
CO
M

PU
TE

R
SC

IE
N

CE
S

The impossibility of low-rank representations for
triangle-rich complex networks
C. Seshadhria,1, Aneesh Sharmab, Andrew Stolmana, and Ashish Goelc

aDepartment of Computer Science, University of California, Santa Cruz, CA 95064; bGoogle, Mountain View, CA 94043; and cDepartment of Management
Science and Engineering, Stanford University, Stanford, CA 94305

Edited by Mark E. J. Newman, University of Michigan, Ann Arbor, MI, and accepted by Editorial Board Member Peter J. Bickel February 1, 2020 (received for
review June 26, 2019)

The study of complex networks is a significant development in
modern science, and has enriched the social sciences, biology,
physics, and computer science. Models and algorithms for such
networks are pervasive in our society, and impact human behavior
via social networks, search engines, and recommender systems,
to name a few. A widely used algorithmic technique for mod-
eling such complex networks is to construct a low-dimensional
Euclidean embedding of the vertices of the network, where prox-
imity of vertices is interpreted as the likelihood of an edge.
Contrary to the common view, we argue that such graph embed-
dings do not capture salient properties of complex networks. The
two properties we focus on are low degree and large clustering
coefficients, which have been widely established to be empirically
true for real-world networks. We mathematically prove that any
embedding (that uses dot products to measure similarity) that can
successfully create these two properties must have a rank that is
nearly linear in the number of vertices. Among other implications,
this establishes that popular embedding techniques such as singu-
lar value decomposition and node2vec fail to capture significant
structural aspects of real-world complex networks. Furthermore,
we empirically study a number of different embedding techniques
based on dot product, and show that they all fail to capture the
triangle structure.

graph embeddings | graph representations | low-dimensional
embeddings | low-rank representations | singular value decomposition

Complex networks (or graphs) are a fundamental object of
study in modern science, across domains as diverse as the

social sciences, biology, physics, computer science, and engi-
neering (1–3). Designing good models for these networks is a
crucial area of research, and also affects society at large, given
the role of online social networks in modern human interaction
(4–6). Complex networks are massive, high-dimensional, discrete
objects, and are challenging to work with in a modeling context.
A common method of dealing with this challenge is to construct
a low-dimensional Euclidean embedding that tries to capture the
structure of the network (see ref. 7 for a recent survey). For-
mally, we think of the n vertices as vectors ~v1,~v2, . . . ,~vn ∈Rd ,
where d is typically constant (or very slowly growing in n).
The likelihood of an edge (i , j ) is proportional to (usually a
nonnegative monotone function in) ~vi ·~vj (8, 9). This gives a
graph distribution that the observed network is assumed to be
generated from.

The most important method to get such embeddings is the
singular value decomposition (SVD) or other matrix factoriza-
tions of the adjacency matrix (8). Recently, there has also been
an explosion of interest in using methods from deep neural
networks to learn such graph embeddings (9–12) (refer to ref.
7 for more references). Regardless of the specific method, a
key goal in building an embedding is to keep the dimension d
small—while trying to preserve the network structure—as the
embeddings are used in a variety of downstream modeling tasks
such as graph clustering, nearest-neighbor search, and link pre-
diction (13). Yet a fundamental question remains unanswered:

To what extent do such low-dimensional embeddings actually
capture the structure of a complex network?

These models are often justified by treating the (few) dimen-
sions as “interests” of individuals, and using similarity of interests
(dot product) to form edges. Contrary to the dominant view, we
argue that low-dimensional embeddings are not good represen-
tations of complex networks. We demonstrate mathematically
and empirically that they lose local structure, one of the hall-
marks of complex networks. This runs counter to the ubiquitous
use of SVD in data analysis. The weaknesses of SVD have been
empirically observed in recommendation tasks (14–16), and our
result provides a mathematical validation of these findings.

