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Understanding the molecular basis of adaptation to the environ-
ment is a central question in evolutionary biology, yet linking
detected signatures of positive selection to molecular mechanisms
remains challenging. Here we demonstrate that combining
sequence-based phylogenetic methods with structural information
assists in making such mechanistic interpretations on a genomic
scale. Our integrative analysis shows that positively selected sites
tend to colocalize on protein structures and that positively
selected clusters are found in functionally important regions of
proteins, indicating that positive selection can contravene the well-
known principle of evolutionary conservation of functionally im-
portant regions. This unexpected finding, along with our discovery
that positive selection acts on structural clusters, opens previously
unexplored strategies for the development of better models of
protein evolution. Remarkably, proteins where we detect the
strongest evidence of clustering belong to just two functional
groups: Components of immune response and metabolic enzymes.
This gives a coherent picture of pathogens and xenobiotics as
important drivers of adaptive evolution of mammals.
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Over the course of evolution, the genomes of all organisms
are shaped by the environment. The results of this process

can be observed by comparing evolutionarily related sequences
from different species: Regions that code for essential cellular
functions can remain unaltered over hundreds of millions of
years, while changing evolutionary pressures can lead to emer-
gence of new functions over very short evolutionary timescales.
As a result, evolutionary histories of sites in the genome hold
information about their functional importance. Functionally
important regions are routinely identified by taking advantage of
the fact that they are highly conserved in evolution (1, 2). Sim-
ilarly, methods for detecting regions harboring adaptive changes
in protein-coding regions have been developed to take advantage
of the fact that rapid fixation of new alleles is a hallmark of
positive selection (3, 4). Analyses of patterns of evolutionary
change can identify specific cases of adaptation as well as reveal
general principles that guide evolution (5). Understanding evo-
lutionary processes and distinguishing between neutral and
adaptive changes is therefore one of the key aims of modern
evolutionary studies.
As most proteins have to maintain a specific three-dimensional

(3D) shape to perform their function, protein-coding genes exhibit
particularly complex patterns of substitution. Biophysical con-
straints restrict the allowed amino acid substitutions and result in
dependencies across the entire protein sequence. While structural
features can explain a significant proportion of observed site-
to-site rate variation (6), previous studies have focused on
evolutionary scenarios where existing functions are maintained
and little is known about the structural properties of sites
evolving under positive selection.
Present lack of understanding of structural aspects of adaptive

evolution is particularly surprising bearing in mind that many

single-gene studies took advantage of protein structure to assess
the functional significance of positively selected sites identified
from sequence data. In the classic study of Hughes and Nei (7),
positively selected residues in the MHC molecule were found to
cluster in the groove where pathogen-derived peptides are
bound, supporting the hypothesis that rapid amino acid substi-
tutions at these sites tuned the ability to bind peptides derived
from pathogens. Similarly, positively selected sites in TRIM5α, a
viral restriction factor that can inhibit the cellular entry of HIV
in nonhuman primates, are placed in the region that mediates
binding to the virus (8). In these studies, as in others (e.g., ref. 9),
proximity of positively selected residues on the protein structure
was used as corroborating evidence and helped assign a molec-
ular mechanism underlying detected adaptations.
As the amount of available genomic data increased, studies

of positive selection in individual proteins were followed by
genome-wide positive selection scans (10–15). Such genomic
scans, using appropriately adapted statistical methodology (16,
17), can identify which cellular processes are primary targets of
positive selection and generate testable hypotheses. However,
structural aspects of identified examples were largely neglected
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and so no coherent view of how protein structure affects adaptive
evolution has emerged from these investigations.
This is a significant gap in our understanding of evolution.

Biophysical constraints restrict what substitutions are allowed for
protein function to be maintained and are also likely to limit the
emergence of adaptive changes in response to pressures from the
environment, yet no evolutionary theory predicts the structural
properties of sites harboring adaptive changes. It is not established
whether positive selection is more likely to act on protein sites
where the effect of mutations is the largest (e.g., enzyme catalytic
sites or key interaction interfaces) or regions where mutations
likely have a smaller effect (e.g., allosteric regulation sites).
Adaptive changes are associated with rapid fixation of advanta-
geous mutations, yet functional regions are thought to be highly
conserved in evolution. Contrasting these two principles leads to
an apparent paradox.
Here, we integrated structural information into evolutionary

analyses in order to study the properties of positively selected
sites. We demonstrate that detailed mechanistic interpretation of
findings can be achieved on a genome-wide level, just as in the
case of earlier studies of individual proteins. In recent years, it
has become apparent that structural data can be an orthogonal
source of information that can serve to validate and augment

findings in different areas of genomics (18). Structural placement
of sites of interest, such as those identified through genome-wide
sequence analyses, can be used to strengthen the confidence in
findings: Clustering of sites indicates concerted function whereas
unrelated sites are expected to be more uniformly distributed in
the structure. Recently developed methods based on clustering
of sites on protein structures have been successful in dis-
tinguishing causal and hitchhiking mutations underlying genetic
diseases (19) and for identifying mutations with a functional
impact in cancer (20–23). Detailed information about the pro-
tein structure can similarly aid understanding of molecular
mechanisms underlying adaptation at detected sites.
To obtain a structurally informed view of positive selection at

