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Abstract: Short-chain fatty acids (SCFA) are bacterial metabolites that can be found in periodontal
pockets. The expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1)
within the epithelium pocket is considered to be a key event for the selective transmigration of
leucocytes towards the gingival sulcus. However, the impact of SCFA on ICAM-1 expression by oral
epithelial cells remains unclear. We therefore exposed the oral squamous carcinoma cell line HSC-2,
primary oral epithelial cells and human gingival fibroblasts to SCFA, namely acetate, propionate
and butyrate, and stimulated with known inducers of ICAM-1 such as interleukin-1-beta (IL1β)
and tumor necrosis factor-alfa (TNFα). We report here that butyrate but not acetate or propionate
significantly suppressed the cytokine-induced ICAM-1 expression in HSC-2 epithelial cells and
primary epithelial cells. The G-protein coupled receptor-43 (GPR43/ FFAR2) agonist but not the
histone deacetylase inhibitor, trichostatin A, mimicked the butyrate effects. Butyrate also attenuated
the nuclear translocation of p65 into the nucleus on HSC-2 cells. The decrease of ICAM-1 was
independent of Nrf2/HO-1 signaling and phosphorylation of JNK and p38. Nevertheless, butyrate
could not reverse an ongoing cytokine-induced ICAM-1 expression in HSC-2 cells. Overall, these
observations suggest that butyrate can attenuate cytokine-induced ICAM-1 expression in cells with
epithelial origin.

Keywords: butyric acid; periodontium; intercellular adhesion molecule-1; oral biology; epithelial
cells; in vitro

1. Introduction

Oral health requires the cellular immunity of the oral mucosal barrier that extends towards the
periodontium to defend the tooth-bearing tissue against commensal microbes and other antigens of
the oral cavity [1]. The junctional epithelium controls the transmigration of neutrophils towards the
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crevicular fluid by means of a tightly controlled expression of adhesion molecules, thereby defending
microbiological antagonism in the periodontal tissue [2,3]. Thus, the increase of adhesion molecules by
inflammatory mediators has to be counterbalanced by local cues to control an excessive influx of cells
of the innate immune system.

The influx of cells is controlled by intercellular adhesion molecule-1 (ICAM-1), allowing the
transmigration of leucocytes which express the corresponding lymphocyte function-associated antigen-1
and macrophage adhesion ligand-1 [4]. ICAM-1, being induced by inflammatory cues such as
interleukin-1-beta (IL1β) and tumor necrosis factor-α (TNFα) [5], is expressed by the vascular
endothelium and by the junctional epithelium [6], thus, facilitating transmigration of leukocytes across
vascular endothelia and the invasion of the extracellular matrix [7]. Although ICAM-1 is consistently
expressed by junctional epithelial cells in healthy gingiva and in pocket epithelium, it is not detectable
on the majority of keratinocytes in the external gingival epithelium [6,8]. The question then arises,
how is the expression of ICAM-1 in epithelial cells controlled?

The increase of ICAM-1 expression by inflammatory cues is evidently well-documented.
Inflammatory mediators including IL-6 and prostaglandin E2 increase ICAM-1 expression in human
oral squamous cell carcinoma SCC4 cells in vitro [9,10]. Primary gingival epithelial cells increasingly
express ICAM-1 upon inflammatory cytokines stimuli, namely, TNFα and interferon-γ [11]. Gingival
fibroblasts also express ICAM-1 in response to inflammatory cytokines [12]. Nevertheless, the opposite
effect, the down-regulation of ICAM-1, has not been conclusively defined. Down-regulation of ICAM-1
on bronchial epithelial cells has been observed with fenoterol, a β2-adrenoceptor agonist [13], and in
retinal pigment epithelial cells with bezafibrate, a drug to treat hyperlipidemia [14]. However, little is
understood about what decreases ICAM-1 expression in oral epithelial cells.

Short-chain fatty acids (SCFA) are mainly produced by Gram-negative bacteria, being acetate,
propionate, and butyrate the three most common molecules [15]. SCFA are found in the oral cavity,
particularly in dental plaque and sites with periodontal disease [16,17]. Millimolar concentration of
butyrate in the gingival crevicular fluid were correlated with gingival inflammation and periodontal
pocket depth [18]. Anaerobic bacteria in subgingival plaques such as Porphyromonas gingivalis, Treponema
denticola, Aggregatibacter actinomycetemcomitans, Prevotella intermedia and Fusobacterium nucleatum release
SCFA, including butyrate [17]. Furthermore, butyrate from oral environment can cross the gingival
barrier and potentially cause systemic inflammation and localized detrimental effects in the brain [19].
Taken together, it seems that butyrate and other SCFA are virulence factors in periodontal disease.