Let us define the setting formally. Consider a set of vectors
~v1,~v2, . . . ,~vn ∈Rd (denoted by the d ×n matrix V ) used to rep-
resent the n vertices in a network. Let GV denote the following
distribution of graphs over the vertex set [n]. For each index
pair i , j , independently insert (undirected) edge (i , j ) with prob-
ability max(0, min(~vi ·~vj , 1)). (If ~vi ·~vj is negative, (i , j ) is never
inserted. If ~vi ·~vj ≥ 1, (i , j ) is always inserted.) We will refer to
this model as the “embedding” of a graph G , and focus on this
formulation in our theoretical results. This is a standard model in
the literature, and subsumes the classic Stochastic Block Model
(17) and Random Dot Product Model (18, 19). There are alter-
nate models that use different functions of the dot product for
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the edge probability, which are discussed in Alternate Models.
Matrix factorization is a popular method to obtain such a vector
representation: The original adjacency matrix A is “factorized”
as V TV , where the columns of V are ~v1,~v2, . . . ,~vn .

Two hallmarks of real-world graphs are 1) sparsity, where
the average degree is typically constant with respect to n , and
2) triangle density, where there are many triangles incident to
low-degree vertices (5, 20–22). The large number of triangles is
considered a local manifestation of community structure. Trian-
gle counts have a rich history in the analysis and algorithmics
of complex networks. Concretely, we measure these properties
simultaneously as follows.

Definition 1. For parameters c> 1 and ∆> 0, a graph G with
n vertices has a (c, ∆)-triangle foundation if there are at least ∆n
triangles contained among vertices of degree, at most, c. Formally,
let Sc be the set of vertices of degree, at most, c. Then, the number
of triangles in the graph induced by Sc is at least ∆n .

Typically, we think of both c and ∆ as constants. We empha-
size that n is the total number of vertices in G , not the number
of vertices in S (as defined above). Refer to real-world graphs in
Table 1. In Fig. 1, we plot the value of c vs. ∆. (Specifically, the
y axis is the number of triangles divided by n .) This is obtained
by simply counting the number of triangles contained in the set
of vertices of degree, at most, c. Observe that, for all graphs, for
c ∈ [10, 50], we get a value of ∆> 1 (in many cases, ∆> 10).

Our main result is that any embedding of graphs that gen-
erates graphs with (c, ∆)-triangle foundations, with constant
c, ∆, must have near-linear rank. This contradicts the belief that
low-dimensional embeddings capture the structure of real-world
complex networks.

Theorem 1. Fix c> 4, ∆> 0. Suppose the expected number
of triangles in G ≈GV that only involve vertices of expected
degree c is at least ∆n . Then, the rank of V is at least
min(1, poly(∆/c))n/ lg2 n .

Equivalently, graphs generated from low-dimensional embed-
dings cannot contain many triangles only on low-degree vertices.
We point out an important implication of this theorem for
Stochastic Block Models. In this model, each vertex is mod-
eled as a vector in [0, 1]d , where the i th entry indicates the
likelihood of being in the i th community. The probability of
an edge is exactly the dot product. In community detection
applications, d is thought of as a constant, or at least as much
smaller than n . On the contrary, Theorem 1 implies that d
must be Ω(n/ lg2 n) to accurately model the low-degree triangle
behavior.

Empirical Validation
We empirically validate the theory on a collection of com-
plex networks detailed in Table 1. For each real-world graph,
we compute a 100-dimensional embedding through SVD (basi-
cally, the top 100 singular vectors of the adjacency matrix). We
generate 100 samples of graphs from these embeddings, and
compute their c vs. ∆ plot. This is plotted with the true c vs.
∆ plot. (To account for statistical variation, we plot the max-
imum value of ∆ observed in the samples, over all graphs.
The variation observed was negligible.) Fig. 1 shows such a

Table 1. Datasets used

Dataset name Network type Number of nodes Number of edges

Facebook (29) Social network 4,000 88,000
cit-HePh (31, 32) Citation 34,000 420,000
String hs (30) PPI 19,000 5.6 million
ca-HepPh (29) Coauthorship 12,000 120 million

All numbers are rounded to one decimal point of precision. PPI, protein–
protein interaction.

Fig. 1. Plots of degree c vs. ∆: For a High Energy Physics coauthorship net-
work, we plot c versus the total number of triangles only involving vertices
of degree, at most, c. We divide the latter by the total number of vertices
n, so it corresponds to ∆, as in Definition 1. We plot these both for the
original graph (in thick blue) and for a variety of embeddings (explained in
Alternate Models). For each embedding, we plot the maximum ∆ in a set
of 100 samples from a 100-dimensional embedding. The embedding ana-
lyzed by our main theorem (TDP) is given in thick red. Observe how the
embeddings generate graphs with very few triangles among low-degree
vertices. The gap in ∆ for low degree is two to three orders of magnitude.
The other lines correspond to alternate embeddings, using the NODE2VEC

vectors and/or different functions of the dot product.

plot for a physics coauthorship network. More results are given
in SI Appendix.