the residue level, we developed an approach combining a
genome-wide scan for positive selection with structural in-
formation (Fig. 1A). We applied 3D clustering to detect genes
with positively selected sites in a robust manner that additionally
allowed us to link identified cases to an underlying molecular
mechanism. We demonstrate that positively selected sites tend to
occur close to one another on protein structure and detect 20
high-confidence positively selected clusters (Table 1). Strikingly, we
found that all but one of the identified cases are immune-related
proteins or metabolic enzymes. In both of these functional
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Fig. 1. Positively selected residues tend to cluster together. (A) Overview of the approach. (B) Distribution of values of selective constraint in the dataset.
With 97.6% of sites having ω < 1 (indicating purifying selection), and 2.4% with ω ≥ 1, the mean of ω across the entire dataset is 0.126. (C) QQ plot of P value
distribution obtained from CLUMPS applied to positively selected sites at FDR of 0.05, 0.1, 0.2, and 0.5. If the residues under positive selection were randomly
distributed on protein structures, we would expect a uniform distribution of P values (gray line). The observed P values for positively selected sites are lower
than would be expected under the null hypothesis of random placement, indicating that positively selected sites tend to cluster together. In contrast, near-
neutrally evolving sites (gray points) do not show a tendency to cluster.
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categories, interactions with dynamic environmental parameters
appear to have shaped the evolutionary histories of the genes in-
volved. By further analyzing the placement of positively selected
clusters, we found that pervasive positive selection acts on regions
that are typically highly conserved in evolution, suggesting strate-
gies for the development of more accurate models of protein
evolution and methods for detecting positive selection.

Results
Identification of Positive Selection.Neutral theory (24, 25) predicts
that if mutations that arise at a locus are deleterious, they will
undergo purifying selection and will be purged from a population,
resulting in a low observed evolutionary rate. Conversely, if mu-
tations result in beneficial changes, they will be rapidly driven to
fixation. The ratio of fixation probabilities of nonsynonymous and
synonymous substitutions (ω, or dN/dS) can thus be used to di-
rectly estimate the selective constraint acting on the protein level:
ω ≈ 1 indicates neutral evolution; ω < 1 purifying selection; and
ω > 1 positive selection (26). In order to identify residues that
were under positive selection in mammalian evolution, we esti-
mated sitewise values of selective constraint in the mammalian
proteome. To this end, we first obtained coding sequences for
39 eutherian mammals (SI Appendix, Fig. S1) from Ensembl and
phylogenetic trees from the Ensembl Compara database (27).
We then aligned coding sequences corresponding to each tree
using the PRANK aligner (28) and used the SLR software (29)
to detect positively selected sites. Three-dimensional structures
corresponding to human proteins in our dataset were obtained
from the Protein Databank (PDB) (30) and we then used the

SIFTS resource (31) to map positively selected sites onto protein
structures.
The resulting dataset comprises 3,347 protein alignments and

covers 1,021,133 structure-mapped amino acid sites. While the
majority of sites evolve under purifying selection (Fig. 1B),
consistent with both theoretical expectations and previous em-
pirical estimates (13), we identified 4,498 sites with strong evi-
dence of positive selection (false-discovery rate [FDR] = 0.05).
We have made these results available as an online resource which
allows for displaying and downloading of the structure-mapped
sitewise estimates of selective constraint, as well as the un-
derlying alignments and phylogenetic trees (https://www.ebi.ac.uk/
goldman-srv/sips/).
Detecting clustering of positively selected sites. To determine the
degree of clustering of positively selected sites, we applied a
modification of the CLUMPS algorithm (21) to our integrated
dataset (Methods). As the power to detect clustering is limited if
very few residues are considered, it is desirable to include as
many sites with evidence of positive selection as possible. At the
same time, reducing the stringency in the detection of selection
by allowing a higher FDR can dilute the signal of clustering by
including more false positives. As it is not clear a priori what the
tradeoff between these phenomena is and at what threshold the
power to detect clustering is maximized, we applied the chosen
clustering detection method separately to positively selected sites
detected at different stringency levels. In order to determine the
degree to which positively selected residues form clusters on
protein structures, we inspected the overall distribution of P
values obtained for each protein from CLUMPS at four FDR

Table 1. Proteins with clusters of positively selected sites

Gene symbol Gene name Protein length PDB ID code PDB sites

Substrate/relevant
ligand in

PDB
Number of possible

selected sites*

Immune-related proteins
HLA-DRBI Major histocompatibility

complex, class II, DR β1
266 1AQD 187 Endogenous

peptide
16/19/21/25

FCN2 Ficolin 2 313 2J3F 217 N-acetyl-D-galactosamine 6/9/10/13
SERPINB3 Serpin B3 390 4ZK0 367 — 24/26/31/42
TLR4 Toll-like receptor 4 839 4G8A 601 LPS, LP4 51/61/80/119
CD1A CD1a molecule 327 1ONQ 271 Sulfatide self-antigen 40/44/50/64
C5 Complement component 5 1676 3CU7 1625 — 28/37/53/89
C8A Complement component 8α 584 3OJY 478 — 16/20/27/34
SIGLEC5 Sialic acid binding Ig-like lectin 5 551 2ZG1 208 Sialic acid 24/32/38/43
TFRC Transferrin receptor 1 760 3S9L 638 — 17/19/24/40

