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The perceived replication crisis and the reforms designed to address it are grounded in the notion that
science is a binary signal detection problem. However, contrary to null hypothesis significance testing
(NHST) logic, the magnitude of the underlying effect size for a given experiment is best conceptualized as
a random draw from a continuous distribution, not as a random draw from a dichotomous distribution (null
vs. alternative). Moreover, because continuously distributed effects selected using a P < 0.05 filter must be
inflated, the fact that they are smaller when replicated (reflecting regression to the mean) is no reason to
sound the alarm. Considered from this perspective, recent replication efforts suggest that most published P <
0.05 scientific findings are “true” (i.e., in the correct direction), with observed effect sizes that are inflated to
varying degrees. We propose that original science is a screening process, one that adopts NHST logic as a
useful fiction for selecting true effects that are potentially large enough to be of interest to other scientists.
Unlike original science, replication science seeks to precisely measure the underlying effect size associated
with an experimental protocol via large-N direct replication, without regard for statistical significance. Reg-
istered reports are well suited to (often resource-intensive) direct replications, which should focus on influen-
tial findings and be published regardless of outcome. Conceptual replications play an important but separate
role in validating theories. However, because they are part of NHST-based original science, conceptual
replications cannot serve as the field’s self-correction mechanism. Only direct replications can do that.
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Scientists generally conduct experiments in an effort
to separate ideas that are true from ideas that are
false, but many have raised concerns about how much
progress is being made on that front. For example,
Ioannidis (1) famously claimed that most published re-
search findings are false, and Simmons et al. (2) rein-
forced that message by showing how easy it is for false
hypotheses to yield statistically significant results.When
prominent published results from fields as wide ranging
as preclinical cancer trials (3), gene association studies
(4), and social psychology (5) failed to replicate, alarm
bells began to go off.

The idea that nonreplicable findings might be
pervasive gained traction when the Open Science
Collaboration (OSC2015) (6) attempted to replicate
100 representative psychology experiments, 97 of which
originally achieved P < 0.05. To the surprise of many,
only 36% of those 97 original experiments achieved
P < 0.05 on replication, and the replicated effect sizes

were, on average, only half the size of the original effect
sizes (OSC2015) (table 1 of ref. 6). That pattern of results
cemented the idea of a “replication crisis,” and it has
shaken the public’s faith in science.

Had the large majority of those studies replicated at
P < 0.05, with average effect sizes similar to the origi-
nally reported effect sizes (with ∼50% larger than the
original effect size and ∼50% smaller), most would
probably agree that science is functioning as it should
be. However, such an outcome would mean that some-
thing went seriously wrong with the replication effort.
Unless the original studies had 100% power (an obvi-
ously unrealistic assumption), original findings selected
using a P < 0.05 filter must, on average, be associated
with inflated effect sizes (7). Therefore, on replication,
regression to the mean must occur. The original P <
0.05 studies did not have to be replicated to know, with
virtual certainty, that their effect sizes would decline
(Fig. 1). Fortunately, they did decline.
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How much would the effect sizes be expected to decline
given that the original experiments were associated with less
than 100% power and their reported effects were selected using
a P < 0.05 filter? The answer to that question is unknown, and
that is precisely the point. The perceived replication crisis con-
sists of comparing the observed OSC2015 outcome with an
unrealistic outcome. To assess the state of science in light of
the OSC2015 replication findings, it is important to first estimate
the expected outcome given inevitable regression to the mean.
We offer one such estimate here. Before delving into the quan-
titative details of that story, we first preview our findings and
present what we believe to be a novel and practical vision of
science. Indeed, it was our inquiry into regression to the mean,
not our estimate of its magnitude, that led us to the vision we
outline next.

Conceptualizing Science in Light of OSC2015
Because the role played by regression to the mean is unknown,
there are two competing interpretations of the OSC2015 findings.
The first is that most reported P < 0.05 findings in psychology are
false (the veritable definition of a replication crisis). The second is
that, even if true, most P < 0.05 effects are likely to be smaller
than the original results suggest. This interpretation is harder to
reconcile with the notion of a full-scale replication crisis because
it assumes that findings in the scientific literature are generally
true. Interestingly, this second interpretation was advanced by the
authors of OSC2015 themselves in their response to critics (8). As
they put it, “[t]he combined results of OSC2015’s five indicators of
reproducibility suggest that, even if true, most effects are likely to
be smaller than the original results suggest” (ref. 8, p. 1037-c).

