Skip to main content
. 2020 Jan 8;6(1):77–80. doi: 10.1016/j.artd.2019.11.010

Table 2.

Multivariable models for length of stay after total knee arthroplasty in California, 2007-2010 (N = 133,603).

Characteristics Negative binomial model on LOS, indicating relative LOS
Logistic regression model for probability of having outlier LOS (>9 d)
aRatio [95% CI] Odds ratio [95% CI]
Sex
 Male# 1.00 1.000
 Female 1.031d 1.025 1.037 0.635d 0.561 0.718
Age (y)
 50-54# 1.000 1.000
 55-59 1.004 0.989 1.019 0.889 0.629 1.258
 60-64 1.006 0.992 1.021 1.040 0.753 1.437
 65-69 1.028d 1.014 1.042 1.217 0.889 1.666
 70-74 1.051d 1.037 1.066 1.557c 1.145 2.117
 75-79 1.093d 1.078 1.108 1.973d 1.454 2.677
 Over 80 1.154d 1.138 1.171 2.932d 2.176 3.951
Ethnic group
 White# 1.000 1.000
 Hispanic 1.063d 1.054 1.072 1.214b 1.019 1.447
 Black 1.111d 1.096 1.126 1.917d 1.503 2.445
 Asian 1.118d 1.102 1.135 2.045d 1.615 2.590
 All others 1.045d 1.026 1.064 1.096 0.760 1.581
Insurance type
 All other insurance# 1.000 1.000
 Medicaid 1.216d 1.195 1.238 3.721d 2.932 4.724
Depression comorbidity
 No# 1.000 1.000
 Yes 1.052d 1.041 1.064 1.826d 1.496 2.229
Year of admission
 2007# 1.000 1.050 0.906 1.218
 2008 0.958d 0.950 0.966 0.800c 0.681 0.940
 2009 0.918d 0.910 0.925 0.634d 0.535 0.751
 2010 0.888d 0.881 0.895 0.607d 0.513 0.718
a

Exponent of the coefficient, which is the expected change in log count for a one-unit increase in a “Characteristic,” interpreted as a ratio to the #Reference category.

b

P < .05.

c

P < .01.

d

P < .001.