Note that this plot is significantly off the mark at low degrees
for the embedding. Around the lowest degree, the value of ∆ (for
the graphs generated by the embedding) is two to three order
of magnitude smaller than the original value. This demonstrates
that the local triangle structure is destroyed around low-degree
vertices. Interestingly, the total number of triangles is preserved
well, as shown toward the right side of each plot. Thus, a
nuanced view of the triangle distribution, as given in Defini-
tion 1, is required to see the shortcomings of low dimensional
embeddings.

Alternate Models
We note that several other functions of dot product have been
proposed in the literature, such as the softmax function (10, 12)
and linear models of the dot product (7). Theorem 1 does not
have direct implications for such models, but our empirical vali-
dation holds for them as well. The embedding in Theorem 1 uses
the truncated dot product (TDP) function max(0, min(~vi ·~vj , 1))
to model edge probabilities. We construct other embeddings
that compute edge probabilities using machine learning mod-
els with the dot product and Hadamard product as features.
This subsumes linear models as given in ref. 7. Indeed, the TDP
can be smoothly approximated as a logistic function. We also
consider (scaled) softmax functions, as in ref. 10, and standard
machine learning models [Logistic Regression on the Dot Prod-
uct (LRDP) and Logistic Regression on the Hadamard Product
(LRHP)]. (Details about these models are given in Alternate
Graph Models.)

For each of these models (softmax, LRDP, and LRHP), we
perform the same experiment described above. Fig. 1 also shows
the plots for these other models. Observe that none of them cap-
ture the low-degree triangle structure, and their ∆ values are all
two to three orders of magnitude lower than the original.

In addition (to the extent possible), we compute vector embed-
dings from a recent deep learning-based method [node2vec
(12)]. We again use all of the edge probability models dis-
cussed above, and perform an identical experiment (in Fig. 1,
these are denoted by “n2v”). Again, we observe that the low-
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degree triangle behavior is not captured by these deep learned
embeddings.

Broader Context
The use of geometric embeddings for graph analysis has a rich
history, arguably going back to spectral clustering (23). In recent
years, the Stochastic Block Model has become quite popular
in the statistics and algorithms community (17), and the Ran-
dom Dot Product Graph model is a generalization of this notion
[refer to recent surveys (19, 24)]. As mentioned earlier, Theo-
rem 1 brings into question the standard uses of these methods to
model social networks. The use of vectors to represent vertices
is sometimes referred to as latent space models, where geomet-
ric proximity models the likelihood of an edge. Although dot
products are widely used, we note that some classic latent space
approaches use Euclidean distance (as opposed to dot prod-
uct) to model edge probabilities (25), and this may avoid the
lower bound of Theorem 1. Beyond graph analysis, the method
of Latent Semantic Indexing also falls in the setting of Theorem
1, wherein we have a low-dimensional embedding of “objects”
(like documents), and similarity is measured by dot product
(https://en.wikipedia.org/wiki/Latent semantic analysis).

High-Level Description of the Proof
In this section, we sketch the proof of Theorem 1. The sketch
provides sufficient detail for a reader who wants to understand
the reasoning behind our result, but is not concerned with tech-
nical details. We will make the simplifying assumption that all
vi have the same length L. We note that this setting is interest-
ing in its own right, since it is often the case, in practice, that
all vectors are nonnegative and normalized. In this case, we get
a stronger rank lower bound that is linear in n . Dealing with
Varying Lengths provides intuition on how we can remove this
assumption. The full details of the proof are given in Proof of
Theorem 1.

First, we lower-bound L. By Cauchy–Schwartz, ~vi ·~vj ≤L2. Let
Xi,j be the indicator random variable for the edge (i , j ) being
present. Observe that all Xi,j are independent, and E[Xi,j ] =
min(~vi ·~vj , 1)≤L2.