So which is it, interpretation 1 (most original P < 0.05 findings
are false) or interpretation 2 (the original P < 0.05 findings are true,
but their effect sizes are smaller than originally reported)? Intuition
will not take us very far because this question cannot be answered
without first answering another question that is rarely considered:
what is the distribution of underlying (i.e., population) effect sizes
associated with experiments conducted by scientists? It is important
to be crystal clear about what this distribution of ground truth
represents.

Imagine the last 1,000 experiments conducted by 1,000 dif-
ferent scientists in a given field. Regardless of the observed effect
sizes (e.g., Cohen’s d) in these experiments and regardless of
whether they achieved P < 0.05, they all had some true, un-
derlying effect size (e.g., Cohen’s δ). If we could somehow know
what those 1,000 underlying effect sizes were, what would that
distribution look like? We call this the prior distribution of un-
derlying effect sizes, and the critical issue is whether that distri-
bution is dichotomous, as assumed by null hypothesis significance
testing (NHST) logic, or continuous (Fig. 2). Later in this article, we
present a principled argument for assuming that the prior distri-
bution is exponential in form. This distribution holds that un-
derlying effect sizes range continuously across experiments from
zero to∞, with the direction of the underlying effect defined to be
positive (Fig. 2C).

After proposing the exponential prior distribution of un-
derlying effect sizes, we used it to simulate both the original and
replication effect sizes reported in OSC2015. We ultimately con-
clude from these simulations and from additional analyses of the
OSC2015 data that interpretation 2 is much more defensible than
interpretation 1. In other words, our results are consistent with the
idea that the original P < 0.05 findings in psychological science
are generally “true” in the NHST sense of that word. In the NHST
sense, a finding is true if its underlying effect size is greater than
zero (ranging from negligible to large) and in the right direction.
Our results further suggest that their underlying effect sizes are
substantially smaller than originally reported, with much of the
decline being attributable to regression to the mean.* This pos-
sibility seems important to carefully consider before reforming
science in an effort to enhance replicability (11–15).

Is Regression to the Mean a Problem That Needs to Be Fixed?

If the OSC2015 replication data largely reflect regression to the
mean, the implication would be that the original studies had
considerably less than 100% power. If so, it is tempting to jump
straight to the conclusion that the field should fix this problem by
substantially increasing sample size (N), thereby increasing sta-
tistical power in future studies. Indeed, this recommendation may
be the most widely agreed on reform by those working to improve
scientific practices (13, 16–18).

Increasing N to boost statistical power would make sense if
science actually were a binary signal detection problem, with
underlying effect sizes being either literally zero (the null hy-
pothesis) or some definite quantity, μ, greater than zero (the al-
ternative hypothesis). Given that picture of underlying reality,
increasing N would increase the “hit rate” (i.e., power) while
leaving the “false alarm rate” (i.e., the alpha level) unchanged
(13) (SI Appendix). However, if underlying reality is continuous,
then, unless NHST were also abandoned, this cure would be
worse than the disease. The reason is that conducting studies with
ever-larger N will introduce ever-smaller underlying effect sizes
into the P < 0.05 literature. Thus, in a manner of speaking, the
false alarm rate (i.e., the rate of small underlying effects achieving
statistical significance) will also increase as N increases.

Fig. 1. Whenever power is less than 100%, the average of observed
effect sizes (d) selected using a P < 0.05 filter would have to be
greater than the underlying effect size, δ. For example, if power was
as low as 31%, then all of the selected effect sizes (shaded region)
would exceed the true underlying effect size of δ. Thus, when those
effects were later replicated, regression to the mean would be
observed.

*This issue has occasionally been pointed out, although without modeling the
data (9, 10). Indeed, Trafimow (10) noted that “one way to view the Open
Science Collaboration finding is that it provides empirical confirmation that
psychology results are not immune to statistical regression” (p. 1190).

5560 | www.pnas.org/cgi/doi/10.1073/pnas.1914237117 Wilson et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1914237117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1914237117


Reject the Null Hypothesis
As noted long ago by Meehl (19), with large-enough N, virtually
every study would yield a significant result. In his words, “it is
highly unlikely that any psychologically discriminable stimulation
which we apply to an experimental subject would exert literally
zero effect upon any aspect of his performance” (ref. 19, p. 109).
Cohen (ref. 20, p. 1308) made a similar point

The null hypothesis, taken literally (and that’s the only way
you can take it in formal hypothesis testing), is always false in
the real world. It can only be true in the bowels of a computer
processor running a Monte Carlo study (and even then a stray
electron may make it false). If it is false, even to a tiny degree,
it must be the case that a large enough sample will produce a
significant result and lead to its rejection.

Echoing the same theme, Tukey (21) admonished that “It is foolish
to ask ‘Are the effects of A and B different?’ They are always dif-
ferent—for some decimal place” (ref. 21, p. 100).