Butyrate can activate the free fatty acid receptor-2 (FFAR2), also known as G-protein coupled
receptor-43 (GPR43) [20], but also inhibit the histone deacetylase (HDAC) [21]. Using either of these
mechanisms, butyrate reduces proliferation and induces apoptosis in gingival fibroblast [22–25],
stimulates T-cell apoptosis [26] and osteoblast maturation [27], as well as pro-inflammatory cytokine
release by neutrophils [28]. Butyrate also reduced integrin expression in Ca9-22 epithelial cells [23,29]
and promoted autophagy [30]. The presence of SCFA in the infectious site attenuates the neutrophils
response to A. actinomycetemcomitans as a result of the inhibition of specific isoforms of HDACs, namely,
HDAC 1 and 3, but not activation of FFAR2 [31]. Recent findings suggest that butyrate disturbs gingival
epithelial homeostasis and initiates expression of pro-inflammatory cytokine in vitro [32]. Thus, there
is accumulating evidence suggesting that SCFA has detrimental effects on cells of the periodontium.
However, with respect to the beneficial effects of butyrate on colitis [33,34], pathological bone loss [35],
anti-microbial activity [36], and on a M1-to-M2 shift in macrophages [37–39] it should not be ruled out
that SCFA may also contribute to tissue homeostasis by modulation of ICAM-1.

Butyrate markedly reduces ICAM-1 expression in the intestine of severely burned rats [40] and in
IL1β-stimulated chondrocytes [41]. Butyrate also reduces the expression of ICAM-1 in LPS-stimulated
mouse glomerular mesangial and Caco-2 cells [42,43], and cytokine-induced ICAM-1 expression in
cultured endothelial cells [44]. Conversely, other studies showed that butyrate increases ICAM-1 in
human gingival carcinoma cell line Ca9-22 [23,45], in acute myeloid leukemia cells [46] and endothelial
cells [47,48]. Owing to these inconsistent results, it cannot be predicted whether butyrate or other SCFA
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change the expression of ICAM-1 in oral epithelia cells. The aim of this study was thus to investigate
the influence of SCFA on the expression of ICAM-1 in oral cells with epithelial origin and to unravel
possible underlying signaling pathways.

2. Results

2.1. Cell Viability Upon SCFA Stimulation at Varying Concentrations

In order to evaluate the impact of SCFA on cell viability, an MTT assay, reflecting the
NAD(P)H-dependent formazan production, was carried out. To this end, HSC-2 and gingival
fibroblasts were exposed to different concentration of SCFA ranging from 1 mM to 100 mM (Table 1).
In case of acetate and propionate a concentration from 1 to 10 mM did not affect the viability of HSC-2
and gingival fibroblasts (Table 1). With respect to butyrate, a concentration up to 30 mM was tolerated
by both cell types without altering their viability. Together, these observations indicate that 10 mM of
SCFA is non-cytotoxic and therefore a suitable concentration for the following experiments.

Table 1. Cell viability of HSC-2 and gingival fibroblasts at varying concentrations of SCFA.

Cell Type HSC-2 Cell Line Gingival Fibroblasts

Concentration Acetate Propionate Butyrate Acetate Propionate Butyrate

100 mM 39.2 ± 5 46.4 ± 5.1 53.5 ± 5 12.5 ± 1.2 11.9 ± 1.5 10.1 ± 0.9
30 mM 45.8 ± 5.9 56.6 ± 5.8 95.8 ± 6 69.8 ± 4.5 74.5 ± 2.1 94 ± 0.5
10 mM 104.7 ± 6.1 113 ± 6.4 122.7 ± 6.5 96.3 ± 1.2 102.7 ± 1.2 122.3 ± 3.1
1 mM 125 ± 7.0 136 ± 5.6 139 ± 7.7 125.3 ± 6.7 130.4 ± 0.5 135.5 ± 6.5

HSC-2 cells and gingival fibroblasts exposed at different concentration of SFCA. Cell viability is represented by
formazan production indicated in percentage of unstimulated controls ± SD. Cells maintained their viability with
up to 10 mM of acetate and propionate, and up to 30 mM of butyrate.

