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Epithelial tissues mechanically deform the surrounding extracel-
lular matrix during embryonic development, wound repair, and
tumor invasion. Ex vivo measurements of such multicellular trac-
tions within three-dimensional (3D) biomaterials could elucidate
collective dissemination during disease progression and enable
preclinical testing of targeted antimigration therapies. However,
past 3D traction measurements have been low throughput due
to the challenges of imaging and analyzing information-rich 3D
material deformations. Here, we demonstrate a method to profile
multicellular clusters in a 96-well-plate format based on spatially
heterogeneous contractile, protrusive, and circumferential trac-
tions. As a case study, we profile multicellular clusters across
varying states of the epithelial–mesenchymal transition, reveal-
ing a successive loss of protrusive and circumferential tractions,
as well as the formation of localized contractile tractions with
elongated cluster morphologies. These cluster phenotypes were
biochemically perturbed by using drugs, biasing toward trac-
tion signatures of different epithelial or mesenchymal states.
This higher-throughput analysis is promising to systematically
interrogate and perturb aberrant mechanobiology, which could
be utilized with human-patient samples to guide personalized
therapies.

cell–matrix interactions | 3D culture | collective migration |
epithelial–mesenchymal transition

Collective mechanical interactions between epithelial cells
and three-dimensional (3D) extracellular matrix (ECM)

shape embryonic tissue development, and their dysregulation
can drive cancer progression or other disease states (1). In
particular, the epithelial–mesenchymal transition (EMT) is asso-
ciated with weakened cell–cell junctions and increased cell–
matrix adhesions, driving tissue disorganization and dissemi-
nation (2). Remarkably, multicellular clusters cultured ex vivo
in compliant 3D hydrogels can exhibit tissue-like form and
function (3–7), representing a promising preclinical testbed for
higher-throughput drug discovery and development (8, 9). How-
ever, existing assays for 3D mechanophenotyping have been
limited to a few cells per experiment due to the need for
high-resolution optics and labor-intensive image processing,
as well as complex readouts of force generation (10). Rapid
biophysical characterization of multicellular clusters in a 3D
matrix could enable direct characterization and perturbation
of disease state in human-patient samples, informing predic-
tive and personalized therapies (11). Indeed, human circulat-
ing tumor-cell clusters have recently been observed with vary-
ing epithelial and mesenchymal states during metastatic breast
cancer (12).

Traction force microscopy (TFM) resolves cell-generated
deformations based on the motion of fluorescent tracer particles
embedded within a compliant material (13). Early TFM studies
measured cell–cell and cell–matrix interactions of multicellular
epithelial clusters on planar two-dimensional (2D) substrates
(14–21). More recently, TFM along with microrheological anal-

yses have been utilized for 3D hydrogels, but have primarily
focused on individual cells (22–33). Notably, epithelial cell lines
exhibit more isotropic, spatially uniform tractions, while mes-
enchymal cell lines exhibit highly anisotropic tractions localized
at the leading and trailing edge (22–24, 26, 28, 30, 31, 34). Nev-
ertheless, it remains a formidable challenge to visualize 3D cell
morphologies and tractions, particularly in a scalable experi-
mental format (35). Most traditional TFM approaches require
relatively high-resolution data on both cellular morphologies
and material deformations, which poses significant experimen-
tal, workflow, and computational challenges. This issue is further
exacerbated by also requiring knowledge of the underlying mate-
rial properties to compute cellular tractions, which continues to
be a significant challenge for fibrous and biologically remodeled
extracellular materials (13).

Here, we demonstrate a high-content method to profile
the spatially heterogeneous matrix deformations of multicellu-
lar clusters in a standard 96-well-plate format. We show that
clusters exhibit collective tractions with distinct spatial signa-
tures, which we visualize by tracking hundreds of thousands of
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embedded tracer particles to recover information-rich material-
displacement fields. This Displacement Arrays of Rendered
Tractions (DART) analysis was validated by inducing EMT in
mammary epithelial cells cultured within a composite 3D hydro-
gel of silk fibroin and collagen I. Remarkably, we find that the
progression from epithelial to mesenchymal states is associated
with a successive loss of protrusive and circumferential tractions,
as well as the formation of highly localized contractile tractions.
Indeed, these emergent behaviors cannot be resolved by using
conventional spatially averaged TFM metrics developed for indi-
vidual cells. We further perturbed these cluster mechanophe-
notypes toward more mesenchymal or epithelial states using
drugs that stabilize microtubules (e.g., Taxol) or inhibit epider-
mal growth factor receptor (EGFR) signaling (e.g., gefitinib).
Since this approach does not rely on high-resolution 3D object
detection, lower-numerical-aperture (NA) air objectives can be
used to rapidly image a multiwell plate for higher-throughput
volumetric image acquisition and analysis. This implementation
of 3D TFM on a standardized platform could enable preclinical
screening of human organoids to inform drug development and
precision medicines.

DART
We designed a kinematics-based approach called DART metrics
for characterizing the cell-induced matrix deformations without
relying on a constitutive material model for the 3D biomaterial
at hand. We previously demonstrated mean deformation metrics
(MDM) to compute average values associated with the defor-
mation fields of individual cells (29). However, we observed in
these experiments that multicellular clusters applied spatially
heterogeneous deformation fields over large volumes. Thus, the
corresponding MDM regressed to null values due to spatial
averaging. Moreover, this spatial averaging resulted in a loss of
biologically interesting information associated with highly local-
ized signatures in the cell-induced deformation field, making
MDM unsuitable for analyzing collective deformations.