The point is that the small effect that exists in every experiment
(often for “nuisance” reasons having nothing to do with the theory
the experimenter has in mind) would be detected with large-
enough N. A troubling implication is that the detected effect
would be in accordance with an a priori prediction made by a false
theory half the time (19). Thus, maximizing N could be considered
the ultimate questionable research practice, not the solution to
what ails science. Rather than trying to fix the problem of re-
gression to the mean by maximizing N, we submit that a much
better solution would be for scientists and consumers of science
alike to change their understanding of what a P < 0.05 finding
actually means.

A P < 0.05 finding should not be regarded as a scientifically
established discovery; instead, it should be regarded as a pro-
visional finding, one that is likely in the right direction but with an
observed effect size that is inflated to an unknown degree. Pro-
visional findings merit the attention of scientists, but they have not
yet been scientifically established for wider consumption. This is
especially true if the finding is a surprising one. The original
finding has to remain provisional until an independent laboratory
directly replicates the experiment and obtains a precisely esti-
mated effect size, one that is large enough to matter. Replication,
after all, is the self-correction mechanism of science.

The Self-Correction Mechanism of Science
High-profile P < 0.05 findings are often surprising findings, and
therefore, they understandably attract attention. The apparent
demonstration of extrasensory perception (ESP) by Bem (22) is an
extreme example. However, direct replications of those ESP ex-
periments by independent laboratories failed to reproduce the
originally observed effect (23, 24). Many interpret this episode as
Engber (25) did in an article for Slate magazine entitled “Daryl
Bem proved ESP is real. Which means science is broken,” but we
see the issue in a different light.

In our view, science is not broken because findings supporting
ESP found their way into the literature only to be quickly corrected.
This is precisely how science should work (i.e., science is supposed
to correct its inevitable mistakes in due course). Instead, the
problem is that, unlike the provisional findings reported by Bem
(22), other high-profile findings sometimes appeared to pass the
test of having been independently replicated, yet they ultimately
turned out to have effect sizes very close to zero (26). Thus, some-
thing went wrong with the self-correction mechanism.

Fig. 2. (A) The prior distribution of underlying effect sizes (δ) assumed by standard NHST logic. (B) The distribution of measured effect
sizes (d) after adding Gaussian measurement error. (C) The prior distribution of δ according to the continuous view using the exponential
distribution as an example. (D) If the prior distribution of δ is exponential, the distribution of d (which includes Gaussian measurement error)
would be an ex-Gaussian.
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What went wrong, exactly? According to Pashler and Harris (5),
the answer is that scientists assumed that theory-based concep-
tual replications were an adequate and perhaps even preferable
substitute for direct replications. However, an often overlooked
point is that effect sizes pertain to experimental protocols and
have nothing to do with theory (i.e., theories do not have effect
sizes). The self-correction mechanism consists of repeating the
original experimental protocol as closely as possible, focusing on
the method section of the original article, not on the theory that
was tested (27, 28). The question of interest is whether an inde-
pendent laboratory, duplicating the original experimental pro-
tocol as closely as possible but with much larger N, finds an effect
size large enough to be worth factoring it into our understanding
of the world (even if the effect is smaller than originally reported,
as it is likely to be). As noted by Popper (ref. 29, p. 45),

Indeed the scientifically significant physical effect may be
defined as that which can be regularly reproduced by anyone
who carries out the appropriate experiment in the way pre-
scribed. No serious physicist would offer for publication, as a
scientific discovery, any such ‘occult effect,’ as I propose to call
it—one for whose reproduction he could give no instructions.

Whether a precisely measured replicated effect size is large
enough to matter is not provided by the outcome of any statistical
test but is instead a judgment call that will eventually be made by
a consensus of scientists. As an example, with regard to the ex-
perimental protocols that initially yielded evidence for “money
priming,” a consensus seems to be emerging that any such effect
is too close to zero to matter (30).

Conceptual replications, by contrast, pertain to theories, not to
experimental protocols, and they serve a completely different
function (28). This point is worth emphasizing because direct and
conceptual replications are often pitted against each other as if
the field should choose one or the other. However, both are im-
portant. Whereas direct replications indicate whether the original
experimental protocol again yields a nonnegligible effect size,
conceptual replications indicate whether the relevant theory
again predicts the outcome when a different experimental pro-
tocol is used (31–33). The more often a theory correctly predicts
the outcome of conceptual replications, the more faith one should
have in that theory. However and this is the key point, conceptual
replications do not constitute the self-correction mechanism of
science. The reason is that a failed conceptual replication cannot
be interpreted to mean that independent laboratories are unable
to reproduce the originally reported finding (34). Instead, it might
simply mean that the methodological departures from the original
study pushed a valid theory beyond its domain of application.
Thus, despite the somewhat misleading name, conceptual “rep-
lications” are part of original science (where provisional findings
are published), not replication science.