Metabolic enzymes
CYP2C9 Cytochrome P450, family 2,

member C9
490 1R9O 453 Flurbiprofen 29/30/35/40

CYP2D6 Cytochrome P450, family 2,
member D6

497 2F9Q 454 — 6/8/10/14

CYP3A4 Cytochrome P450, family 3,
member A4

503 3TJS 449 Desthiazolylmethyl
oxycarbonyl ritonavir

22/27/33/41

AKR1B10 Aldo-keto reductase family 1,
member B10

316 1ZUA 316 Tolrestat 13/18/19/23

AKR1C4 Aldo-keto reductase family 1,
member C4

323 2FVL 323 — 19/21/23/26

SULT2A1 Sulfotransferase family 2A
member 1

285 3F3Y 282 Lithocholic acid 15/18/22/32

CES1 Carboxylesterase 1 568 1MX1 532 Tacrine 12/16/19/31
GSTA3 Glutathione S-transferase α3 222 1TDI 218 Glutathione 11/13/16/20
OLAH Oleoyl-ACP hydrolase 318 4XJV 216 — 8/12/18/24
AK5 Adenylate kinase 5 562 2BWJ 195 AMP 3/3/3/3
NCSTN Nicastrin 709 5A63 665 Phosphocholine 7/8/11/18

Summary of genes where positively selected clusters were detected. Protein length refers to human orthologs.
*The number of positively selected sites is given at FDR thresholds of 0.05, 0.1, 0.2 and 0.5, respectively.
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thresholds at which positively selected sites were detected (Fig.
1C). We find a significant tendency for positively selected sites
to cluster together and this trend is maintained at each FDR
threshold, indicating that our findings are robust to how
stringently positively selected sites are identified. While struc-
tural properties of residues evolving under positive selection
are underexplored, previous work suggests that neutrally
evolving residues may cluster on protein structures (32). To test
this in our dataset, we performed the same clustering analysis
on near-neutrally evolving sites but found no overall trend of
clustering (Fig. 1C), and only one statistically significant case of
clustering.
Clusters of positively selected sites.Having established that positively
selected sites tend to occur close to one another on protein
structures, we went on to select cases where evidence for clus-
tering is the strongest. Depending on the FDR threshold used to
identify sites as positively selected, between 35 and 52 proteins
with clusters of positively selected residues were detected (FDR
of clustering < 0.05), with substantial overlap between clusters
detected at different thresholds (SI Appendix, Fig. S2). For 22
proteins, clusters were identified at all four FDR thresholds,
suggesting that these constitute the most robust findings. For
these proteins, we inspected the underlying alignments from
which positively selected sites were identified. Correlation on the
sequence level can introduce clusters on the level of structure
and for this reason it is important to distinguish 3D clusters
resulting purely from closeness of sites of interest in the se-
quence. In all but two cases, we found that positively selected
sites are identified in regions of good alignment quality and
that clusters of positively selected sites arise mostly from resi-
dues that are not adjacent in the sequence and become close to
each other only once the protein is folded into its native con-
formation. The two cases where detected signature of positive
selection appears to result from a stretch of contiguous residues
in a region of poor alignment quality were rejected from further
analysis. The remaining 20 proteins are summarized in Table 1.
Remarkably, 9 of them are immune-related proteins and 10 are
metabolic enzymes. The remaining protein, nicastrin, is the substrate-
recruiting component of γ-secretase (33), a protein complex with
catalytic activity, and we therefore considered it together with
other enzymes.
To assess the impact of possible errors in the gene tree to-

pologies on detecting positive selection, we generated 100 al-
ternative tree topologies for each gene of interest and repeated
the positive selection analysis. We found that most (84.7%) of
the detected sites are supported by at least 95% of alternative
topology sets, indicating that our results are not sensitive to
possible small errors in the phylogeny (SI Appendix, Fig. S3).

