values were encoded at intermediate levels, and the
location of the chosen option was encoded by only a small frac-
tion of the population.

Next, we used the results of the ANOVA model to characterize
several features of value encoding. First, we characterized the
tuning properties of the cells that encoded value. We found that
18 of the 27 neurons that encoded value did so with monotonic
(increasing or decreasing) tuning functions. This fraction dif-
fered from chance (binomial test, p = 0.026). There was an ap-
proximately equal representation of positive (8/18) and negative
(10/18) tuning for value (binomial test, p = 0.593). We also asked
whether single neurons explicitly encoded reward prediction er-
rors (RPEs) because RPEs are important for learning in basic
Rescorla—Wagner or Bayesian models. We did this be examining
the fraction of neurons that encoded reward and expected reward
with opposite signs at the time of reward delivery. However, we
found that there was no enrichment for specific RPE encoding
(11/18; binomial test, p = 0.119). We also did not find that single
neurons tended to encode both value and reward. The presence
of each of these in the single population was equivalent to the
product of finding them individually in the population (Fisher
test, p = 0.431).

When we examined encoding of stimulus and IEV in the first
ANOVA model, we did so by nesting stimulus under the a priori
value of the option (see Materials and Methods). This model
shows us that the response to a high value stimulus depends on
the stimulus identity (Fig. 4). However, this model does not allow
us to test whether the response to IEV is stimulus dependent. To
examine this in more detail, we used a second ANOVA model to
examine neural activity. In this model, we modeled the interac-
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Figure5.  Alternative encoding model. All variables assessed at p < 0.05. 4, Encoding of [EV

asaninteraction (IEVx) with chosen stimulus identity and stimulus as an non-nested main effect
(Stim). B, Overlay of non-nested interaction from second ANOVA model and nested stimulus
identity encoding from first ANOVA model.

tion of IEV, coded as a single continuous variable, and stimulus
identity. Stimulus identity was also entered as a main effect. This
model has the same degrees of freedom as the original model, so
we can directly compare prediction accuracy between the models.
We found that the models were similar in their ability to predict
neural activity. The average difference in R* was 0.1% across
single neurons. This is not surprising as nesting in an ANOVA
model is an interaction (Kutner et al., 2005), although it is differ-
ent from the interaction in the second model. However, when we
compared the residual variance, we found that the first model
better predicted activity in 56% of the single neurons, and across
the population the first model significantly outperformed the
second model (¢ test, £(,45) = 2.64, p = 0.009, mean difference in
residual variance = 1.4, SEM = 0.54). Therefore, there was a
slight preference for the nested model.

When we examined cue encoding using the second model, we
found that the interaction between value and stimulus identity
accounted for the stimulus encoding (Fig. 5A). Stimulus encod-
ing only occurred at chance levels when the interaction of IEV
and stimulus identity was also in the model. However, when we
compared the encoding of this interaction using the second
model, with nested stimulus encoding using the first model (Fig.
5B), we found that they were nearly identical. Therefore, using
either approach we find that value coding is heavily dependent on
the stimulus to which the value is associated, in single OFC
neurons.

Discussion

We performed an experiment in which we recorded neural activ-
ity from OFC while monkeys took part in a three-armed bandit
reinforcement learning task. In the task, we periodically intro-
duced new options, which allowed us to examine the explore—
exploit tradeoff. This allowed us to examine encoding of the
immediate and future expected values of options, as well as the
exploration bonus. We found that OFC encoded task variables
important for learning in the task, similar to what has been seen
in the amygdala and ventral striatum (Costa et al., 2019). The
strength of the encoding, however, differed across variables. The
chosen stimulus had the largest effect on the neural population,
followed by the reward outcome. The expected values of the cho-
sen options were coded at intermediate levels, and the location
and future expected values were encoded at low levels. We also
found that chosen value encoding was stimulus specific. There-
fore, responses depended not just on value, but also the visual
stimulus associated with the value, similar to what we found in
the amygdala and ventral striatum (Costa et al., 2019).
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We found substantial stimulus identity encoding, consistent
with a previous study (Wallis and Miller, 2003). This stimulus
encoding was independent of the value of the option, because our
ANOVA model examined differences in response for stimuli
within each value category (i.e., 0.8, 0.5, and 0.2 reward proba-
bility). For example, the response to different cues that all coded
a reward probability of 0.8 differed. The ANOVA model also
controlled for additional confounding factors that could account
for these differences, including Bonus value, the number of times
the stimulus was seen, etc. This is perhaps not surprising, given
how important it is for the monkeys to encode the identity of the
chosen options. In the task, we introduced a new option every
10-30 trials and the monkeys had to quickly learn the values of
the chosen options to maximize reward. Therefore, identifying
the best image and picking it consistently across trials maximized
rewards. The learning effects were also consistent with the ele-
vated coding of the to-be-chosen stimulus during the ITI and
baseline hold periods. The monkeys likely were remembering,
across trials, the identities of the preferred options. These visual
stimulus coding effects are also consistent with the organization
of the anatomical inputs to OFC. There are strong visual and
multisensory inputs (Morecraft et al., 1992; Carmichael and
Price, 1995) as well as inputs from other visual recipient areas
including the amygdala (Ghashghaei and Barbas, 2002).