The expected number of triangles in G ≈GV is

E

 ∑
i 6=j 6=k

Xi,jXj ,kXi,k

 [1]

≤
∑
i

∑
j ,k

E[Xj ,k ]E[Xi,j ]E[Xi,k ] [2]

≤L2
∑
i

∑
j ,k

E[Xi,j ]E[Xi,k ] =L2
∑
i

(∑
j

E[Xi,j ]

)2

. [3]

Note that
∑

j E[Xi,j ] = E[
∑

j Xi,j ] is, at most, the degree of i ,
which is, at most, c. (Technically, the Xi,i term creates a self-
loop, so the correct upper bound is c + 1. For the sake of cleaner
expressions, we omit the additive +1 in this sketch.)

The expected number of triangles is at least ∆n . Plugging
these bounds in,

∆n ≤L2c2n =⇒L≥
√

∆/c. [4]

Thus, the vectors have a length of at least
√

∆/c. Now, we lower-
bound the rank of V . It will be convenient to deal with the Gram
matrix M =V TV , which has the same rank as V . Observe that
Mi,j =~vi ·~vj ≤L2. We will use the following lemma stated first
by Swanapoel (26), but which has appeared in numerous forms
previously

Lemma 1 (Rank lemma). Consider any square matrix M ∈
Rn×n . Then

rank(M )≥
∣∣∑

i Mi,i

∣∣2(∑
i

∑
j |Mi,j |2

).
Note that Mi,i =~vi ·~vi =L2, so the numerator |

∑
i Mi,i |2 =

n2L4. The denominator requires more work. We split it into two
terms. ∑

i,j
~vi ·~vj≤1

(~vi ·~vj )2≤
∑
i,j

~vi ·~vj≤1

~vi ·~vj ≤ cn. [5]

If, for i 6=j , ~vi ·~vj > 1, then (i , j ) is an edge with probability 1.
Thus, there can be, at most, (c− 1)n such pairs. Overall, there
are, at most, cn pairs such that ~vi ·~vj > 1. So,

∑
i,j

~vi ·~vj>1
(~vi ·~vj )≤

cnL4. Overall, we lower-bound the denominator in the rank
lemma by cn(L4 + 1).

We plug these bounds into the rank lemma. We use the
fact that f (x ) = x/(1 + x ) is decreasing for positive x , and
that L≥

√
∆/c.

rank(M )≥ n2L4

cn(L4 + 1)
≥ n

c
· ∆2/c4

∆2/c4 + 1
=

∆2

c(∆2 + c4)
·n.

Dealing with Varying Lengths. The math behind Eq. 4 still holds
with the right approximations. Intuitively, the existence of at
least ∆n triangles implies that a sufficiently large number of vec-
tors have a length of at least

√
∆/c. On the other hand, these

long vectors need to be “sufficiently far away” to ensure that
the vertex degrees remain low. There are many such long vec-
tors, and they can only be far away when their dimension/rank is
sufficiently high.

The rank lemma is the main technical tool that formalizes this
intuition. When vectors are of varying length, the primary obsta-
cle is the presence of extremely long vectors that create triangles.
The numerator in the rank lemma sums Mi,i , which is the length
of the vectors. A small set of extremely long vectors could dom-
inate the sum, increasing the numerator. In that case, we do not
get a meaningful rank bound.

But, because the vectors inhabit low-dimensional space, the
long vectors from different clusters interact with each other. We
prove a “packing” lemma (Lemma 5) showing that there must
be many large positive dot products among a set of extremely
long vectors. Thus, many of the corresponding vertices have large
degree, and triangles incident to these vertices do not contribute
to low-degree triangles. Operationally, the main proof uses the
packing lemma to show that there are few long vectors. These
can be removed without affecting the low-degree structure. One
can then perform a binning (or “rounding”) of the lengths of
the remaining vectors, to implement the proof described in the
above section.

Proof of Theorem 1
For convenience, we restate the setting. Consider a set of vectors
~v1,~v2, . . . ,~vn ∈Rd , that represent the vertices of a social net-
work. We will also use the matrix V ∈Rd×n for these vectors,
where each column is one of the ~vi . Abusing notation, we will
use V to represent both the set of vectors and the matrix. We
will refer to the vertices by the index in [n].