To compute the DART metrics, the particle displacement (ui)
at positions (xi) was interpolated onto regularized grid points
(xgrid) in each image with a general spacing of 12× 12× 12 voxels
(3.84× 3.84× 7.2 µm) in the x , y , and z directions, respectively.
This grid spacing provided a good trade-off in terms of spatial
resolution and computational throughput. For instance, choos-
ing a grid spacing that was too large would smooth out the high
spatial-frequency information from the displacement field and
introduce errors in the analysis. Instead, choosing a grid spacing
that was too small would make the displacement interpolation
and subsequent postprocessing computationally very expensive.
For this grid size of 12 × 12 × 12 voxels, the displacement was
sampled at ∼305,000 points in the volume of interest (2,048 ×
2,048 × 126 voxels), which was more than three times the num-
ber of particles found in the image (usually between 80,000
and 100,000 particles), providing high-resolution reconstruction
of the cell-induced displacement field at significantly reduced
computational cost.

Let ugrid be the displacement vector at the regularized grid
points xgrid. A linear scattered interpolation scheme was uti-
lized. The DART metrics computed kinematic quantities from
the local deformation field of the cell cluster. Thus, only the dis-
placement ugrid at points xgrid within a distance d = 25 µm from
the cell-cluster surface was considered in computing the DART
metrics, which was sufficient to capture most of the displacement
data around each cluster. The displacements ugrid at the points
outside the search region were set to be zero. At each of the grid
points xgrid, a unit vector ngrid originating from the centroid of the
cell cluster (ro) to the xgrid was determined. By using the normal
vector, the displacement ugrid was then decomposed into radial
ur

grid and hoop uθ
grid displacement components as,

ur
grid = |ugrid .ngrid|

uθ
grid = |ugrid− (ugrid .ngrid)ngrid|.

[1]

From ur
grid and uθ

grid, the regions where cells applied signifi-
cant protrusive, contractile, and circumferential deformations
were determined. These regions were found by binarizing
the 3D matrix of ur

grid and uθ
grid using thresholding operation

with usignificant as

uprotrusive =

{
1 if ur

grid > usignificant

0 otherwise

ucontractile =

{
1 if ur

grid <−usignificant

0 otherwise

ucircumferential =

{
1 if uθ

grid > usignificant

0 otherwise.

[2]

Since the DART analysis relies on binning cellular-displacement
fields as either protrusive or contractile, the binary threshold
parameter, usignificant, needed to be selected carefully. In partic-
ular, usignificant should be above the noise floor, but should also
not implicitly bias any given cluster toward either a contrac-
tile or protrusive (or both) phenotype. By systematically varying
the threshold parameter, usignificant across our control cell clus-
ters, we found an optimal parameter value (SI Appendix, Fig.
S4), which produced the most evenly distributed distribution of
contractile displacement slices (usignificant attains a global mini-
mum in the SD for each cluster distribution). It should be noted
that usignificant represents the threshold value for binning displace-
ments as either being contractile, protrusive, or both and was
not an exclusion criteria for whether data were used or dis-
carded in the DART analysis. However, to remove spurious
white voxels in uprotrusive, ucontractile, and ucircumferential produced
from noise during particle tracking, these 3D matrix displace-
ments were filtered to remove connected white components
smaller than our 12-voxel grid-point spacing corresponding to a
volume of 106.5 µm3.

From uprotrusive, ucontractile, and ucircumferential, the relative local-
ized regions where cells applied protrusive, contractile, and cir-
cumferential deformation was computed through DART. Here,
the computation of contractile DART is described, but pro-
trusive and circumferential DARTs are computed analogously.
The volume about the center of the cell cluster in ucontractile

was divided into 16 equal subvolumes. The volume around each
cell in ucontractile was first divided into two, bottom and top,
hemispheres. Each hemisphere was further divided into eight
equal, π/4 apart, regions. Thus, each “slice” in the DART cor-
responded to a volumetric region in the real space around the
cell cluster. The outer and inner slices in the DART board corre-
sponded to the region in the lower (θel ≥π) and upper (θel <π)
hemispheres of the ucontractile region around each cell cluster.
A slice was considered to be contractile if the corresponding
region in ucontractile had at least one white voxel signifying that
the cell cluster applied significant contractile deformation in that
region. The contractile quantification within each DART slice
was binary. From the contractile DART, the number of contrac-
tile displacement slices was used as a metric to quantify how
localized the contractile deformation was that the cell cluster
applies. Similarly, the number of protrusive and circumferential
displacement slices for each cell cluster was computed.

As the final part of our DART approach, a phenotype clas-
sifier was built to classify multicellular clusters into epithelial,
mesenchymal, and transitory phenotypes using the Decision-
TreeClassifier class from the Python Scikit library, a commonly
used machine-learning tool. For classification, the decision tree
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utilized the number of contractile, protrusive, and circumferen-
tial displacement slices and shape anisotropy factor of a multi-
cellular cluster. The decision-tree classifier had a maximum tree
depth of five and a minimum number of leaf samples of five. The
decision-tree model was trained with low tree depth and a high
minimum number of leaf samples to prevent training data over-
fitting. The decision tree was trained on all multicellular clusters
used in the analysis of the control dimethyl sulfoxide (DMSO)
treatment condition. The accuracy of the decision tree on the

training data was evaluated by using the normalized confusion
matrix. A normalized confusion matrix C is defined such that Ci,j

is the proportion of the observation known to be in the group i
and classified in the group j . The confusion matrix of a perfect
classifier is equal to the identity matrix.