We also found strong encoding of reward outcomes on the
current and previous trial, also consistent with OFC recordings in
other reward learning tasks (Simmons and Richmond, 2008).
These results are not consistent, however, with previous reports
using functional imaging, which did not find a representation of
previous trial outcomes in OFC (Chau et al., 2015). However, this
may be because of a lack of sensitivity in the fMRI experiments or
a difference in the OFC location investigated. We find encoding
of previous trial outcomes across the OFC, amygdala, and ventral
striatum network (Costa et al., 2019). Whether the previous trial
reward coding is generated centrally or reflects ongoing binding
to peripheral taste receptors is not clear. However, it is clear that
the signal for the reward in the current and previous trial is well
encoded in OFC.

Previous studies of learning related signals in OFC have found
that neurons reflect the ongoing chosen values of options (Wallis
and Miller, 2003; Rudebeck et al., 2013a, 2017b). These learning
related value representations are consistent with findings in stud-
ies in which choice-outcome associations are highly overlearned
(Padoa-Schioppa and Assad, 2006; Kennerley and Wallis, 2009;
Kennerley et al., 2009; Rudebeck et al., 2013a; Rudebeck and
Murray, 2014). Therefore, chosen value signals in OFC are not
specific to learning tasks. Studies have found that this encoding
depends partially on amygdala inputs, as lesions of the amygdala
substantially reduce value encoding in OFC in learning tasks
(Schoenbaum et al., 2003a; Rudebeck et al., 2013a, 2017b). This is
consistent with findings that the amygdala and the ventral stria-
tum code similar value signals in our task (Costa et al., 2019).
Other studies have found similar value coding, but have found
different time courses for positive versus negative value updates
(Morrison et al., 2011).

The amygdala, ventral striatum, medial dorsal thalamus, and
caudal OFC are part of a monosynaptically connected network
(Amaral et al., 1992; Neftci and Averbeck, 2019), which plays an
important role in RL (Averbeck and Costa, 2017). Comparison of
the neurophysiology data from this study and our previous study
in which we reported results from the amygdala and ventral stria-
tum (Costa et al., 2019) suggests that these structures code similar
variables, and at similar levels. All the task relevant variables were
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encoded across structures, although at different levels. One sa-
lient feature is that the ventral striatum has almost no saccade
direction coding (Costa et al., 2019), whereas both OFC and the
amygdala have low levels of saccade direction encoding. Other
work on closely related tasks suggests that dorsolateral prefrontal
cortex also codes a range of value-related variables (Bartolo et al.,
2019) with strongly enhanced encoding of saccade direction.
Given the strong interconnectivity among these areas, it is not
surprising that they code the same variables, as this is often found
across monosynaptically connected structures (Chafee and
Goldman-Rakic, 1998; Averbeck et al., 2009; Seo et al., 2012).
Each area in this network does differ, however, in its connections
outside the network. OFC has strong connections with other pre-
frontal areas (Barbas, 1993; Carmichael and Price, 1996). The
amygdala receives strong visual inputs and projects back to visual
areas (Amaral et al., 1992), and the ventral striatum receives per-
haps the strongest dopamine input of all areas (Haber et al.,
2000), and does not project directly back to cortex, but instead
projects through the GPi/SNr, and then on to the thalamus (Al-
exander et al., 1986). These areas also have different microcircuit
organization and local neurochemistry, which may reflect differ-
ences in computational and plasticity mechanisms. One hypoth-
esis is that the primary role of cortex is setting up complex
representations (Rigotti et al., 2013), over which the amygdala
and ventral striatum then learn (Averbeck and Costa, 2017) with
the amygdala updating values quickly using an activity-
dependent mechanism, and the striatum updating values more
slowly using a dopamine-dependent mechanism (Averbeck,
2017). Neurophysiology data may not be able to distinguish rep-
resentations used for learning, from learning itself, and therefore
cortical and subcortical structures may appear similar. Ap-
proaches which block synaptic plasticity or protein synthesis may
be able to test these hypotheses.