Let GV denote the following distribution of graphs over the
vertex set [n]. For each index pair i , j , independently insert
(undirected) edge (i , j ) with probability max(0, min(~vi ·~vj , 1)).

The Basic Tools. We now state some results that will be used
in the final proof. Lemma 2 is an existing result. For all other
statements, the proofs are provided in SI Appendix.
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Lemma 2. [Rank lemma (26)] Consider any square matrix A∈
Rn×n . Then∣∣∣∣∣∑

i

Ai,i

∣∣∣∣∣
2

≤ rank(A)

(∑
i

∑
j

|Ai,j |2
)
.

Lemma 3. Consider a set of s vectors ~w1, ~w2, . . . , ~ws in Rd .∑
(i,j)∈[s]×[s]

~wi ·~wj<0

|~wi · ~wj | ≤
∑

(i,j)∈[s]×[s]
~wi ·~wj>0

|~wi · ~wj |.

Recall that an independent set is a collection of vertices that
induce no edge.

Lemma 4. Any graph with h vertices and maximum degree b has
an independent set of at least h/(b + 1).

Proposition 1. Consider the distribution GV . Let Di denote the
degree of vertex i ∈ [n]. E[D2

i ]≤E[Di ] + E[Di ]
2.

A key component of dealing with arbitrary-length vectors is the
following dot product lemma. This is inspired by results of Alon
(27) and Tao (28), who get a stronger lower bound of 1/

√
d for

absolute values of the dot products.
Lemma 5. Consider any set of 4d unit vectors ~u1,~u2, . . . ,~u4d in

Rd . There exists some i 6=j such that ~ui ·~uj ≥ 1/4d .

The Main Argument. We prove by contradiction. We assume that
the expected number of triangles contained in the set of ver-
tices of expected degree, at most, c is at least ∆n . We remind
the reader that n is the total number of vertices. For conve-
nience, we simply remove the vectors corresponding to vertices
with expected degree of at least c. Let V̂ be the matrix of the
remaining vectors, and we focus on GV̂ . The expected number of
triangles in G ≈GV̂ is at least ∆n .

The overall proof can be thought of in three parts.
Part 1, remove extremely long vectors: Our final aim is to use

the rank lemma (Lemma 2) to lower bound the rank of V . The
first problem we encounter is that extremely long vectors can
dominate the expressions in the rank lemma, and we do not get
useful bounds. We show that the number of such long vectors is
extremely small, and they can be removed without affecting too
many triangles. In addition, we can also remove extremely small
vectors, since they cannot participate in many triangles.

Part 2, find a “core” of sufficiently long vectors that contains
enough triangles: The previous step gets a “cleaned” set of vec-
tors. Now, we bucket these vectors by length. We show that there
is a large bucket, with vectors that are sufficiently long, such that
there are enough triangles contained in this bucket.

Part 3, apply the rank lemma to the “core”: We now focus on
this core of vectors, where the rank lemma can be applied. At
this stage, the mathematics shown in High-Level Description of
the Proof can be carried out almost directly.

Now for the formal proof. For the sake of contradiction,
we assume that d = rank(V̂ )<α(∆4/c9) ·n/ lg2 n (for some
sufficiently small constant α> 0).

Part 1: Removing extremely long (and extremely short)
vectors

We begin by showing that there cannot be many long
vectors in V̂ .

Lemma 6. There are, at most, 5cd vectors of length at least 2
√
n .

Proof. Let L be the set of “long” vectors, those with a length of
at least 2

√
n . Let us prove by contradiction, and so assume there

are more than 5cd long vectors. Consider a graph H = (L,E),
where vectors ~vi , ~vj ∈L (i 6=j ) are connected by an edge if ~vi

‖~vi‖2
·

~vj
‖~vj ‖2

≥ 1/4n . We choose the 1/4n bound to ensure that all edges
in H are edges in G .

Formally, for any edge (i , j ) in H , ~vi · ~vj ≥‖~vi‖2‖~vj‖2/4n ≥
(2
√
n)2/4n = 1. So (i , j ) is an edge with probability 1 in G ≈GV .