Positive Selection in Proteins Involved in Immunity.
Confirmation of validity of clustering approach. Rapid evolutionary
rates in genes involved in both adaptive and innate branches of
the immune system are a classic example of positive selection (7,
8, 34–36). Proteins where we identified positively selected clus-
ters (Table 1) include cases where positive selection has been
documented previously, such as in HLA-DRB1 (7), CD1a (37),
Toll-like receptor 4 (TLR4) (37), and transferrin receptor 1
(TfR1), a protein which is known to have been hijacked by
arenaviruses for facilitating cellular entry (38). Positively selected
residues are located primarily in regions involved in antigen binding,
such as the structurally similar binding clefts of HLA-DRB1
and CD1a (SI Appendix, Figs. S4–S7). While these findings
were reported previously, they give confidence in the approach
we applied here.
Findings of selection clusters. We also identify cases where to our
knowledge positive selection has not been previously described:
Ficolin 2 (SI Appendix, Fig. S8) [although positive selection
in the related ficolin 3 has been reported (39)], complement

component 5 (SI Appendix, Fig. S9), complement component
8α (SI Appendix, Fig. S10), Siglec-5 (SI Appendix, Fig. S11), and
serpin B3 (Fig. 2).
The placement of positively selected sites in serpin B3 is

particularly interesting as this protein exhibits two clusters con-
centrated on the opposite poles of the protein (Fig. 2A). Serpin
B3 belongs to the serpin superfamily of protease inhibitors, al-
though unlike most serpins it binds cysteine rather than serine
proteases. Serpins contribute to immunity by inhibiting proteases
secreted by bacteria. Serpin B3 inactivates leaked lysosomal ca-
thepsins, inactivates pathogen-derived cathepsins, and is also
thought to be involved in autoimmunity (42). Comparison with
other available structures of serpins reveals a remarkable cor-
respondence of these positively selected sites to the protease
binding sites before and after the conformational change that
characterizes the mode of action of serpins (Fig. 2B). Further-
more, there is previous evidence that serpin B3 homologs have
changed their substrate specificities over the course of evolution,
consistent with the action of positive selection (43, 44). The
presence of two positively selected residue clusters at opposite
poles of the protein implies that both regions participate in the
tuning of function. The importance of these regions in the pro-
teolytic function of serpins demonstrates that the positive se-
lection we detected is likely to have functional consequences.
Interactions with pathogens are known to be one of the

dominant pressures shaping mammalian evolution (34). Our
analysis adds mechanistic details to these findings: Positively
selected clusters in proteins involved in host–pathogen interac-
tions are placed in regions directly mediating binding of pathogen-
derived molecules. Binding of pathogen-derived peptides by
HLA and subsequent triggering of the immune response is a
classic example of this (45). Here we have identified further
examples of similar mechanisms in components of both innate
and adaptive branches of the immune system. Interestingly, these
include not only proteins or protein-derived peptides, but also
lipids (CD1a) and lipopolysaccharides (TLR4). This is true both
when binding is facilitating the neutralization of pathogens and,
as in the case of TfR1, where host proteins are hijacked by a
pathogen to facilitate cellular entry. These scenarios are exam-
ples of high evolutionary rate being the result of an “arms race”
between host and pathogen. Such dynamics are predicted by the
Red Queen hypothesis, which posits that evolution is driven by
interspecies competition (46).

Positive Selection Acting on Metabolic Enzymes.
Cytochrome P450s. Ten of the 11 remaining positively selected
clusters are found in enzymes. Three of the identified clusters of
positively selected sites are in members of the cytochrome P450
(CYP) superfamily (Fig. 3). CYPs are the most important drug-
metabolising enzyme class, contributing to the metabolism of
90% of drugs as well as many other xenobiotics, such as pollut-
ants. These liver enzymes catalyze monooxygenation reactions
on a wide range of small and large substrates. More than 50
CYPs have been identified in the human genome but relatively
few are known to have a role in drug metabolism (47).
Strikingly, all three of the CYPs where we identified positively

selected clusters of residues are known to be important for drug
metabolism: CYP3A4 (Fig. 3 A and B) is the most promiscuous
of all CYPs, contributing to the metabolism of ∼50% of marketed
drugs, and CYP2C9 (Fig. 3 C and D) and CYP2D6 (Fig. 3 E and
F) are also among the six principal CYPs thought to contribute
the most to drug metabolism (48). In our dataset, alignments
containing the three CYPs mentioned before also contain two
further cytochrome P450 paralogs that are important for drug
metabolism; in total five of six enzymes thought to be responsible
for the majority of cytochrome P450 drug metabolism show evidence
of positive selection.
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Aldo-keto reductases. We identified positively selected clusters in
two members of the 15 aldo-keto reductases (AKRs) present in
human. Similar to CYPs, AKRs are a family of highly pro-
miscuous enzymes that utilize NAD(P)(H) cofactors and can
reduce a wide range of substrates (49). AKRs are part of phase II
metabolism and can transform or detoxify both endogenous and
environmental aldehydes and ketones (50–52). Positively selected

residues in both AKRs cluster around the region where the sub-
strate binds but not around the NADP+ cofactor (Fig. 4). This
suggests that evolution has tuned substrate specificity while
maintaining binding to the cofactor.
Other enzymes. We also identified individual positively selected
clusters in the members of three other protein families involved
in detoxification: glutathione S-transferase α3 (GSTA3) (53–56),

A B

Conformational change

Cluster 1
Cluster 2

Cluster 1

Cluster 2

Significance
threshold

0.05
0.1
0.2
0.5

Fig. 2. Clusters of positively selected sites in serpin B3. (A) Placement of positively selected sites on the structure of serpin B3 (PDB ID code 4ZK0). (B) Mode of
action of serpins shown using PDB structures 1K9O (Upper) and 1EZX (Lower) with the substrate shown in black and the reactive center loop marked in blue.
Regions analogous to those where positively selected clusters were detected are marked as in A. Serpins function by binding their target proteases using a
reactive center loop that mimics the protease substrate. They then form a covalent bond with the protease and undergo a large conformational change
resulting in the protease being deformed and then acylated (40, 41). We find that positively selected residues surround the reactive center loop and are also
located on the opposite side of the protein to which the bound protease is dragged.