Results
DART Visualizes Spatially Heterogeneous Displacement Fields. Col-
lective cell–matrix interactions were characterized by embedding
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Fig. 1. Schematic illustration of the experimental setup and DART metrics. (A) Experimental setup for high-throughput imaging to measure cell-induced
matrix deformations. Multicellular clusters were grown inside a silk–collagen matrix with embedded 1-µm red fluorescent tracer particles in a 96-well-
plate setup. To achieve high-throughput imaging, clusters were imaged by using a spinning-disk confocal microscopy with a low-NA air objective. (B)
The 3D cell-induced matrix deformations recovered by directly tracking tracer particles. (C) Matrix displacements ~u were decomposed into radial (ur ) and
circumferential (uθ) components about the center of the cluster. (D, Upper) Radial displacements ur of the matrix around the cell cluster. (D, Lower) The
surrounding volume is partitioned into top and bottom hemispheres, which were projected onto a 2D representation in Lower Left and Lower Right,
respectively. (E, Upper) Circumferential displacements uθ of the matrix around the cell cluster. (E, Lower) The surrounding volume is partitioned into top
and bottom hemispheres, which are again projected onto a 2D representation in Lower Left and Lower Right. (F) Schematic mapping of 3D displacement
fields onto a 2D DART representation. (G) Protrusive or contractile displacements with magnitude larger than usignificant in the surrounding volume were
represented by protrusive or contractile slices in the radial DART metrics. The top and bottom hemispheres map to the inner and outer slices of the DART,
respectively. (H) Circumferential DART computed from E analogous to the method described in G. (Scale bars: 40 µm.)
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mammary epithelial cells (MCF-10A) in a composite hydrogel
consisting of 7.5 mg/mL silk fibroin and 1 mg/mL collagen I
(36) on a 96-well plate (Fig. 1A). These hydrogels had an elastic
modulus of 600 Pa and a characteristic pore size of 2 µm (SI
Appendix, Fig. S1), which maintained epithelial cells as spherical
clusters (“acini”) but was also permissive for local dissemination
(SI Appendix, Fig. S2). These MCF-10A Snail–estrogen receptor
(ER) cells were stably transfected to overexpress green fluores-
cent protein (GFP) in the cytoplasm, as well as an inducible ER
construct for controlled EMT through the Snail transcription fac-
tor (37, 38). Cluster-induced deformations of the hydrogel were
visualized by using our topological particle-tracking algorithm
to map the displacement of 80,000 to 100,000 tracer particles
around each cluster (39), after which the clusters were lysed to
define a reference state. This case study focused on clusters cul-
tured for 7 d, since EMT induction in this cell line typically occurs
over several days or more (40). Prior to day 7, there remained
a sizable number of individual cells, which were not the bio-
logical phenomena of interest. At longer times after day 7, the
clusters grew large enough to interact mechanically through the
3D matrix, which would also complicate the traction analysis (SI
Appendix, Fig. S2).

Multicellular clusters typically deformed the surrounding
matrix in a spatially heterogeneous manner. For instance, a
representative cluster exhibited inward (“contractile”) tractions
around the periphery, but outward (“protrusive”) tractions near
the top (Fig. 1B). Although visually pronounced, this hetero-
geneity is often averaged out in conventional TFM or kinematic
metrics based on mean deformations around individual cells
(22, 29) (SI Appendix, Fig. S3). In order to profile these spa-
tial patterns, the displacement vector of a given tracer particle
~u due to matrix deformation was decomposed into radial ur

and circumferential components uθ relative to the center of the
cluster (Fig. 1C). These discrete particle displacements were
then interpolated onto a regularized grid in order to optimize
computational throughput while maintaining adequate spatial
resolution. Next, the volume around each cluster was subdivided
into 16 equal subvolumes, with eight regions of equal volume in
the top and bottom hemispheres, respectively (Fig. 1 D and E).
For ease of visualization, we developed the DART analyses to
map these 3D deformations onto a simpler, 2D representation.
In each DART, the inner region of eight equal slices corre-
sponds to the eight subvolumes in the top hemisphere, while
the outer ring corresponds to the bottom hemisphere (Fig. 1
F and G). If the radial particle displacement within a given
region exceeded a critical threshold (usignificant) of 0.4 µm (SI
Appendix, Fig. S4), it was denoted as contractile, protrusive,
or both (Fig. 1G). Similarly, if the circumferential displace-
ment within a given region exceeded a certain threshold of
0.4 µm, it was also noted (Fig. 1H). This DART displacement
threshold, usignificant, was chosen to be at least five times above
the intrinsic displacement noise floor and to produce an opti-
mally even distribution of displacement slices in the DART
control groups (SI Appendix, Fig. S4). The displacement noise
floor obtained with our topology-based particle tracking (TPT)
algorithm was 20.5 nm (39). Finally, the spatial heterogeneity
of tractions was then quantified from the number of regions
which exceeded the radial or circumferential displacement
threshold.

Epithelial, Transitory, and Mesenchymal Clusters Exhibit Distinct Trac-
tions and Morphologies. As a case study, three experimental con-
ditions were characterized with multicellular clusters represent-
ing epithelial, transitory, and mesenchymal mechanophenotypes
(SI Appendix, Fig. S5). MCF-10A Snail–ER cells were embedded
as single cells within silk–collagen hydrogels and then imaged
after 7 d. First, MCF-10A cells were maintained in an epithelial
mechanophenotype by culturing with 0.05% DMSO, matching
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Fig. 2. Representative mechanophenotypes corresponding to epithelial,
transitory, and mesenchymal states. (A, D, and G) Morphology of the cell
clusters. The cytoplasm of the cell cluster is shown in gray (GFP), and
the nucleus of the cells is shown in red (mCherry-H2B). Pre-OHT, OHT-
pretreated. (B, E, and H) The 3D radial displacements, ur , about the center
of a cell cluster shown for a representative epithelial, mesenchymal, or
transitory cell cluster. (C, F, and I) Corresponding 3D circumferential dis-
placements, uθ , about the center of a cell cluster shown for a representative
epithelial, mesenchymal, or transitory cell cluster.

the concentration used to resuspend drug compounds. Epithe-
lial cells organized into compact, roughly spherical multicellular
acini (Fig. 2A). These clusters exerted localized protrusive and
some circumferential deformations relative to the reference state
after lysing, while the spatial distribution of contractile deforma-
tions varied across clusters (Fig. 2 B and C). Second, MCF-10A
cells were induced to a transitory (EMT) mechanophenotype by
Snail induction with 500 nM 4-hydroxytamoxifen (OHT) after
embedding in the hydrogel. These transitory clusters exhibited
significant protrusions (Fig. 2D), analogous to the budding out-
growths associated with branching morphogenesis. Moreover,
these clusters exhibited uniformly distributed contractile defor-
mations across the periphery with some circumferential defor-
mations, but minimal protrusive deformations (Fig. 2 E and
F). Third, MCF-10A cells were preinduced into a mesenchymal
mechanophenotype by sustained treatment with 500 nM OHT
for 72 h before embedding into the hydrogel (37). These clusters
were highly elongated and spindle-like, with slightly decreased
sizes due to slower proliferation after EMT (Fig. 2G). Mesenchy-
mal clusters exhibited highly localized contractile deformations
at only a few locations, consistent with front/back polarity,
as well as minimal protrusive or circumferential deformations
(Fig. 2 H and I).