The degree of any vertex in H is, at most, c. By Lemma 4, H
contains an independent set I of a size of at least 5cd/(c + 1)≥
4d . Consider an arbitrary sequence of 4d (normalized) vectors
in I ~u1, . . . ,~u4d . Applying Lemma 5 to this sequence, we deduce
the existence of (i , j ) in I (i 6=j ) such that ~vi

‖~vi‖2
· ~vj
‖~vj ‖2

≥ 1/4d ≥
1/4n . Then, the edge (i , j ) should be present in H , contradicting
the fact that I is an independent set. �

Denote by V ′ the set of all vectors in V̂ with length in the
range [n−2, 2

√
n].

Proposition 2. The expected degree of every vertex in G ≈GV ′

is, at most, c, and the expected number of triangles in G is at
least ∆n/2.

Proof. Since removal of vectors can only decrease the degree,
the expected degree of every vertex in GV ′ is, naturally, at most,
c. It remains to bound the expected number of triangles in G ≈
GV ′ . By removing vectors in V \V ′, we potentially lose some
triangles. Let us categorize them into those that involve at least
one “long” vector (length ≥ 2

√
n) and those that involve at least

one “short” vector (length ≤n−2) but no long vector.
We start with the first type. By Lemma 6, there are, at most,

5cd long vectors. For any vertex, the expected number of trian-
gles incident to that vertex is, at most, the expected square of
the degree. By Proposition 1, the expected degree squares is, at
most, c + c2≤ 2c2. Thus, the expected total number of triangles
of the first type is, at most, 5cd × 2c2≤∆n/ lg2 n .

Consider any triple of vectors (~u,~v , ~w) where ~u is short and
neither of the others are long. The probability that this triple
forms a triangle is, at most,

min(~u ·~v , 1) ·min(~u · ~w , 1) ≤min(‖~u‖2‖~v‖2, 1) ·
min(‖~u‖2‖~w‖2, 1) ≤ (n−2 · 2

√
n)2≤ 4n−3.

Summing over all such triples, the expected number of such
triangles is, at most, 4.

Thus, the expected number of triangles in G ≈GV ′ is at least
∆n −∆n/ lg2 n − 4≥∆n/2. �

Part 2: Finding core of sufficiently long vectors with enough
triangles

For any integer r , let Vr be the set of vectors {~v ∈V ′ | ‖~v‖2 ∈
[2r , 2r+1)}. Observe that the Vr form a partition of V ′. Since
all lengths in V ′ are in the range [n−2, 2

√
n], there are, at most,

3 lg n nonempty Vr . Let R be the set of indices r such that |Vr | ≥
(∆/60c2)(n/ lg n). Furthermore, let V ′′ be

⋃
r∈R Vr .

Proposition 3. The expected number of triangles in G ≈GV ′′ is
at least ∆n/8.

Proof. The total number of vectors in
⋃

r /∈R Vr is, at most,
3 lg n × (∆/60c2)(n/ lg n) ≤ (∆/20c2)n . By Proposition 1 and
linearity of expectation, the expected sum of squares of degrees
of all vectors in

⋃
r /∈R Vr is, at most, (d + c2)× (∆/20c2)n ≤

∆n/10. Since the expected number of triangles in G ≈GV ′ is at
least ∆n/2 (Proposition 2) and the expected number of triangles
incident to vectors in V ′ \V ′′ is, at most, ∆n/10, the expected
number of triangles in G ≈GV ′′ is at least ∆n/2−∆n/10≥
∆n/8. �

We now come to an important proposition. Because the
expected number of triangles in G ≈GV ′′ is large, we can prove
that V ′′ must contain vectors of at least constant length.

Proposition 4. maxr∈R 2r ≥
√

∆/4c.
Proof. Suppose not. Then every vector in V ′′ has a length of,

at most,
√

∆/4c. By Cauchy–Schwartz, for every pair ~u,~v ∈V ′′,
~u ·~v ≤∆/16c2. Let I denote the set of vector indices in V ′′

(this corresponds to the vertices in G ≈GV ′′). For any two ver-
tices i 6=j ∈ I , let Xi,j be the indicator random variable for edge
(i , j ) being present. The expected number of triangles incident
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to vertex i in G ≈GV ′′ is

E

 ∑
j 6=k∈I

Xi,jXi,kXj ,k

=
∑

j 6=k∈I

E[Xi,jXi,k ]E[Xj ,k ].