Fig. 3. Positively selected residues in CYPs cluster in the substrate entry channel and catalytic site. Positively selected residues: (A and B) CYP3A4 (PDB ID code
3TJS), (C and D) CYP2C9 (PDB ID code 1R9O), and (E and F) CYP2D6 (PDB ID code 2F9Q). Hemes are shown colored in dark gray, other ligands in blue. Additional
ligands were transferred from other PDB structures by superimposition: (A and B) desthiazolylmethyloxycarbonyl ritonavir, ketoconazole (PDB ID code 2V0M),
erythromycin (PDB ID code 2J0D), (C and D) flurbiprofen, (E and F) prinomastat (PDB ID code 3QM4). Specificity for the extraordinary diversity of substrates in this
enzyme superfamily is facilitated by a large, flexible binding pocket at the bottom of which heme is located. In all three structures, the location of the positively
selected residues tracks the binding of a ligand, and in general can be found on the sides of helices and in loops that form the binding pocket.
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carboxylesterase 1 (57, 58), and sulfotransferase 2A1 (59, 60). In
all cases, positively selected sites cluster around the active site of
the enzyme where the substrate binds (Fig. 5 A–C).
In the remaining three cases, positively selected clusters are

located in subdomains that interact with substrates. Adenylate
kinase 5 (AK5) is a member of a family of enzymes important for
maintaining the energetic balance in the cell by converting ADP
into ATP (61). Positively selected residues in AK5 fall in the lid
subdomain (Fig. 5D), which has been shown to have a role in
tuning the enzyme activity (62). The three positively selected
sites that constitute the positively selected cluster in AK5 flank a
DD motif, which is highly conserved in AK5 and in other enzymes
of the family. Experimentally mutating a residue homologous to

V507, one of the sites we have predicted, has been shown to have an
effect on the enzyme’s kinetic parameters (62), strongly suggesting
that the positively selected sites we detected contribute to enzyme
specificity and kinetics.
In the case of oleoyl-ACP hydrolase (OLAH), an enzyme in-

volved in controlling the distribution of chain lengths of fatty
acids, positively selected residues are located in the capping
domain that covers the substrate (Fig. 5E). Detailed mutational
data for OLAH is lacking but enzymes of the same class have
been shown to undergo changes of specificity in other species
(63). Positively selected sites in nicastrin (SI Appendix, Fig. S12)
are primarily located in the lid domain that covers the substrate
(64), and changes at positively selected sites in these enzymes are
therefore also consistent with positive selection acting to fine-tune
enzymatic activity.
Although pervasive positive selection in metabolic enzymes,

similar to that experienced by immune-related genes, may seem
surprising, examples of episodic adaptation of enzymes in spe-
cific lineages exist, particularly in primates (56, 65–68). Inter-
estingly, Monit et al. (69) recently conducted a detailed analysis
of the evolutionary history of SAMHD1, a protein with both
antiviral and enzymatic function. SAMHD1 is present in our
dataset, although we used a different PDB structure (4MZ7) for
structural mapping. In the region common to both structures, 9
of 15 sites identified by Monit et al. are also significant in our
dataset (FDR = 0.05). The degree of clustering of positively
selected sites in this protein does not meet all of our stringency
criteria, but it is significant at two of four thresholds we con-
sidered. The function of SAMHD1 is inhibition of HIV-1 rep-
lication, and it appears that the adaptation in this protein was
driven primarily by evolutionary conflict with this pathogen.
Eight of 10 enzymes where we identified positively selected

sites are involved in the metabolism of xenobiotics. This inter-
action with the environment makes them plausible targets of
positive selection. Much like parts of the immune system that
directly interact with pathogens, these metabolic enzymes form
an interface with the environment and act as one line of defense.
The diversification of mammals involved adaptation to varied

Fig. 4. Positively selected residues in AKRs surround the substrate binding
site. Positively selected residues in (A) AKR1B10 (PDB ID code 1ZUA) and (B)
AKR1C4 (PDB ID code 2FVL). Tolrestat marked in blue, NADP+ marked in
dark gray. Positively selected residues in AKR1B10 cluster around the bound
ligand tolrestat, an inhibitor developed for diabetes treatment, but not
around the NADP+ cofactor. The structure of AKR1C4 has been solved
without ligand but the positively selected residues cluster in a similar region
of the structure when compared to AKR1B10. As in the case of AKR1B10,
there are no positively selected residues in the neighborhood of the NADP+

cofactor.