NHST for Original Science vs. Replication Science
NHST has been excoriated for decades, with the main concern
being its emphasis on either/or decision making (35–37). Here, we
pile on by adding our own critique, making the argument that
NHST is grounded in a false binary depiction of underlying reality.
Even so, scientists should―as they long have―embrace it.

NHST Is a Useful Fiction for Original Science. If its foundational
assumption is wrong, then what purpose does NHST serve? We
suggest that its value can be appreciated by considering the

underlying effect sizes (not the inflated observed effect sizes) that
end up in the P < 0.05 literature. Specifically, as we detail later,
applying the fiction of NHST to original science provides a mech-
anistic way to maximize the mean of the underlying effect sizes in
the P < 0.05 literature, leaving behind an unholy mess of mostly
small underlying effect sizes associated with hypotheses that few
people care about except the scientists who dreamed them up in
the first place. Original science relies on NHST precisely to serve
that invaluable screening function. Note how different this goal is
from themore intuitively appealing but less precise goal of trying to
ensure that published P < 0.05 findings are true.

According to the case we lay out, the mean of the distribution
of underlying effect sizes in the P < 0.05 literature is maximized
(counterintuitively) by neither minimizing nor maximizing N; in-
stead, it is maximized by optimizing N at an intermediate value. In
other words, it is optimized by conducting original NHST scientific
research in a way that is not radically different from how it is cur-
rently conducted. Using an intermediate value of N, original sci-
ence screens for relatively large effect sizes on average.

There Is No Place for NHST in Replication Science. In contrast to
the screening function served by original science, replication sci-
ence is a truth-establishing endeavor. For experimental protocol i,
the magnitude of δi is the only truth there is. Thus, replication sci-
ence necessarily abandons the otherwise useful either/or fiction of
NHST. The goal of replication science is to precisely measure the
underlying effect size associated with a given experimental pro-
tocol (i.e., to quantify δi), and at this stage of the scientific process,
maximizing N facilitates that goal (ref. 38 is a recent example).

Ideally, the replication would be a registered report reviewed in
advance and published regardless of outcome (39, 40). Otherwise,
“failures to replicate” might become easier to publish than suc-
cessful replications or vice versa. However, in contrast to original
science, publication bias for replication science is unjustifiable,
which is why registered replications seem like the way to go.

Finally, a large-N direct replication is resource intensive, po-
tentially involving many laboratories. Thus, it makes sense to re-
serve those resources to replicate original P < 0.05 findings that
matter (i.e., published P < 0.05 findings that gain currency), not
every P < 0.05 finding. Indeed, the more important the finding, the
more sense it makes to devote extensive resources to the replica-
tion effort, perhaps going so far as to employ “radical randomiza-
tion” (41). Given its focus on large-N replications of a relatively small
proportion of published findings (namely, the important ones), our
vision is almost the diametric opposite of the “large-N, publish
everything” vision of science advocated by others (36).

The foundation of our vision of science comes from a consid-
eration of a theoretically plausible distribution of underlying effect
sizes associated with the experiments that scientists conduct,
some of which end up in the P < 0.05 literature (with inflated
observed effect sizes). We now turn to a more detailed inquiry into
the underlying reality of science.

Science Is Not a Signal Detection Problem
NHST assumes that the underlying effect size (δ) is a discrete, bi-
nary variable to which measurement error is added (Fig. 2B). Any-
one who has ever performed a power analysis before conducting an
experiment has come into contact with this binary view of un-
derlying effect sizes. The familiar steps are as follows: 1) specify the
effect size associated with the null hypothesis (often δ = 0), 2)
specify the effect size associated with the alternative hypothesis
(e.g., δ = 0.30), 3) select an alpha level (usually 0.05), 4) select
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desired power (e.g., 0.80), and 5) use a power calculator to de-
termine the necessary N. In this approach, underlying effect sizes
are assumed to correspond to a strictly dichotomous distribution as
if δ is equal to either 0 or 0.30, but effect sizes of 0.20 or 0.40 are so
unthinkable as to not even be worth mentioning, much less be
taken seriously.