Observe that E[Xj ,k ] is, at most, ~vj · ~vk ≤∆/16c2. Furthermore,∑
j 6=k∈I E[Xi,jXi,k ] = E[D2

i ] (recall that Di is the degree of ver-
tex i). By Proposition 1, this is, at most, c + c2≤ 2c2. The
expected number of triangles in G ≈GV ′′ is, at most, n × 2c2×
∆/16c2 = ∆n/8. This contradicts Proposition 3. �

Part 3: Applying the rank lemma to the core
We are ready to apply the rank bound of Lemma 2 to prove the

final result. The following lemma contradicts our initial bound
on the rank d , completing the proof. We will omit some details
in the following proof, and provide a full proof in SI Appendix.

Lemma 7. rank(V ′′)≥ (α∆4/c9)n/ lg2 n .
Proof. It is convenient to denote the index set of V ′′

be I . Let M be the Gram matrix (V ′′)T (V ′′); so, for
i , j ∈ I , Mi,j =~vi ·~vj . By Lemma 2, rank(V ′′) = rank(M )≥
(
∑

i∈I Mi,i)
2/
∑

i,j∈I |Mi,j |2. Note that Mi,i is ‖~vi‖22, which is
at least 22r for ~vi ∈Vr . Let us denote maxr∈R 2r by L, so all vec-
tors in V ′′ have a length of, at most, 2L. By Cauchy–Schwartz, all
entries in M are, at most, 4L2.

We lower-bound the numerator.(∑
i∈I

‖~vi‖22

)2

≥

(∑
r∈R

22r |Vr |

)2

≥

(
max
r∈R

22r (∆/60c2)(n/ lg n)

)2
=L4(∆2/3600c4)(n2/ lg2 n).

A series of technical calculations are needed to upper-bound the
denominator,

∑
i,j∈I |Mi,j |2. These details are provided in SI

Appendix. The main upshot is that we can prove
∑

i,j∈I |Mi,j |2≤
128cn(1 +L4).

Crucially, by Proposition 4, L≥
√

∆/4c. Thus, 44c4L4/
∆2≥ 1. Combining all of the bounds (and setting α<
1/(128 · 3600 · 44)),

rank(V ′′)≥ L4(∆2/3600c4)(n2/ lg2 n)

128cn(1 + 16L4)

≥ L4(∆2/3600c4)(n/ lg2 n)

128cn(44c4L4/∆2 + 16L4)
≥ (α∆4/c9)(n/ lg2 n).

�
Details of Empirical Results
Data Availability. The datasets used are summarized in
Table 1. We present here four publicly available datasets from

different domains. The ca-HepPh is a coauthorship network,
Facebook is a social network, and cit-HepPh is a citation
network, all obtained from the SNAP graph database (29).
The String hs dataset is a protein–protein interaction network
obtained from ref. 30. (The citations provide the link to obtain
the corresponding datasets.)

We first describe the primary experiment, used to vali-
date Theorem 1 on the SVD embedding. We generated a d -
dimensional embedding for various values of d using the SVD.
Let G be a graph with the n ×n (symmetric) adjacency matrix
A, with eigendecomposition ΨΛΨT . Let Λd be the matrix with
the d × d diagonal matrix with the d largest magnitude eigenval-
ues of A along the diagonal. Let Ψd be the n × d matrix with the
corresponding eigenvectors as columns. We compute the matrix
Ad = ΨdΛdΨT

d and refer to this as the d spectral embedding
of G . This is the standard principal components analysis (PCA)
approach.

From the spectral embeddings, we generate a graph from Ad

by considering every pair of vertices (i , j ) and generate a ran-
dom value in [0, 1]. If the (i , j )th entry of Ad is greater than the
random value generated, the edge is added to the graph. Oth-
erwise, the edge is not present. This is the same as taking Ad

and setting all negative values to 0 and all values >1 to 1 and
performing Bernoulli trials for each edge with the resulting prob-
abilities. In all of the figures, this is referred to as the “SVD TDP”
embedding.