Representative DART analyses for clusters with epithe-
lial, transitory, and mesenchymal mechanophenotypes captured
these qualitative trends, although there existed appreciable het-
erogeneity across clusters. Epithelial and transitory clusters typi-
cally exerted numerous, spatially distributed contractile displace-
ments (≈10 or 11 slices), while mesenchymal clusters typically
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Fig. 3. (A) Radial DARTS for 20 randomly selected clusters treated with
DMSO, OHT, or pretreated with OHT (pre-OHT). (B) Boxplot of the number
of contractile displacement slices. (C) Boxplot of the number of protrusive
displacement slices. (D) Boxplot of the number of circumferential (Circumf.)
displacement slices. (E) Boxplot for cell-morphology shape anisotropy. The
white dashed line in the boxplots represents the mean value. *P < 0.05;
**P < 0.01; ***P < 0.001. (F) Scatter plot of raw data points for number
of protrusive and contractile displacement slices (Ps and Cs) for DMSO-
treated, OHT-treated, or OHT-pretreated clusters. Jitter has been applied
to the true positions of the raw data points to avoid points occlusion. The
shaded regions are a guide to the eye to emphasize groupings of epithelial,
transitory, or mesenchymal mechanophenotypes. (G) Normalized confusion
matrix for the decision tree classifier using Cs, Ps, number of circumferential
displacement slices (θs), and shape anisotropy (SA) metrics on the training
data. E, epithelial; M, mesenchymal; T, transitory.

exerted fewer, localized contractile displacements (≈8 slices or
less) (Fig. 3 A and B). Next, epithelial clusters applied more
protrusive displacements ('4 slices), which were considerably
fewer for transitory and mesenchymal clusters (three and
one slices, respectively) (Fig. 3 A and C). Moreover, epithe-
lial and transitory clusters also exerted numerous circumfer-
ential displacements (≈6 slices), while mesenchymal clusters
showed fewer circumferential displacements (≈3 slices) (Fig. 3D
and SI Appendix, Fig. S6 A–C). Finally, epithelial and transi-
tory clusters exhibited relatively compact morphologies (shape
anisotropy ≈ 1), while mesenchymal clusters were more elon-
gated (≈ 1.6 or higher values) (Fig. 3E). These distinct cluster
mechanophenotypes were compared based on their number of
protrusive and contractile slices, revealing that epithelial clus-
ters typically exhibited more protrusive deformations (≈4 to
12 slices), while the distribution of contractile deformations
varied (0 to 12 slices) (Fig. 3F). In comparison, transitory clus-
ters typically exhibited fewer protrusive deformations (0 to 8
slices), but many distributed contractile deformations around
the periphery (≈13 to 16 slices) (Fig. 3F). Lastly, mesenchy-
mal clusters exhibited minimal protrusive deformations (≈0
slices) with a varying distribution of contractile deformations
(0 to 16 slices) (Fig. 3F).

By using a decision tree, a commonly employed predictive
classifier in computer science and machine learning, these three
distinct mechanophenotypes were profiled based on contractile,
protrusive, and circumferential deformations, as well as shape
anisotropy (SI Appendix). Briefly, this analysis classified clusters

based on a threshold number of protrusive slices (4.5), which
was then refined based on shape anisotropy, number of cir-
cumferential slices, and contractile slices (SI Appendix, Fig. S7).
We assessed and quantified the specificity and predictive capa-
bility of our decision tree via the standard machine-learning
approach of using a confusion matrix. The classification via the
confusion matrix showed 70% agreement between experimental
condition and predicted mechanophenotype (epithelial, tran-
sitory, or mesenchymal), as shown in the on-diagonal entries
of the confusion matrix (Fig. 3G). Moreover, 15 to 20% of
clusters in each experimental condition were classified in an
adjacent state (i.e., epithelial clusters classified as transitory,
transitory clusters classified as epithelial or mesenchymal, etc.),
corresponding to the neighboring off-diagonal entries of the con-
fusion matrix (Fig. 3G). This classification may be attributed
to biological heterogeneity, since MCF-10A cells can sponta-
neously undergo EMT, and EMT induction kinetics exhibit some
variability (40). Nevertheless, classification across very dissim-
ilar mechanophenotypes was relatively infrequent, at 6 to 7%
(i.e., epithelial clusters classified as mesenchymal, or vice versa),
corresponding to the entries at the top right and bottom left
corners of the confusion matrix (Fig. 3G). Thus, epithelial, tran-
sitory, and mesenchymal clusters exhibit distinct morphologies
and patterns of contractile, protrusive, and circumferential trac-
tion, which represent a characteristic “traction signature” or
mechanophenotype.