Contrary to what we pretend to be true when computing sta-
tistical power, effect sizes are better conceptualized as having
been drawn from a nonbinary continuous distribution. As noted
earlier, this perspective inherently rejects the idea that science is a
signal detection problem. Ironically, signal detection theory evolved
from the NHST approach of Fisher (42) (“false” corresponds to δ = 0;
true corresponds to the rejection of that idea) as elaborated by
Neyman and Pearson (43), who proposed also taking into account
the specific magnitude of the alternative hypothesis (44, 45). How-
ever, a key feature of an actual signal detection problem is that each
trial can be unambiguously categorized as a stimulus-present trial or
a stimulus-absent trial. It is not an assumption; it is literally true be-
cause an intelligent agent (namely, the experimenter) has arranged
the task to be that way. In NHST, by contrast, the idea that δ is either
true (i.e., δ ≠ 0) or false (δ = 0) is simply a formalization, one adopted
for its utility, not to accurately model underlying reality. In reality, δ is
almost certainly a continuous variable, and no experiment needs to
be performed to reject the null hypothesis of δ = 0 because it can be
safely rejected a priori (19–21).

What Is the Prior Distribution of δ?
Although we know almost nothing about the prior distribution of
underlying effect sizes, we do know something about it. We know,
for example, that δ ranges from zero to infinity, with the direction
of the effect defined as positive. We also have some information
about its mean. For example, when OSC2015 replicated 97 rep-
resentative P < 0.05 effects from experimental psychology, the
mean of the absolute values of the replication effect sizes—which
provides a relatively unbiased estimate of the mean of their un-
derlying effect sizes—was approximately d

—

≈ 0.60 (46).† Thus, it
seems reasonable to suppose that the mean of the prior distri-
bution of the underlying effect sizes associated with all psychol-
ogy experiments, including the nonsignificant effects that were
never published, would be less than that, perhaps ∼0.30.

If all we know about a distribution is 1) its range and 2) its
mean, then as noted by Jaynes (47), the maximum entropy dis-
tribution—that is, the distribution that is “maximally noncommittal
with regard to missing information” (ref. 47, p. 623)—is the ex-
ponential. In truth, we do not know the exact mean of the un-
derlying effect size distribution. However, given how much of the
infinite range of possibilities we can safely rule out, it seems rea-
sonable to proceed as though we do. We therefore used the
exponential as the prior distribution of underlying effect sizes (as
illustrated earlier in Fig. 2C). The underlying effect size for any
given experiment, i, is conceptualized as a random draw from
this distribution.

Simulating Scientific Research
To investigate the implications of the nonbinary view of science,
we modeled the OSC2015 data—both the original experiments
and the replication experiments—via simulation. At a minimum,

our study provides an existence proof that regression to the mean
can result in substantially reduced effect sizes on replication, just
as Simmons et al. (2) provided an existence proof showing that
flexibility in data analysis could increase scientific false positives.
However, our simulation provides more than just an existence
proof because it is, additionally, constrained by empirical data.

Original Experiments. As illustrated in Fig. 3, the simulation of
original experiment, i, involved 1) a random draw, δi, from an
underlying exponential effect size distribution with mean δ and 2) a
random draw from a conceptually related sample size distribution
governed by a parameter g, yielding sample size, Ni (details are in
SI Appendix). Next, for each simulated subject, j, random error
drawn from a unit normal distribution was independently added to
δi to create individual xij scores. A one-sample t test was then per-
formed on those data, and the observed Cohen’s d effect size was
computed from that value using the formula di = ti

ffiffiffiffi

Ni
p . This process

was repeated for a large number of simulated experiments.
The two free parameters (δ and g) (Fig. 3) were adjusted

separately for the cognitive and social psychology experi-
ments until the simulated P< 0.05 data approximately matched 1)
the P curves (48) for the original experiments replicated by
OSC2015 and 2) the mean of the observed Cohen’s d effect size
distributions for the P < 0.05 original experiments replicated by
OSC2015. With regard to the estimated mean of the prior distri-
bution of underlying effect sizes, the final parameter estimates for
cognitive and social psychology were δCog = 0.53 and δSoc = 0.22,
respectively. In other words, the data suggest that the underlying
effect sizes in cognitive psychology are larger than those in
social psychology.

Replication Experiments. For the subset of simulated original
experiments yielding statistically significant observed effect sizes
(P < 0.05, two tailed), we performed simulated replication ex-
periments, generating another set of observed effect sizes. Each
simulated replication experiment was based on the same under-
lying effect size (δi) used for the corresponding original experi-
ment, but the sample size was determined using a power
calculator. More specifically, based on the observed effect size (di)
of the simulated original study, Ni for the simulated replication
experiment was selected to achieve 90% power (following the
practice used for real data in OSC2015). In the end, we had one set
of di values from the simulated original studies and a corresponding
set of di values from the simulated replication experiments.