Triangle Distributions. To generate Figs. 1 and 2, we calculated
the number of triangles incident to vertices of different degrees
in both the original graphs and the graphs generated from the
embeddings. Each of the plots shows the number of triangles in
the graph on the vertical axis and the degrees of vertices on the
horizontal axis. Each curve corresponds to some graph, and each
point (x , y) in a given curve shows that the graph contains y tri-
angles if we remove all vertices with a degree of at least x . We
then generate 100 random samples from the 100-dimensional
embedding, as given by SVD (described above). For each value
of c, we plot the maximum value of ∆ over all of the samples.
This is to ensure that our results are not affected by statistical
variation (which was quite minimal).

Alternate Graph Models. We consider three other functions of the
dot product, to construct graph distributions from the vector
embeddings. Details on parameter settings and the procedure
used for the optimization are given in SI Appendix.
LRDP. We consider the probability of an edge (i , j ) to be the
logistic function L(1 + exp(−k(~vi ·~vj − x0)))−1, where L, k , x0
are parameters. Observe that the range of this function is [0, 1],
and hence can be interpreted as a probability. We tune these
parameters to fit the expected number of edges, to the true
number of edges. Then, we proceed as in the TDP experiment.

Fig. 2. Plots of degree c vs. ∆: For each network, we plot c versus the total number of triangles only involving vertices of degree of, at most, c. We divide
the latter by the number of vertices, so it corresponds to ∆, as in the main definition. In each plot, we plot these for both the original graph and the
maximum ∆ in a set of 100 samples from a 100-dimensional embedding. Observe how the embeddings generate graphs with very few triangles among
low-degree vertices. The gap in ∆ for low degree is two to three orders of magnitude in all instances.
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Fig. 3. Plots of degree distributions: For each network, we plot the true degree distribution vs. the expected degree distribution of a 100-dimensional
embedding. Observe how the embedding does capture the degree distribution quite accurately at all scales.

We note that the TDP can be approximated by a logistic func-
tion, and thus the LRDP embedding is a “closer fit” to the graph
than the TDP embedding.
LRHP. This is inspired by linear models used on low-dimensional
embeddings (7). Define the Hadamard product ~vi �~vj to be the
d -dimensional vector where the r th coordinate is the product of
the r th coordinates. We now fit a logistic function over linear
functions of (the coordinates of) ~vi �~vj . This is a significantly
richer model than the previous model, which uses a fixed linear
function (sum). Again, we tune parameters to match the number
of edges.
Softmax. This is inspired by low-dimensional embeddings for ran-
dom walk matrices (10, 12). The idea is to make the probability
of edge (i , j ) proportional to softmax, exp(~vi ·~vj )/

∑
k∈[n] ~vi ·

~vk . This tends to push edge formation even for slightly higher
dot products, and one might imagine this helps triangle forma-
tion. We set the proportionality constant separately for each ver-
tex to ensure that the expected degree is the true degree. The
probability matrix is technically undirected, but we symmetrize
the matrix.
node2vec experiments. We also applied NODE2VEC, a recent
deep learning-based graph embedding method (12), to generate
vector representations of the vertices. We use default parameters
to run NODE2VEC. (More details are provided in SI Appendix.)
The NODE2VEC algorithm tries to model the random walk
matrix associated with a graph, not the raw adjacency matrix.
The dot products between the output vectors ~vi ·~vj are used

to model the random walk probability of going from i to j ,
rather than the presence of an edge. It does not make sense
to apply the TDP function to these dot products, since this
will generate (in expectation) only n edges (one for each ver-
tex). We apply the LRDP or LRHP functions, which use the
NODE2VEC vectors as inputs to a machine learning model that
predicts edges.

In Figs. 1 and 2, we show results for all of the datasets. We
note that, for all datasets and all embeddings, the models fail to
capture the low-degree triangle behavior.

Degree Distributions. We observe that the low-dimensional
embeddings obtained from SVD and TDP can capture the
degree distribution accurately. In Fig. 3, we plot the degree
distribution (in loglog scale) of the original graph with the
expected degree distribution of the embedding. For each
vertex i , we can compute its expected degree by the sum∑

i pij , where pij is the probability of the edge (i , j ). In
all cases, the expected degree distribution is close to the
true degree distributions, even for lower degree vertices. The
embedding successfully captures the “first-order” connections
(degrees), but not the higher-order connections (triangles).
We believe that this reinforces the need to look at the tri-
angle structure to discover the weaknesses of low-dimensional
embeddings.
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