In reinforcement learning models, states define all informa-
tion relevant to making choices, or equivalently to predicting the
outcomes of choices. It has been suggested that OFC plays an
important role in state representation (Wilson et al., 2014a;
Schucketal., 2016). We have used a POMDP algorithm to model
behavior in our task (Averbeck, 2015). This model allows us to
calculate a principled exploration bonus value that we can use to
examine neural activity. This is because in true model-based RL,
the relative immediate and future values of novel options can be
calculated directly. This differs from some models of the explore—
exploit dilemma, where the values of novel options are floated as
free parameters (Wittmann et al., 2008; Djamshidian et al., 2011;
Costa et al., 2014). However, model-based RL requires an accu-
rate representation of state, because values are tied directly to
states. In the POMDP algorithm, states are not directly observ-
able and have to be inferred. State inference and state transitions
in our task, however, are governed by chosen objects and whether
they are rewarded. These are the two strongest signals in the OFC
data. Therefore, OFC does represent the information necessary to
derive choice values, in our POMDP model-based framework, as
well as the values themselves. Other recent work has also shown
that medial prefrontal cortex in rodents may play a role in hidden
state inference, when state is defined by the passage of time
(Starkweather et al., 2018). Therefore, OFC and additional pre-
frontal areas appear to play a role in state representation or state
inference.

There are numerous theories of OFC function, beyond state
representation (Schoenbaum et al., 2009; Padoa-Schioppa and
Cai, 2011; Rudebeck and Murray, 2014; Stalnaker et al., 2015).
One of the early theories suggested that OFC was important for
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reversal learning, or inhibitory control (Butter, 1969; Iversen and
Mishkin, 1970). However, recent work has shown that these def-
icits were due to destruction of fibers of passage, and not cell
bodies in OFC (Rudebeck et al., 2013b), at least in monkeys. One
consistent finding, is that OFC plays an important role in deval-
uation tasks (Rudebeck et al., 2013b, 2017a; Murray and Rude-
beck, 2018). In these tasks, monkeys first learn to make choices to
obtain a preferred outcome (e.g., peanuts vs candy). One of the
outcomes is then devalued by feeding it to satiation. After the
outcome is devalued, the monkeys normally switch to preferring
the non-devalued outcome. Amygdala lesions in moneys also
lead to deficits in variations on these tasks (Rhodes and Murray,
2013), and these behaviors are mediated by circuits connecting
medial-prefrontal cortex to the dorsal-medial-striatum in ro-
dents (Hart et al., 2018). Thus, OFC plays an important role in
reward devaluation in monkeys, but as part of a broader circuit,
similar to what we have observed here with respect to its role in
exploratory decision making. Reward devaluation and explore-
exploit decision making are both instances of model-based RL
but how they are related computationally is not obvious. Further
development of theories of OFC function should attempt to ac-
count for both functions.

Conclusions

We found substantial representations of chosen stimulus identity
and reward in OFC, consistent with previous studies (Wallis and
Miller, 2003; Simmons and Richmond, 2008). Chosen value,
which is often considered an important function of OFC, was
represented but not as frequently. Other factors including the
location of the chosen target, and the future expected value of
options were encoded, but only rarely. These signals reflect the
information necessary to learn to select the best options and bal-
ance the explore—exploit tradeoff in our task (Averbeck, 2015;
Costa et al., 2019). We have found similar signals across the net-
work of monosynaptically connected areas that includes the
amygdala and ventral striatum (Costa et al., 2019). However, the
extent to which these signals are computed locally in OFC, or
inherited from other structures is not currently clear. Future
work that combines multisite recording with inactivation of OFC
circuitry will help disentangle the specific role of each area in
these tasks.
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