Microtubule Stabilization with Taxol Enhances Protrusions and Local-
ized Contractility. Cluster mechanophenotypes were perturbed
by sublethal treatment with the microtubule-stabilizing agent
Taxol, which can induce EMT (40). After 7 d of treatment
with a sublethal dose of Taxol (4 nM) and 0.05% DMSO,
clusters exhibited partially elongated morphologies reminiscent
of the transitory mechanophenotype with OHT treatment only
(SI Appendix, Fig. S8 A–C). Similarly, treatment with 4 nM
Taxol and 500 nM OHT resulted in highly elongated mor-
phologies reminiscent of the mesenchymal mechanophenotype
after pretreatment of 500 nM OHT only (SI Appendix, Fig. S8
D–F). Pretreatment with 500 nM OHT and subsequent 4 nM
Taxol resulted in unique cluster morphologies with slender,
neuronal-like extensions (SI Appendix, Fig. S8 G–I). DART anal-
ysis of the cluster-induced matrix deformations corroborated
these qualitative observations (Fig. 4A and SI Appendix, Fig.
S6 D–F). For instance, Taxol- and DMSO-treated clusters typ-
ically exhibited more contractile slices (≈12), fewer protrusive
slices (≈2), and more circumferential slices (≈8), analogous
to the transitory cluster mechanophenotype (Fig. 4 B–D and
SI Appendix, SI Appendix, Fig. S6D). In comparison, Taxol-
and OHT-treated clusters exhibited fewer contractile and cir-
cumferential slices (≈8 and 2, respectively), analogous to the
mesenchymal cluster mechanophenotype (Fig. 4 B and D and SI
Appendix, Fig. S6E). Finally, Taxol- and OHT-pretreated clusters
exhibited fewer contractile and circumferential slices (≈8 and 2,
respectively), as well as elevated shape anisotropy, also consis-
tent with the mesenchymal cluster mechanophenotype (Fig. 4
B, D, and E and SI Appendix, Fig. S6F). Interestingly, Taxol-
and OHT-treated or -pretreated clusters exhibited more protru-
sive slices (≈2) than the comparable transitory and mesenchymal
mechanophenotypes. Such behaviors may be attributed to actin-
and microtubule-driven protrusions, which are associated with
EMT (41). These outward protrusions may be stabilized by
Taxol treatment, which inhibits microtubule depolymerization
and impedes retraction (42). Overall, these trends were appar-
ent on a plot of the contractile and protrusive slices per cluster,
since Taxol- and DMSO-treated clusters were shifted rightward
with more contractile slices (Fig. 4F) relative to the epithe-
lial mechanophenotype in DMSO only (Fig. 3F). Moreover,
Taxol- and OHT-treated or -pretreated clusters were shifted
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Fig. 4. (A) Radial DARTS for 20 randomly selected clusters treated with
4 nM Taxol combined with DMSO, OHT, or pretreatment with OHT (pre-
OHT). (B) Boxplot of the number of contractile displacement slices. (C)
Boxplot of the number of protrusive displacement slices. (D) Boxplot of
the number of circumferential (Circumf.) displacement slices. (E) Boxplot
for cell-morphology shape anisotropy. The white dashed line in the box-
plots represents the mean value. *P < 0.05; **P < 0.01; ***P < 0.001. (F)
Scatter plot of raw data points for number of protrusive and contractile
displacement slices (Ps and Cs) for DMSO-treated, OHT-treated, or OHT-
pretreated clusters. Jitter has been applied to the true positions of the raw
data points to avoid points occlusion. The shaded regions are a guide to
the eye to emphasize groupings of epithelial, transitory, or mesenchymal
mechanophenotypes. (G) Normalized confusion matrix for the decision-tree
classifier using Cs, Ps, number of circumferential displacement slices (θs),
and shape anisotropy (SA) metrics on the training data. E, epithelial; M,
mesenchymal; T, transitory.

upward with more protrusive slices (Fig. 4F) relative to transi-
tory and mesenchymal mechanophenotype with OHT treatment
or pretreatment only (Fig. 3F). As a consequence, 35% of
Taxol- and DMSO-treated clusters were classified as a transi-
tory mechanophenotype (Fig. 3G). Similarly, 37% of Taxol- and
OHT-treated transitory clusters were classified as a mesenchy-
mal mechanophenotype (Fig. 3G). Finally, 60% of Taxol- and
OHT-pretreated mesenchymal clusters were classified as a mes-
enchymal (OHT only) mechanophenotype (Fig. 3G). It should
be noted that a significant percentage (24 to 43%) of Taxol-
treated clusters were classified as an epithelial mechanopheno-
type, likely due to the increased number of protrusive slices
(Fig. 3G). Thus, Taxol treatment biased clusters toward more
transitory and mesenchymal mechanophenotypes by redistribut-
ing contractile and circumferential tractions, although protrusive
tractions were also aberrantly enhanced relative to the previous
experiments without Taxol.

EGFR Inhibition with Gefitinib Increases Heterogeneity of Transi-
tory Clusters. Lastly, cluster mechanophenotypes were perturbed
by treatment with the EGFR inhibitor gefitinib, which ordi-
narily inhibits proliferation in epidermal growth factor (EGF)-
dependent MCF-10A cells (43). Previously, cell lines expressing
epithelial biomarkers were shown to be more sensitive to gefi-
tinib and proliferated less in vitro and in vivo, while EMT
was associated with resistance to gefitinib (44–46). Prior stud-
ies primarily focused on proliferation and apoptosis in bulk