Fig. 3. Example of the underlying exponential effect size distribution
(A) and sample size distribution (B) used for our simulated
experiments. These examples were taken from our simulation of
social psychology, where the mean of the effect size distribution is
0.22 and the mean of the sample size distribution (with g set to 0.08)
is ∼23.

†OSC2015 replicated 97 P < 0.05 effects as reported in table 1 of ref. 6, but the
original and replicated effect sizes are available for only 94 of them. Thus, from
here on, we consider those 94 effects.
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Estimated Regression to the Mean. Our initial simulation based
on the model specified above indicated that ∼70% of the re-
duction in the observed effect sizes in OSC2015 may reflect re-
gression to the mean. Model variations involving plausible (albeit
subjective) assumptions yielded lower estimates falling in the
40 to 50% range (SI Appendix). Although the exact estimate will
vary depending on the model that one finds to be the most
compelling, our results lend credibility to the idea that regression
to the mean played a substantial role in OSC2015.

Regression to the mean would potentially account for all of the
observed effect size decline if the original studies involved no
questionable research practices (QRPs) and the replication studies
were all perfect replicas of the original studies. However, it seems
unlikely that QRPs were completely absent in the original studies
and that the replication studies were all perfect replicas of the
original studies. After all, when asked, scientists admit to sometimes
engaging in QRPs (49). Doing so must have some effect on the
observed outcome. Similarly, even a photocopy of a document is
not a perfect replica of the original because some degree of rep-
lication error is inevitable. In the OSC2015 replications, for exam-
ple, the procedure was modified—in several cases dramatically so
according to some—in order to perform the study in countries with
cultures and languages different from the original studies (50).

More generally, additional factors, such as flexibility in exper-
imental design and data analysis, can also lead to a reduction in
replication effect sizes over and above regression to the mean
(51). Nevertheless, beyond a variety of factors that may have
played some role, our model-based simulation suggests that the
OSC2015 replication results were substantially influenced by re-
gression to the mean.

Note that, according to our simulation, both the original and
replication effect sizes were larger for the experiments from
cognitive psychology than social psychology. Also, simulated
cognitive experiments were more likely to replicate at P < 0.05
(71%) than simulated social experiments (54%). However, despite
superficial appearances, it does not automatically follow that
cognitive psychology is a stronger science than social psychology
(46, 52) (SI Appendix).

Most of the Original P < 0.05 Findings Are True, Not False
Overall, our analysis stands against a common intuitive un-
derstanding of the OSC2015 findings, which is that the 36% of
experiments that successfully replicated at P < 0.05 are true
positives (δ > 0) and that the 64% of experiments that failed to
replicate at P < 0.05 are false positives (δ = 0). If one adopts the
NHST view of what true means, then our model-based inquiry
suggests that the OSC2015 findings are best characterized by
interpretation 2 presented earlier: the original findings are gen-
erally true, but the effect sizes are smaller than originally reported.

Another way tomake this point without relying on our model is to
directly test whether the 64% of replication experiments with non-
significant outcomes were (originally) false positives. Clearly, they
were not because the distribution of the Cohen’s d effect sizes from
the nonsignificant replication studies was not centered on 0 but was
instead significantly greater than 0: t (59)= 3.47, P= 0.001. Note that
these findings were selected using a P > 0.05 filter and are therefore
biased towards 0 (i.e., if they were replicated again, the now-
unbiased effect-size estimates would be larger). Yet, even without
correcting for that bias, the distribution of nonsignificant effect sizes
from OSC2015 is significantly greater than 0. Thus, like the P <
0.05 effect sizes, many (if not all) of the nonsignificant effect sizes
are also true in the NHST sense. Moreover, they would have been

detected at P < 0.05 had the replication studies tested a much
larger number of subjects (53). That fact underscores our point that
increasing N to increase power will fill the scientific literature with
ever smaller underlying effects.

In Defense of NHST
Against a relentless torrent of criticism that now spans more than
half a century, only a few have come to the defense of NHST (54).
Even so, NHST has remained the dominant approach to con-
ducting research in many scientific fields. Why? We contend that,
despite its flaws, NHST serves a useful purpose that none of the
proposed alternative approaches has yet demonstrated.

What NHST Selects vs.What It Leaves Behind. Fig. 4A shows the
exponential prior distribution of underlying effect sizes for the social
psychology simulations described earlier ðδ= 0.22Þ. Fig. 4 B and C
shows the distributions of underlying effect sizes for the simulated
nonsignificant findings and significant findings, respectively. Finally,
Fig. 4D shows the (inflated) observed effect sizes associated with the
significant findings. Note that the observed effect sizes in Fig. 4D are
always positive on the assumption that an experimenter who pub-
lishes a P < 0.05 finding in the wrong direction would be unaware of
the sign error. The negative underlying effect sizes in Fig. 4 B and C
(which were positive in Fig. 4A) indicate that the observed effect size
in our simulation was in the wrong direction.