2.2. Butyrate but Not Acetate and Propionate Decrease the Expression of ICAM-1 in HSC-2 Cells

Then, to examine the possible role of SCFA on ICAM-1 expression, the oral squamous cell
carcinoma cell line HSC-2 and gingival fibroblasts were cultured for 12 h with and without acetate,
propionate and butyrate. Subsequently, the cells were exposed for three hours to known inducers
of ICAM-1, namely IL1β and TNFα. Butyrate exposure at 10 mM dampened down the robust
cytokine-induced ICAM-1 mRNA expression in HSC-2 cells (p = 0.03; Figure 1A) but not in gingival
fibroblasts (Figure S1) or TR146 cells (Figure S2). In HSC-2 cells this suppression was dose-dependent
(Figure 1B) and independent of the type of cytokine (Figure S3). Acetate and propionate at 10 mM,
however, failed to cause a significant suppression of IL1β- and TNFα-induced ICAM-1 expression
(p > 0.05, Figure 1A). Western blot analysis confirmed the marked suppression of ICAM-1 by butyrate
(Figure 1C). Similarly, butyrate suppressed the cytokine-induced expression of ICAM-1 in primary
oral epithelial cells (Figure 2). Then, and in order to validate these observations, we used another
experimental setting using primary mouse macrophages [37–39]. Notably, butyrate was capable of
inhibiting the LPS- and saliva-induced ICAM-1 expression in primary mouse macrophages (Figure 3).
Collectively, these results suggest that butyrate suppresses the robust cytokine-induced ICAM-1
expression in HSC-2, primary oral epithelial cells and macrophages.
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Figure 1. (A) Butyrate suppresses the cytokine-induced expression of ICAM-1 in HSC-2 cells. HSC-2 
were exposed for 24 h to 10 mM of acetate (C2), propionate (C3) and butyrate (C4), and then 
stimulated for three hours with 10 ng/mL of IL1β and TNFα. (+), indicates presence; (-), indicates 
absence. Data represent the mean change of ICAM-1 expression ± standard deviation. n = 3. Statistical 
analysis was based on ANOVA test with Tukey`s multiple comparisons correction and significant p-
values are indicated. (B) Butyrate suppresses the cytokine-induced increase of ICAM-1 in a dose-
dependent manner. HSC-2 cells were exposed to different concentrations of butyrate in the presence 
of IL1β and TNFα. Data represent the mean change of ICAM-1 expression ± standard deviation. n = 3 
(C) Butyrate attenuates the IL1β- and TNFα-induced expression of ICAM-1. HSC-2 cells were exposed 
to 10 mM of butyrate (C4) in the presence or absence of 10 ng/mL IL1β and TNFα. 

 
Figure 2. Butyrate suppresses the cytokine-induced increase of ICAM-1 in primary epithelial cells. 
Cells were exposed to 10 mM butyrate (C4) in the presence of 10 ng/mL IL1β and TNFα. (+), indicates 
presence; (-), indicates absence. Data represent the mean change of ICAM-1 expression ± standard 
deviation. n = 3. Statistical analysis was based on t-test and p-values are indicated.  

2.3. Activation of FFAR2 Can Mimic the Activity of Butyrate on ICAM-1 in HSC-2 Cells 

To distinguish between the dual activity of butyrate to activate the SCFA receptor FFAR2/GPR43 
[20] from the histone deacetylase inhibition [21], HSC-2 cells were pre-exposed to a FFAR2/GPR43 
agonist and to trichostatin A, an inhibitor of histone deacetylases. After 24 h of stimulation, IL1β and 
TNFα were added to induce ICAM-1. Similar to butyrate, the FFAR2/GPR43 agonist significantly 
reduced the cytokine-induced expression of ICAM-1 in HSC-2 cells (Figure 4). In contrast, trichostatin 
A failed to inhibit the ICAM-1 expression. Surprisingly, the FFAR2 agonist GLPG 0974 failed to 
reverse the effects of butyrate on ICAM-1 expression (data not shown). Overall, these observations 
partially suggest that the suppression activity of butyrate is due to an activation of FFARs rather than 
an inhibition of the histone deacetylase activity. 