Fig. 5. Positively selected residues in other enzymes. (A) Positively selected sites in GSTA3 (PDB ID code 1TDI). Glutathione shown in dark gray, δ-4-
androstene-3-17-dione (blue) transferred by structure superimposition from structure 2VCV. (B) Positively selected residues in sulfotransferase 2A1 (PDB ID
code 3F3Y). Adenosine-3′-5′ diphosphate shown in dark gray, lithocholic acid shown in blue. (C) Positively selected sites in carboxylesterase 1 (PDB ID code
1MX1). Tacrine shown in blue. (D) Positively selected residues in AK5 (PDB ID code 2BWJ). (E) Positively selected sites in OLAH (PDB ID code 4XJV).
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environments and new diets and as the environment in which
they live and feed has changed, so did their exposure to toxins.
This is likely to have required the widespread, repeated adaptive
changes that we observed.
Placement of positively selected sites in relation to functional sites.
Having observed the tendency of observed clusters to occur in
the direct neighborhood of bound ligands, we sought to quantify
this trend. For structures solved with exogenous ligands, we
obtained the distribution of distances for positively selected
residues and compared them to remaining residues (Fig. 6A).
We found that positively selected residues are significantly closer
to those ligands (mean distance 16.9 Å vs. 24.4 Å; P < 2.2 × 10−16;
Kolmogorov–Smirnov test), confirming that positively selected
clusters tend to occur closer to bound ligands than would be
expected by chance and providing further evidence for positive
selection acting to fine-tune ligand binding.
We then investigated the overall distribution of ω as a function

of distance to catalytic sites, using annotations from the Catalytic
Site Atlas (70). In proteins where we detected no evidence of
positive selection, purifying selection is the strongest in the
neighborhood of catalytic sites and gradually relaxes with dis-
tance from them (Fig. 6B). This trend is consistent with previous
studies of selective constraint where positive selection was not
considered (71, 72). However, in cases where we detected posi-
tively selected sites, we observed a very different distribution of
ω, with a peak at 20 Å from the catalytic residues. In cases where
we detected 10 or more positively selected sites, this trend is even
more pronounced, with the peak of ω occurring at 14 Å from
catalytic residues. The enrichment of positively selected residues
and elevated mean ω in the neighborhood of catalytic sites in-
dicates that the action of positive selection reshapes the selective
constraint on the entire protein structure.
Properties of amino acids at positively selected sites.As different regions
of proteins are known to have different amino acid frequencies

(73, 74), we asked whether the positively selected residues we
detected exhibit a distinct amino acid distribution. For each pro-
tein class, we calculated the change in amino acid frequency at
positively selected sites compared to the background frequencies
(Fig. 6C). While the overall distributions of amino acids are very
similar in the different protein classes (SI Appendix, Fig. S13), we
observed differences in the distribution of amino acids at positively
selected sites compared to the background distribution (Fig. 6C).
We correlated these enrichment scores with common amino acid
physicochemical properties (size, hydrophobicity, net charge, and
polarity) but found no significant correlations (SI Appendix, Table
S1), indicating that, while certain amino acids are preferred or
avoided at positively selected sites, these trends bear no straight-
forward relationship to amino acid properties.
The role of gene-duplication events in adaptive evolution. Gene dupli-
cations are thought to be one of the main forces driving evolu-
tion, providing “raw material” for evolutionary innovations (75).
While gene-duplication events in themselves are frequently as-
sumed to have no effect on fitness, their retention can be evi-
dence of adaptation (76). In order to quantify the effect of
duplication events in our dataset, we calculated the fraction of
gene duplications (i.e., the number of duplication nodes divided
by the total number of nodes) for each phylogenetic tree. We
found that both in enzymes and in immune-related genes, the
mean paralog fraction is significantly larger than in other genes
(0.342 and 0.276, respectively, compared to 0.0397 in the
remaining trees) (Fig. 6D). This trend is significant both in the
case of immune proteins and metabolic enzymes (P = 0.015 and
P = 3.1 × 10−5, respectively; Kolmogorov–Smirnov test). This
elevated duplication rate in genes where we detected positively
selected clusters is consistent with positive selection acting not
only on point mutations, but also driving gene-duplication events
to fixation. At the same time, some genes where we detected strong
evidence of adaptation (complement component 5, transferrin
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receptor 1, complement component 8α, AK5, and nicastrin)
have not undergone any gene duplications, proving that rapid
sitewise evolutionary rate and gene duplications can occur
independently.

Discussion
In this study, we curated a dataset covering over one million
structurally mapped sites in 3,347 mammalian proteins and
assessed the placement of positively selected residues on their
3D structures in an unbiased, genome-wide manner. We find
that positively selected sites tend to occur closer to each other in
protein structures than is expected by chance and to form clus-
ters in the neighborhood of functionally important regions.
Strikingly, proteins where we found the strongest evidence for
clustering of positively selected sites are primarily involved in
two major types of environmental responses: Host–pathogen
interactions and metabolism of xenobiotic compounds. The fact
that we observed the strongest evidence of positive selection in
these types of proteins gives a coherent view of mammalian
evolution being shaped by these two major influences from the
environment. Clusters of positively selected sites we identified
share both functional and structural similarities and allow us to
infer more general principles underlying adaptive evolution.
Xenobiotic-metabolising enzymes are typically able to process