A large percentage of original experiments (78%) yields results
that are not statistically significant (Fig. 4B). These filtered-out
experiments had an average underlying effect size even closer
to zero than the average underlying effect size of the prior distri-
bution, and a high percentage of them has observed effect sizes
that are in the wrong direction. Because they did not yield signifi-
cant results, these studies would mostly end up in the “file drawer.”
By contrast, a smaller percentage of experiments (22%) yields a
statistically significant outcome (Fig. 4C).‡ These experiments have
a considerably larger average underlying effect size relative to the
prior distribution, and less than 5% are sign errors (55).

Fig. 4C illustrates the invaluable screening function served by
NHST and publication bias. From a prior distribution with a mean
underlying effect size of 0.22, a new distribution with a substantially
higher mean (0.43) is selected for consideration by other scientists.
However, these P < 0.05 findings reflect a distribution of underlying
effect sizes, some of which are too close to 0 to matter and a few of
which are slightly in the wrong direction. Because we do not know
which observed effects fall into that near-0 region, P < 0.05 findings
are not yet scientifically established discoveries. They are, however,
worth considering, and those that happen to gain currency are
worth directly replicating in a large-N investigation.

Publication bias is almost always construed as a cost, not a
benefit, because nonsignificant findings end up in the file drawer.
However, it seems important to distinguish between two separate
drawers: 1) the file drawer, consisting of invisible direct replica-
tions of findings in the P < 0.05 literature that failed to yield a
significant result and 2) the junk drawer, consisting of idiosyn-
cratic, once-tested ideas that a researcher dreamed up and tested
but that failed to yield a significant result. Everyone would like
to see the file drawer become visible. However, if everything were

‡Power was, therefore, 22%, which might sound surprisingly low. However,
translated into binary logic, imagine that the prior odds of an effect being true
are 1:4, power is 80%, and the alpha level is 5%. In that seemingly reasonable
scenario, only 20% of experiments would similarly yield a P < 0.05 result.
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published to accomplish that worthy goal, it would come at the
cost of polluting the literature with the junk drawer as well (illus-
trated in Fig. 4B).

What, Exactly, Is the Goal of NHST Research? In a nonbinary
effect size world, the goal of NHST research has to be specified
with respect to a distribution of underlying effect sizes. In the
example above, the mean of the distribution of underlying effect
sizes that appear in the literature (Fig. 4C) is approximately double
the mean of the prior distribution of underlying effect sizes (Fig.
4A). This outcome occurred using an average simulated N of ∼23.
By contrast, ifNwere set to an extremely large value, then virtually
every experiment would achieve P < 0.05, and the distribution
of statistically significant underlying effect sizes would essen-
tially reproduce the prior distribution with a mean of 0.22. That
outcome (i.e., smaller underlying effect sizes in the statisti-
cally significant literature) illustrates a cost of maximizing N even
if doing so did not consume additional resources, which it
also does.

Interestingly, a similar result is obtained if N is minimized. That
is, small-N studies are also counterproductive because they too
minimize underlying effect sizes that appear in the P < 0.05 litera-
ture. When NHST is applied to a world in which the prior distribu-
tion is a continuous exponential, the mean of the underlying
distribution of P < 0.05 effect sizes is maximized using an in-
termediate value of N (SI Appendix). Thus, a rational goal for
original science is to use an intermediate sample size that maxi-
mizes the average δ associated with the published P < 0.05 findings
(Fig. 5).§

An NHST Analogy. Imagine testing 100 candidates for a new
basketball team. In this analogy, each candidate represents an
experiment. The underlying ability to play basketball is a contin-
uously distributed variable (it might even be exponential), and
each candidate’s ability represents an effect size. At considerable
expense, we could test everyone’s basketball-playing ability
precisely, but we instead decide to use a much less costly
screening test to separate the “true” basketball players from the
“false” basketball players (a binary fiction we set up for the sake of
convenience). Our screening test consists of selecting players who
hit 10 free throws in a row, an outcome that represents achieving
P < 0.05. Imagine that 5 of the 100 candidates pass our free-throw

Fig. 4. (A) Prior distribution of underlying effect sizes used earlier for social psychology simulation. (B) Underlying effect sizes associated with
nonsignificant outcomes in our simulation study (78% of the simulated experiments). (C) Underlying effect sizes associated with significant outcomes
in our simulation study (22% of the simulated experiments). Of the significant effects, ∼3.5% are in the wrong direction relative to the observed
effect size (shown here as negative underlying effects). (D) Observed effect sizes associated with significant outcomes in our simulation study.