Figure 1. (A) Butyrate suppresses the cytokine-induced expression of ICAM-1 in HSC-2 cells. HSC-2
were exposed for 24 h to 10 mM of acetate (C2), propionate (C3) and butyrate (C4), and then stimulated
for three hours with 10 ng/mL of IL1β and TNFα. (+), indicates presence; (−), indicates absence. Data
represent the mean change of ICAM-1 expression ± standard deviation. n = 3. Statistical analysis
was based on ANOVA test with Tukey’s multiple comparisons correction and significant p-values
are indicated. (B) Butyrate suppresses the cytokine-induced increase of ICAM-1 in a dose-dependent
manner. HSC-2 cells were exposed to different concentrations of butyrate in the presence of IL1β and
TNFα. Data represent the mean change of ICAM-1 expression ± standard deviation. n = 3 (C) Butyrate
attenuates the IL1β- and TNFα-induced expression of ICAM-1. HSC-2 cells were exposed to 10 mM of
butyrate (C4) in the presence or absence of 10 ng/mL IL1β and TNFα.
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Figure 2. Butyrate suppresses the cytokine-induced increase of ICAM-1 in primary epithelial cells.
Cells were exposed to 10 mM butyrate (C4) in the presence of 10 ng/mL IL1β and TNFα. (+), indicates
presence; (−), indicates absence. Data represent the mean change of ICAM-1 expression ± standard
deviation. n = 3. Statistical analysis was based on t-test and p-values are indicated.
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Figure 3. Butyrate suppresses the LPS- and saliva-induced increase of ICAM-1 in primary mouse
macrophages. Cells were exposed to 10 mM of butyrate (C4) in the presence of (A) 100 ng/mL of LPS
and (B) 2% saliva. (+), indicates presence; (−), indicates absence. Data represent the mean change of
ICAM-1 expression ± standard deviation. n = 4. Statistical analysis was based on Mann–Whitney U
test and p-values are indicated.

2.3. Activation of FFAR2 Can Mimic the Activity of Butyrate on ICAM-1 in HSC-2 Cells

To distinguish between the dual activity of butyrate to activate the SCFA receptor FFAR2/GPR43 [20]
from the histone deacetylase inhibition [21], HSC-2 cells were pre-exposed to a FFAR2/GPR43 agonist
and to trichostatin A, an inhibitor of histone deacetylases. After 24 h of stimulation, IL1β and TNFα
were added to induce ICAM-1. Similar to butyrate, the FFAR2/GPR43 agonist significantly reduced the
cytokine-induced expression of ICAM-1 in HSC-2 cells (Figure 4). In contrast, trichostatin A failed to
inhibit the ICAM-1 expression. Surprisingly, the FFAR2 agonist GLPG 0974 failed to reverse the effects
of butyrate on ICAM-1 expression (data not shown). Overall, these observations partially suggest that
the suppression activity of butyrate is due to an activation of FFARs rather than an inhibition of the
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an ongoing ICAM-1 expression in inflammatory conditions (Figure 6). Moreover, three hours of pre-
exposure of HSC-2 cells with butyrate also failed to reduce the IL1β and TNFα-induced increase of 
ICAM-1, suggesting that a longer period of pre-incubation with butyrate is critical to obtain aICAM-
1 modulation [53]. 
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Figure 4. Activation of free fatty acid receptor-2 (FFAR2/GPR43) can mimic the activity of 10 mM
of butyrate (C4) on ICAM-1 in HSC-2 cells. HSC-2 cells were exposed to a FFAR2/GPR43 agonist at
30 µM and trichostatin A (TSA) at 10 nM, respectively, for 24 h before ICAM-1 was induced. (+),
indicates presence; (−), indicates absence. Data represent the mean change of ICAM-1 expression ±
standard deviation. n = 3. Statistical analysis was based on Mann–Whitney U test and t-test, p-values
are indicated.
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2.4. Butyrate Inhibits the Nuclear Translocation of p65 on HSC-2 cells