a wide range of substrates. Indeed, CYPs and AKRs, where we
identified three and two positively selected clusters, respectively,
are among the most promiscuous known protein superfamilies.
Promiscuous enzymes are thought to be malleable in evolution,
as they can maintain their original function as well as acquire
specificity for new substrates by going through a promiscuous
intermediate, which can bind multiple substrates (77). The
mechanisms by which enzymes acquire new substrates has to
date been primarily studied by directed evolution (78–81). The
examples we have highlighted here provide direct evidence that
similar scenarios are also common in natural evolution.
Enzymes involved in xenobiotic metabolism are of great

medical relevance, as in humans they are responsible for me-
tabolism of prescribed drugs. Traditional analyses of protein
conservation are frequently not suitable for the analysis of genes
involved in xenobiotic metabolism, as these tend to evolve rap-
idly and the analyses used do not explicitly distinguish between
neutral evolution and positive selection (82). Specific examples
we have identified here could be investigated further, for ex-
ample by detailed mutational studies that have been shown to
augment statistical modeling of adaptive evolution (83).
Our study highlights the power of incorporating independent

sources of information to understand principles governing evo-
lution. The clusters we detected consist of residues that are
distributed along the linear sequence of proteins and could not
be found without considering protein structure. Consideration of
structural information has also allowed us to better understand
the mechanistic details of processes underlying adaptation in
terms of specific structural and functional features. Information
about structural placement of residues can also help to address
technical issues that have hindered methods for detecting posi-
tive selection. Criticisms leveled at methods for detecting posi-
tive selection have revolved around the nonneutrality of
synonymous substitutions, local variation in synonymous substi-
tution rate (84–87), and the influence of errors in alignment (88,
89). These phenomena may cause false positives in parts of a
protein sequence, but none will result in clustering on protein
structure. Structural information can thus serve as an indepen-
dent validation and a means of demonstrating that observed
patterns of positive selection are not a product of confounding
factors. Structural clusters can additionally be inspected post hoc
for proximity to functional features to assess their plausibility
and aid interpretation.

The structural and functional similarities we identified here
point toward common rules governing the occurrence of perva-
sive positive selection. Positively selected metabolic enzymes we
describe here share many structural and functional similarities:
Positively selected clusters lie in close proximity to bound li-
gands, indicating that the primary mode in which these enzymes
adapt is by affecting residues in the direct neighborhood of active
sites. This finding may seem to contradict the common as-
sumption that functionally important residues are conserved in
evolution: For example, the finding that average evolutionary
rate is lowest in the neighborhood of catalytic sites (71, 72).
However, this is only a superficial disagreement: While func-
tional regions evolve more slowly on average, this does not mean
they cannot harbor rapidly evolving, positively selected sites.
Indeed, nonfunctional regions cannot, by definition, undergo
adaptive evolution.
As we demonstrate here, while functional regions of proteins

are typically more conserved, they can also exhibit a high evo-
lutionary rate that is a hallmark of adaptive evolution. This
strongly suggests that instances where positive selection is op-
erating can contradict overall trends of protein evolution. For
this reason, it may be counterproductive to incorporate known
correlates of evolutionary rate into statistical models for
detecting positive selection. In contrast, the fact that positively
selected residues can form clusters on protein structures could
inform the development of better methods for detecting positive
selection. One of the ultimate goals of evolutionary research is
integrating evolution of sequence with structure in a general
model of protein evolution (90, 91). Such a universal model of
protein evolution has been elusive so far, primarily because the
most general approaches require an intractable number of pa-
rameters. We would suggest that one way forward is to identify
further universal evolutionary trends and gradually incorporate
them into mathematical models of protein evolution. Structural
approaches are powerful tools for interpreting observed patterns
of sequence divergence but, as regulatory and other noncoding
regions also contribute to adaptive evolution, structure-based
analyses cannot explain all instances of adaptation. Our un-
derstanding of protein evolution should ultimately be integrated
with understanding of the evolution of other determinants of
cellular function. The development of new methods for identi-
fying adaptation in noncoding regions is an important future
direction for evolutionary studies.
We have demonstrated that analyzing selective constraint in

the context of structure can help interpret findings and increase
their robustness, but all approaches reliant on detailed structural
information are limited by the availability and coverage of crystal
structures. Similarly, the analysis performed here focused on
mammals but could be extended to other clades. We hope that
the results highlighted here and others we have made available
online in our web server will assist experimental validation and
further understanding of protein function and adaptation. We
aimed to establish the relationship between protein structure and
the occurrence of positive selection and this proof-of-principle
study called for the highest-possible quality data, but in-
corporating homology-based structural models would be a direct
extension to our approach. Protein structures for the majority of
human proteins are still not known and the PDB database is
biased toward certain protein families. This suggests that there
may be yet unknown adaptively evolving functions, and that new
examples of adaptation will be identified in protein families
where there is currently little or no structural information
available.