Fig. 5. Expected value of δ given a P < 0.05 outcome assuming an
exponential prior with δ = 0.22. The mean of the distribution of P <
0.05 underlying effect sizes is maximized at δmax = 0.463 when an
intermediate value of N is used (N = 13 in this example). The
expected value of the inflated observed effect size associated with
δmax (not shown in the figure) is d = 0.850.

§A reasonable alternative goal might be to choose the value of N that would
maximize the mean of the underlying effect sizes subject to the constraint that
the expected observed effect size is no more than, say, 1.5 times the expected
underlying effect size.
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test, so they make the team, an outcome that represents empirical
findings being published.

The first point to make about these 5 players is that, on aver-
age, they are likely to be better than the 100 candidates we
started with, a fact that highlights the value of our relatively in-
expensive screening test. The second point to make is that if we
tested these 5 players again they would likely hit fewer than 10
free throws in a row, on average (i.e., on replication, regression to
the mean would almost certainly be observed). Thus, although
these 5 players are good, on average, they are not as good as
their performance on the original test made them seem. Still, if no
one ever came to watch this new team play, the fact that some of
them might not be very good would not matter very much. By
contrast, if their perfect free-throw performance got the attention
of recruiters for the national Olympic basketball team, it would
now make sense to carefully assess each of the 5 selected players
on their basketball playing ability even though the cost of doing
so would be high. This analogy represents how NHST operates in
a continuous effect-size world, and the key point is that it has
nothing to do with true vs. false (except as part of a screening
fiction). The specific magnitude of each player’s basketball ability
is the only truth there is.

Conclusion
The first sentence of Cohen’s (56) treatise on NHST research reads
as follows: “After 4 decades of severe criticism, the ritual of null
hypothesis significance testing—mechanical dichotomous deci-
sions around a sacred .05 criterion—still persists” (ref. 56, p. 997).
That paper was published 25 y ago, which means that NHST re-
search has now survived more than six decades of severe criticism.
Even themost ardent opponent of NHST research might agree that
it is not completely irrational to assume that the next 65 y of sci-
entific research are going to look a lot like the last 65 y of scientific
research, namely lots of NHST research along with relentless criti-
cism of it.

If we are right to assume that underlying effect sizes are contin-
uously distributed and that NHST research will likely be with us for
the foreseeable future, then what would the goal of scientific re-
search be? The vision of science we set forth above holds that
original science based on NHST should be viewed as a screening
process aimed at other scientists, whereas replication science in-
volving large-N direct replications without regard for statistical
significance should be viewed as a confirmation process aimed at
everyone (scientists, textbook writers, themedia, policymakers, etc.).

An advantage of the screening-plus-confirmation vision of sci-
ence is that the changes to current practices that would be required

are relatively modest. That makes it a more feasible vision than
alternative ideas that depend on much more sweeping changes
(and on the untested hope that the benefits of those changes to
science will outweigh the unintended consequences). In addition, it
would be cost effective in that the resources required to conduct
large-N direct replications would not be expended on every finding
or even on every P < 0.05 finding. Instead, unlike the “large-N,
publish everything vision” (36), resources would be concentrated
on published findings that gain currency (57). This vision may not
appeal to the metaanalyst, but in a resource-limited world, large-N
direct replications of influential findings may provide the best path
to the truth (58).

A headwind for our vision is that it depends on replication
science actually happening. It therefore seems important for
funding agencies to directly incentivize such work by funding
proposals to replicate influential findings in the published litera-
ture. Given that NHST research can only be reasonably viewed as
a screening process, not as a truth-establishing endeavor, major
funding agencies should set aside a significant fraction of their
budgets (e.g., 10% or more) for independent, large-N direct
replications of influential findings.

In addition, outlets for replication science are essential, but not
every journal is open to the idea. One approach might be for an
original science journal to publish peer reviewed and fully indexed
direct replications in an online sister journal (e.g., for the family of
Nature journals, this new member of the family might be called
Nature Replications). The online versions of the originally published
studies would then be amended by adding conspicuous links to any
and all large-N direct replications of it that are published in the
sister journal.

In summary, for original science, NHST logic is a useful fiction,
one that serves a screening function, much like medical screening
does. By contrast, at the replication stage, we add our voice to the
many who have called for the abandonment of NHST logic (36,
37). At that stage, the only relevant truth is the singular underlying
effect size associated with the original experimental protocol.
There is no other truth, and the goal of replication science should
be to bring that truth to light as precisely as possible.

Data Availability. The code used for simulating the OSC2015 data
is available at https://osf.io/pvxzs/.
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