assays, with few higher-resolution measurements of migration
and morphology. In these experiments, after 7-d treatment
with 500 nM gefitinib (also a sublethal dose), DMSO-treated
clusters exhibited compact morphologies consistent with the
epithelial mechanophenotype (SI Appendix, Fig. S9 A–C). In
comparison, gefitinib- and OHT-treated clusters exhibited both
compact and elongated morphologies, reminiscent of epithe-
lial and mesenchymal phenotypes (SI Appendix, Fig. S9 D–F).
Finally, gefitinib- and OHT-pretreated clusters exhibited highly
elongated morphologies, reminiscent of mesenchymal pheno-
types (SI Appendix, Fig. S9 G–I). DART analysis revealed that
gefitinib- and DMSO-treated clusters exhibited more contrac-
tile (≈12), protrusive (≈2), and circumferential (≈8) slices
with low shape anisotropy (≈1) (Fig. 5 A–E and SI Appendix,
Fig. S6G), consistent with an epithelial mechanophenotype.
However, gefitinib- and OHT-treated clusters exhibited large
variations in protrusive (≈0 to 7) and circumferential (≈0 to 5)
slices relative to the transitory (OHT only) cluster mechanophe-
notype (Fig. 5 A, C, and D and SI Appendix, Fig. S6H). Overall,
gefitinib- and OHT-pretreated clusters exhibited fewer con-
tractile (≈8), protrusive (≈2), and circumferential (≈2) slices
with slightly increased shape anisotropy, analogous to a mes-
enchymal mechanophenotype (Fig. 5 A–E and SI Appendix,
Fig. S6I). A plot of contractile and protrusive slices per clus-
ter showed that gefitinib- and DMSO-treated clusters were
located in the top left region associated with the epithelial
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Fig. 5. (A) Radial DARTS for 20 randomly selected clusters treated with
500 nM gefitinib combined with DMSO, OHT, or pretreatment with OHT
(pre-OHT). (B) Boxplot of the number of contractile displacement slices. (C)
Boxplot of the number of protrusive displacement slices. (D) Boxplot of
the number of circumferential (Circumf.) displacement slices. (E) Boxplot
for cell-morphology shape anisotropy. The white dashed line in the box-
plots represents the mean value. *P < 0.05; **P < 0.01; ***P < 0.001. (F)
Scatter plot of raw data points for number of protrusive and contractile
displacement slices (Ps and Cs) for DMSO-treated, OHT-treated, or OHT-
pretreated clusters. Jitter has been applied to the true positions of the raw
data points to avoid points occlusion. The shaded regions are a guide to
the eye to emphasize groupings of epithelial, transitory, or mesenchymal
mechanophenotypes. (G) Normalized confusion matrix for the decision-tree
classifier using Cs, Ps, number of circumferential displacement slices (θs),
and shape anisotropy (SA) metrics on the training data. E, epithelial; M,
mesenchymal; T, transitory.
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(DMSO only) mechanophenotype. Similarly, gefitinib- and
OHT-pretreated clusters were located at the bottom of the
plot, associated with the mesenchymal (OHT pretreatment only)
mechanophenotype. In comparison, the gefitinib- and OHT-
treated clusters were widely dispersed toward the top and bottom
of the plot (Fig. 5F). The decision-tree analysis revealed that
73% and 64% of gefitinib with DMSO- or OHT-pretreated
clusters were classified as epithelial (DMSO only) and mes-
enchymal (OHT-pretreated) mechanophenotypes, respectively
(Fig. 5F). Nevertheless, gefitinib- and OHT-treated clusters were
mostly classified as either epithelial (42%) or mesenchymal
(42%) mechanophenotypes, with relatively few clusters classi-
fied as transitory clusters (16%). Thus, gefitinib treatment did
not significantly affect the DMSO- or OHT-pretreated cluster,
which retained epithelial or mesenchymal mechanophenotypes,
respectively. However, gefitinib and OHT treatment resulted
in a mixed population of mostly epithelial and mesenchymal
mechanophenotypes, with considerably fewer transitory clusters.
This “switch-like” response may occur due to the strength of
EGFR-dependent signaling relative to Snail-activated, EGFR-
independent signaling (47), which will be characterized more in
future work.

Discussion and Conclusion
The DART analysis established here profiles multicellular clus-
ter mechanophenotypes based on local displacements of tracer
particles embedded in a 3D matrix, as well as cluster morphol-
ogy. By combining these measurements into a machine-learning
decision-tree structure, perturbations and transitions from one
phenotype to another (e.g., epithelial to mesenchymal) as a
function of drug treatment can be quantified in an automated
fashion. This approach leverages previous developments in the
machine-learning communities of reducing large, multivariable
spatiotemporal datasets and binning them into a more intuitive
scalar metric output. These measurements show that multi-
cellular clusters exert a combination of protrusive, contractile,
and circumferential deformations within a compliant 3D matrix
relative to a reference state. Since these behaviors have not
been previously characterized elsewhere, we do not have a well-
defined “ground truth” for benchmarking these phenotypes. In
principle, we could arbitrarily generate some deformation field
as a “ground truth” in order to validate the DART classifier,
but the relevance and scientific merit of this to our experimen-
tal results would be questionable. It should be noted that cluster
morphology alone was insufficient to distinguish cluster pheno-
type across different experimental conditions. For example, the
shape anisotropy of DMSO clusters was not significantly differ-
ent from OHT clusters (Fig. 3E), although the OHT-pretreated
clusters were more significantly elongated. Thus, high-resolution
measurements of local matrix deformation can inform pheno-
typic classification for situations that are otherwise difficult to
distinguish.

Our classification of multicellular cluster mechanophenotype
directly considers spatial heterogeneity in the local 3D matrix
deformation patterns. These observations of distinct spatial-
displacement patterns were sufficient to classify 70% of clus-
ter mechanophenotypes within a given experimental condition
based on DMSO treatment, OHT treatment, or OHT pretreat-
ment. It should be noted that some clusters were classified with
a different mechanophenotype than would be expected from
their experimental conditions. For instance, 17% of clusters
treated with OHT were classified as an epithelial mechanophe-
notype, rather than transitory. Moreover, 18% of clusters treated
with DMSO were classified as a transitory mechanophenotype
rather than epithelial. It should be noted that single cells exhibit
intrinsic, nongenetic heterogeneity from cell-cycle state, tran-
scriptional noise, etc. This heterogeneity is likely compounded
in multicellular clusters consisting of mechanically interacting

cells. Indeed, we and others have shown that EMT can occur
spontaneously based on local cell density in 2D monolayer cul-
ture (40, 48). Even relatively controlled EMT induction using
this Snail–ER construct has some variability in the kinetics
(37, 40). EMT is also regulated by the configuration of cell–
cell adhesions, which will also result in heterogeneous tractions
(49). Thus, the 70% value is reasonable given the underly-
ing heterogeneity and plasticity of this cell type. In principle,
other cell types may be “locked into” a more homogeneous
mechanophenotype that could be profiled with near 100% agree-
ment, but these cell types would not undergo EMT as readily.
Further, we observed differences in tractions after treatment
with EMT-inducing or -suppressing drugs, indicative of differ-
ences in drug sensitivity. Although computationally expensive,
we envision that time-lapse imaging of clusters and associated
tractions could further reveal how clusters interconvert between
mechanophenotypes.