To explore a possible role of butyrate in inflammation, NF-kB p65 immunofluorescence was
performed [49]. The presence of 10 mM of butyrate inhibited the IL1β- and TNFα-induced translocation
of p65 protein into the nucleus in HSC-2 cells (Figure 5). Moreover, 10 mM of butyrate caused a
4-fold increase of β-arrestins-2 [50], known to be activated by FFAR2 receptor signaling, producing
anti-inflammatory effects by inhibition of NF-κB [51,52]. This observation implies a suppression of
the inflammatory activation by transcription factors triggered via NF-kB proteins that might involve
Nrf2-HO1 signaling. However, blocking HO1 activity with SnPP failed to reverse the effects of butyrate
on ICAM-1 expression in HSC2 cells (data not shown). Consistently, butyrate had no impact on HO-1
expression in HSC2 cells (data not shown) and the lack of Nrf2 had no impact on the suppression
activity of butyrate on the LPS-induced ICAM-1 expression in primary macrophages (Figure S4).
Since MAPK signaling cascade plays a key role in inflammation, we also examined the effect of butyrate
on p38 and JNK expression to determine whether the suppressive activity of butyrate involves the
MAPK pathway. Western blot analysis revealed that phosphorylation of p38 and JNK being involved
in ICAM-1 expression, was not affected by the addition of butyrate (Figure S5). Taken together, these
observations indicate that the ICAM-1-suppressive activity of butyrate is independent of Nrf2-HO1
and MAPK pathway.
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Figure 5. Butyrate suppresses NF-κB p65 translocation in inflamed HSC-2 cells. Butyrate at 10 mM
attenuates the intracellular translocation of NF-κB p65 into the nucleus, induced by 10 ng/mL IL1β and
TNFα in HSC-2. (wo), without. Representative immunofluorescence at 40x.

2.5. Butyrate Cannot Reverse the Acute Expression Levels of ICAM-1 in HSC-2 Cells

In the previous experimental setting, HSC-2 cells were exposed to butyrate for 24 h, before the
incubation with IL1β and TNFα, simulating a prophylactic effect of butyrate. To investigate the
possible role of butyrate in dampening the acute ICAM-1 expression, HSC-2 cells were exposed to
IL1β and TNFα for 1 h and then butyrate was added for another 3 h. In this setting, butyrate failed to
modulate the ICAM-1 expression in HSC-2 cells suggesting that butyrate can prevent but not reverse
an ongoing ICAM-1 expression in inflammatory conditions (Figure 6). Moreover, three hours of
pre-exposure of HSC-2 cells with butyrate also failed to reduce the IL1β and TNFα-induced increase of
ICAM-1, suggesting that a longer period of pre-incubation with butyrate is critical to obtain aICAM-1
modulation [53].
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3. Discussion

Our findings showed that butyrate but not acetate or propionate attenuates the cytokine-induced
ICAM-1 expression in oral squamous cells. This effect was consistent in all experiments performed,
being confirmed at the transcriptional and the protein levels. The changes of ICAM-1 expression were
further confirmed with primary oral epithelial cells and macrophages, while gingival fibroblasts failed
to respond to butyrate. These observations raise the hypothesis that butyrate can modulate epithelial
cell responses in the inflamed periodontium and thereby possibly influencing the ICAM-1-dependent
transmigration of leucocytes and immune cells. It seems reasonable to relate the production of butyrate
by periodontal pathogens with the severity of periodontitis. In this sense, a possible mechanism
might be that the reduction of ICAM-1 expression lowers the influx of leukocytes to the inflamed
tissue thereby hampering the immune system to tackle bacterial invasion. Nevertheless, further
research is required to elucidate the precise role of butyrate in the periodontal tissues under different
in vitro conditions.

Our research supports the role of butyrate to reduce ICAM-1 expression as observed in the
intestine of burned rats [40], stimulated chondrocytes [41], glomerular mesangial cells [42], colon cancer
cells [43], and endothelial cells [44]. These observations together with our findings are, however, in
contrast to those showing that butyrate increases ICAM-1 in gingival carcinoma cells [23,45], leukemia
cells [46] and endothelial cells [47,48]. Furthermore, high concentrations of butyrate provoke apoptosis
in inflamed human gingival fibroblasts and periodontal destruction [25,29]. The testing of acetate
and propionate was also hampered by the higher toxicity compared to butyrate. Surprising was that
although acetate and propionate are agonist for the FFAR2/GPR43, only butyrate caused the robust
and significant suppression of ICAM-1 expression [52]. Moreover, blocking of FFAR2/GPR43 by the
antagonist GLPG 0974 failed to reverse the effects of butyrate on ICAM-1 expression. This raises the
question whether the FFAR3/GPR41 is mediating the activity of butyrate [54]. Thus, further research is
necessary to unravel the underlying mechanism at the receptor level.