Methods
Genomic Data. Coding sequences for mammalian genomes were downloaded
from Ensembl (92), v78. Noneutherian genomes (platypus, gray short-tailed
opossum, wallaby, and Tasmanian devil) were excluded. Coding sequences
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for principal isoforms were used. Incomplete and stop codons at ends of
sequences were removed.

Phylogenetic Data. The Compara database (93) provides gene trees for spe-
cies stored in Ensembl. Compara gene trees are reconstructed from nucle-
otide and amino acid alignments augmented with information about the
species tree, which ensures overall agreement with the species phylogeny
while accounting for gene duplication events and also allowing for varia-
tions in the tree topology if they are supported by sequence data. The
Compara pipeline generates trees containing up to 750 related genes, which
frequently results in multiple paralogs being included in the same tree.
Bearing in mind that selective constraint can be estimated more accurately if
more sequences are included, but that including more paralogs can result in
averaging over genes, which may be under different constraints, we
designed a tree-splitting scheme to enable single-gene analysis. As we aimed
to maximize the number of orthologous sequences included in each align-
ment while minimizing the number of paralogous sequences, we quantified
these criteria in different possible subtrees by calculating the percentage of
all species included (taxonomic coverage) and the total number of additional
genes for each species beyond the first gene per species (permitting calcu-
lation of the paralog fraction). We required a taxonomic coverage of at least
60% and wished to minimize the paralog fraction. To achieve this, starting
from each human protein, the tree is traversed toward the root until the
desired taxonomic coverage was achieved. Then, the tree is traversed further
but only if this does not increase the paralog fraction. The final node of this
traversal process and all its descendant nodes then become a tree used for
further analysis.

Sequence Alignment. Compara gene trees are reconstructed using principal
isoforms and the same sequences were used for alignment. The PRANK
aligner (28) has been shown to limit the number of false-positive identifi-
cations of positive selection compared to other commonly used aligners (89,
94, 95). PRANK was run in codon mode on sets of sequences corresponding
to each Compara-derived tree and with these trees used as guide trees.

Detecting Positive Selection. SLR (29) was used to obtain sitewise estimates of
ω within each alignment, using tree topologies from Ensembl Compara and
allowing branch lengths to be optimized by SLR. SLR implements the
Goldman–Yang codon site model (96) similar to that in PAML (3). The main
difference between SLR and PAML is that SLR makes no assumption about
the distribution of ω values over the sites of the alignment. SLR first esti-
mates parameters of the phylogenetic model for the entire alignment and
then performs a likelihood ratio test between the optimal ω and ω = 1 for
each site. P values reported by SLR associated with each structure-mapped
site (see below) were then corrected for multiple testing using the Benjamini–
Hochberg FDR method (97).

Robustness of Identified Positively Selected Sites. We created 100 bootstrap
replicates for each alignment (98) and used them to generate alternative
phylogenetic trees using the Ensembl Compara methodology. We then re-
peated the positive selection analysis in SLR using those trees and calculated
a measure of support for each site detected as positively selected in the
original analysis by tallying the number of replicates of 100 where that site
was detected as positively selected using the same stringency criteria (with
FDR = 0.05) as in the original analysis.

Structural Data. PDB structures matching human proteins in the sequence
dataset were downloaded from PDBe (30). Structures covering fewer than
100 residues were excluded, and in cases where more than one structure was
available, the one with the highest sequence similarity to the protein se-
quence was chosen. In rare cases where more than one human protein with
a structure was present for an alignment, one was retained at random. In-
dividual residues were then mapped using the SIFTS database (31). SIFTS
provides a mapping between PDB (30) and UniProt (99) sequences and, as
the UniProt protein sequences can vary from those in Ensembl, we per-
formed an additional mapping step by constructing pairwise alignments
between UniProt and Ensembl sequences, resulting in a sitewise mapping
between Ensembl and PDB residues. The pairwise alignments were calcu-
lated using the Biopython (100) implementation of the Smith–Waterman
algorithm (101), using the scoring of 1 for matching characters and 0 otherwise,
and gap opening and extension penalties of −10 and −0.5 respectively.

Clustering of Positively Selected Sites. The degree of clustering of the posi-
tively selected and near-neutrally evolving sites (defined as those where the
95% confidence interval for ω as reported by SLR includes 1) within each
protein structure was assessed using the CLUMPS algorithm (21). In CLUMPS,
the degree of clustering for a set of residues of interest is quantified by the
sum of pairwise distances in 3D space. In contrast to the original imple-
mentation, we used equal weights for all sites when calculating the pairwise
distances. For each set of residues, we then performed 100,000 Monte Carlo
simulations permuting the placement of sites by randomly selecting posi-
tions from the PDB chain, in order to determine statistical significance of
observed patterns. P values resulting from this analysis were then corrected
for multiple comparisons using the Benjamini–Hochberg FDR method (97).

Statistical analyses were performed in the R environment (102).

Data Availability Statement. All results discussed in the paper (structure-
mapped values of selective constraint, underlying alignments, and phylo-
genetic trees) are available at https://www.ebi.ac.uk/goldman-srv/sips/.
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