Clusters may also experience local differences in matrix prop-
erties, which could further amplify the measured phenotypic
heterogeneity across different clusters. Fibrillar networks such
as collagen I can be locally heterogeneous due to polydisperse
fiber lengths and differences in connectivity, resulting in non-
affine deformations, nonlinear elasticity, and partially inelastic
behavior (50). Moreover, clusters can locally degrade, deposit,
or strain-stiffen the collagen I (30, 31, 51–53), as well as degrade
silk fibroin (54). Our DART analysis only considers cluster-
generated displacement fields relative to a reference state after
the completion of the experiment and is agnostic to material
properties, analogous with our previously demonstrated MDM
analysis (29). Our measurements show that the spatial distri-
bution of tractions are relatively consistent within experimental
conditions, although they differ appreciably across conditions.
In comparison, the magnitude of these displacements is rela-
tively similar across experimental conditions, although we cannot
discount some attenuation due to local alterations of matrix
properties. An interesting possibility is that strong disagree-
ment between cluster morphology and local displacements would
indicate that matrix degradation or plastic deformation domi-
nate over an elastic response, requiring additional corroboration.
Improved constitutive equations could be used to determine
cell-generated stresses (13), which could further improve our
phenotypic classification. Differences in traction signature could
potentially be driven by differences in ECM deposition. As an
example, epithelial clusters exhibit “orbiting” motions as they
deposit basement membrane around the periphery (55, 56). Our
measurements of increased circumferential tractions in epithelial
clusters are consistent with this mechanism. In future work, we
envision additional characterization of local matrix microstruc-
ture and mechanics using optical tweezers (28, 31) or direct
imaging of fibers (26).

In conclusion, DART establishes a quantitative and scalable
framework to profile the heterogeneous matrix deformations of
3D multicellular clusters. Our analyses reveal that collective trac-
tions are spatially nonuniform and cannot be captured using
existing spherically symmetric (one-dimensional) analyses for
individual cells or multicellular spheroids. We show that epithe-
lial mechanophenotypes typically apply protrusive, circumfer-
ential, and contractile matrix deformations, while transitory
mechanophenotypes after EMT exhibit mostly contractile and
circumferential deformations that are widely distributed, and
mesenchymal clusters exhibit localized contractility in only a few
locations. We perturbed these behaviors using the microtubule
stabilizer Taxol, which biases toward transitory or mesenchy-
mal mechanophenotype, while also enhancing protrusions. In
comparison, the EGFR inhibitor gefitinib drives clusters toward
either epithelial or mesenchymal mechanophenotype in OHT-
treated conditions, but has minimal effect on epithelial (DMSO)
or mesenchymal (OHT-pretreated) mechanophenotypes. Thus,
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DART captures heterogeneity both within and across clusters
in response to biochemical stimulation, with particular relevance
for EMT in circulating tumor-cell clusters during cancer metasta-
sis (12). We envision that DART can be implemented with a wide
variety of 3D biomaterials at a 96-well-plate scale or beyond,
enabling higher-throughput mechanophenotyping of organoids
in 3D culture, including preclinical testing of human patient
samples with personalized treatments.

Materials and Methods
Cell Culture and Matrix Preparation. MCF-10A mammary epithelial cells sta-
bly transfected with an inducible Snail expression construct fused to an
ER response element were a gift from D. A. Haber, Massachusetts Gen-
eral Hospital, Boston, MA (37). This cell line also overexpressed fluores-
cent proteins in the nucleus (mCherry-H2B) and cytoplasm (GFP) for live
cell tracking. MCF-10A cells were routinely cultured in growth medium
consisting of Dulbecco’s modified Eagle medium/F12 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid buffer (Fisher catalog no. 11330057) sup-
plemented with 5% horse serum (Fisher catalog no. 16050122), 20 ng/mL
Animal-Free Recombinant Human EGF (PeproTech catalog no. AF-100-15),
0.5 mg/mL hydrocortisone (Sigma catalog no. H0888), 100 ng/mL cholera
toxin (Sigma catalog no. C8052), 10 µg/mL insulin from bovine pan-
creas (Sigma catalog no. I1882), and 1% penicillin–streptomycin (Fisher
catalog no. MT-30-002-CI).

Silk fibroin solution was extracted and purified from silkworm (Bombyx
mori) cocoons (Treenway Silks), as described (36). Composite silk–collagen
hydrogels were prepared through sonication-induced gelation initiation
of silk fibroin, followed by the addition and neutralization of collagen
I from rat tail tendon (Corning catalog no. 354249) to achieve a final
hydrogel containing 7.5 mg/mL silk fibroin and 1 mg/mL collagen I (see
SI Appendix for details). Briefly, silk fibroin was mixed into medium and
then sonicated; 1 N sodium hydroxide was added in to achieve a final
pH of 7.4; collagen I was mixed in well, followed by the addition of 5%
1-µm fluorescent carboxylate-modified beads (Fluospheres; red 580/605);
and, lastly, a single-cell suspension in medium was mixed in to yield
120,000 cells per mL.

Cells were embedded in 3D silk–collagen hydrogels with three exper-
imental conditions: 1) Cells were cultured in 0.05% DMSO (the solvent
used to suspend OHT) for 72 h in 2D culture, then embedded in 3D
hydrogels with DMSO treatment. This condition served as the nega-
tive control and defined the “epithelial” mechanophenotype. 2) Cells
were treated with 0.05% DMSO for 72 h in 2D culture, as in condi-
tion 1, then embedded in 3D hydrogels with 500 nM OHT (Sigma cat-
alog no. H7904). This condition induces Snail expression through an ER
construct (37) and defined the “transitory” mechanophenotype. 3) Cells
were treated with OHT for 72 h in 2D culture to induce EMT and then
embedded in 3D hydrogels with sustained OHT treatment to maintain
Snail expression as a positive control, which defined the “mesenchymal”
mechanophenotype.

Confocal Microscopy and Image Analysis. Multicellular clusters and corre-
sponding matrix displacements were imaged after 7 d of culture by using
a Nikon Eclipse TiE fluorescence microscope with spinning-disk confo-
cal head (Crest Optics X-light V2), with a light-guide coupled solid-state
illumination system (Lumencor Spectra-X3), scientific complementary metal–
oxide–semiconductor camera (Andor Neo), 20× Plan Apo objective (NA
0.75), GFP/fluorescein isothiocyanate Filter Set (Chroma catalog no. 49002),
and tetramethylrhodamine isothiocyanate/DSRed Filter Set (Chroma catalog
no. 49004). For the duration of time-lapse imaging, cells were maintained
in a humidified environmental chamber at 37 ◦C and 5% CO2. For matrix-
displacement measurements, NIS Elements was used for automated image
acquisition with z steps of 0.6 µm from the bottom of the well to a
height of 75 µm under consistent exposure times, camera gain/gamma
control, and aperture. All clusters analyzed were positioned in the cen-
ter of the well and fully surrounded by 3D matrix, in order to avoid
artifacts from longer-ranged mechanical interactions with the plate bound-
aries. The cluster centroids were uniformly distributed in z throughout
the imaging volume, and any clusters observed to adhere to the bottom
were discarded. Visually, it was quite apparent when clusters mechanically
interacted with the bottom, since they would preferentially disseminate
downward through durotaxis, and so these clusters were not analyzed
further. Further, manual inspection of DART plots across the remaining
analyzed clusters confirmed that trends were consistent throughout the
imaging volume at different heights. Images were acquired at 4-h intervals

over a large number of wells (n ≈ 48 for each experiment) for a total of
16 h. In these experiments, cell cytoplasm was imaged in GFP and beads
in the red fluorescent protein channel. At the end of time-lapse imag-
ing, a reference state for the gel was obtained by lysing the cells within
the hydrogels via sodium dodecyl sulfate. Since clusters remained relatively
small at day 7 (<10 cells), every cell within the cluster was adherent to the
surrounding ECM. Thus, every cell within the cluster was exposed at the
periphery and would be lysed at the same time, regardless of experimental
condition.

Measuring 3D Cell-Induced Deformations via TPT. We utilized our previ-
ously developed TPT algorithm (39) to reconstruct the cell-induced 3D
displacement fields by tracking individual fluorescent polystyrene micro-
spheres (1 µm) embedded as fiduciary markers in the silk–collagen matrix.
The combination of light-emitting diode illumination-based spinning-disk
confocal microscopy and low-NA objective for low-cost, high-throughput
imaging of the 96-well-plate setup resulted in diminished signal-to-noise
volumetric images. A custom image-segmentation and filtering routine
was developed to allow precise and accurate localization and track-
ing using TPT for low-NA confocal imaging stacks (see SI Appendix for
details).

Cell-Cluster Surface Segmentation. The 3D cell-cluster surface was seg-
mented from volumetric images of fluorescently labeled cytoplasm inten-
sities (GFP channel). As a first step, the raw volumetric images were filtered
by using a median filter with a 3× 3× 3 voxel window to remove shot noise.
Following, the images were filtered with a 3D Gaussian filter with σ= 2.5.
The images were then binarized by using adaptive image thresholding
based on the local mean intensity (first-order statistics) in the neighborhood
of each voxel. The sensitivity for the adaptive thresholding was manually
set for each image to segment the cell clusters from the background appro-
priately. From the binary images, the small connected components having
a total number of voxels <8,000 were set to an intensity value of 0 in
the binary images. Morphological operations were performed to remove
holes in the binary images (57). The volumes of the segmented binary
images were increased by 1.6 µm through a distance transform. Due to
the large noise near the top and bottom of the volume, all of the voxels
in the top and bottom eight z slices were set to 0 in the binarized
images. The 3D triangulated cell-cluster surface was computed from the
binary images by using MATLAB’s isosurface estimation at a target voxel
value of 0.5. The triangulated cell-cluster surface mesh was smoothed by
using accurate curvature flow smoothing (58). Finally, the centroid of the
multicellular cluster was computed as the centroid of the segmented multi-
cellular cluster from the binarized volumetric images of the fluorescent cell
cytoplasm.

Statistical Analysis. Experiments were repeated three times (external repli-
cates), and a total of at least 40 clusters were analyzed per experimental
condition. To compare DART and shape metrics across phenotype con-
ditions, one-way repeated-measures (RM) ANOVA was used to check if
the treatment data satisfied the Shapiro–Wilk normality test with P <

0.05. If the treatment data failed the Shapiro–Wilk normality test, Fried-
man RM ANOVA on ranks for comparing treatment differences was
used. For all pairwise multiple comparisons, the Holm–Sidak posthoc test
was used. The differences were considered to be statistically significant
if P < 0.05. The statistical tests were performed by using SigmaPlot
(Version 12.0).

In the figures, we used boxplots to visualize the distribution for each met-
rics. As per convention, boxplots show the data median, first quartile, third
quartile, and data outliers marker through minimum and maximum values.
The dots on the boxplots show the raw data values. The white dashed lines
on the boxplots show the mean value. In the graphs, a statistically signifi-
cant difference between two treatments is shown by a line connecting their
boxplot with an annotation for the P value as follows: *P < 0.05; **P <
0.01; ***P < 0.001.

Data Availability. Code for DART Analysis is available at https://github.com/
FranckLab/DART. Image data are available in ref. 59.
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