The FFAR2 receptor activates β-arrestins-2, producing anti-inflammatory effects by inhibition
of NF-κB [51,52] and ICAM-1 has a NFκB binding prompter region [55]. In support of this potential
mechanism, we show that β-arrestins-2 is increased by butyrate in HSC-2 cells. Hence, the blocking of
NFκB nuclear translocation likely reduces ICAM-1 expression, being in line with our main observations
on the regulation of ICAM-1 by butyrate. The reason why TR146 cells and gingival fibroblasts failed
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to respond to butyrate may be explained by their low increase of ICAM-1 expression in response
to inflammatory cytokines. However, also short-time exposure of HSC-2 cells to butyrate had no
considerable effect suggesting that not enough β-arrestins-2 is produced to reduce NF-κB signaling.
Certainly, the role of butyrate to change β-arrestins-2 expression and the involvement in ICAM-1
expression in HSC-2 cells should be investigated. Although many questions remain open, the present
data clearly show that butyrate can prevent the cytokine-induced ICAM-1 expression in oral squamous
cell carcinoma cells, primary oral epithelial cells and macrophages.

To better understand the underlying molecular mechanisms, the Nrf2-HO1 pathway was
investigated. Butyrate uses the Nrf2/HO-1 pathway to ameliorate diabetic nephropathy [56], to
regulate Th17/Treg cell balance [57] and to protects against high-fat diet-induced oxidative stress in
rat liver [58]. There is also evidence that butyrate inhibits the acute lung injury in mice by regulating
the NFκB signaling pathway [59]. Moreover, Nrf2-HO1 signaling is linked to ICAM-1 expression
in a mouse atherosclerosis model [60], in THP-1 macrophages [61], and HaCaT cells [62]. However,
in the present study, SnPP blocking HO1 activity could not reverse the inhibition of butyrate in
ICAM-1 expression. Indeed, macrophages from Nrf2 knockout and wildtype mice showed similar
inhibition of ICAM-1 expression. Even though Nrf2-HO1 signaling was a strong candidate to mediate
the effects of butyrate, this mechanism is presumably not relevant for the observations we have
reported here. Furthermore, butyrate failed to reduce the phosphorylation of p38 and JNK, both major
signaling molecules driving NFκB signaling and ICAM-1 expression in HSC-2 cells suggesting that
other pathways than Nrf2-HO1 and MAPK signaling are relevant to explain the strong inhibition of
ICAM-1 by butyrate [62–64].

Are the present findings clinically relevant? To answer that question, it is worth mention that
the commensal bacteria that induce a low-grade inflammatory state in the junctional epithelium
are likely the triggers of ICAM-1 expression and neutrophils migration [7]. Thus, there is strong
ICAM-1 staining of the junctional epithelium in both clinically healthy and inflamed tissue [2],
even though soluble ICAM-1 shed into the gingival crevicular fluid was higher in patients with
inflammation [63]. Considering that mice deficient in ICAM-1 have impaired immune function and
decreased inflammatory response [64], a decrease of ICAM-1 in epithelial cells caused by butyrate
might weaken the innate immunity and thus the local defense of the periodontium. Regarding the
role of ICAM-1 in macrophages, this also remains controversial. ICAM-1 deficiency increases M2
macrophage polarization and suppress tumor metastasis [65], but others reported that downregulation
of ICAM-1 in RAW264.7 macrophages resulted in inflammatory M1 polarization [66]. Therefore,
the possible implication of ICAM-1 expression in macrophages and its regulation by butyrate in
periodontal tissue homeostasis remains to be determined.

This study has limitations that need to be acknowledged. Our finding that butyrate protects cells
from cytokine-induced ICAM-1 expression in oral squamous cell carcinoma cells in vitro does not
necessarily explain the in vivo situation. Notably, butyrate failed to diminish an ongoing ICAM-1
expression in HSC-2 cells. It would be interesting to determine the impact of SCFA on periodontitis
by means of in vivo models. For example, it can be suggested to study the role of epithelial ICAM-1
on healthy periodontium, the impact of the SCFA receptors in this context, and whether butyrate
produced by periodontal pathogens plays a role in pathogenesis of periodontitis. Furthermore, exciting
questions about how SCFA from non-digestible nutritional fibers metabolized by gut bacteria [67] can
enter the bloodstream and elicit systemic effects should be addressed. An optimized diet rich in fibers
can reduce gingival and periodontal inflammation in humans [68,69]. This observation inspires further
research towards a possible beneficial role of butyrate on ICAM-1 expression in the periodontal tissue.
Moreover, future studies should be performed in FFAR2 and FFAR3-deficient mice asking if butyrate
can prevent inflammatory osteolysis [70,71], and if yes, if this effect also involves the blocking of the
histone deacetylase [72,73].

In conclusion, our findings that butyrate modulates the inflammatory response in oral epithelial
cells by decreasing ICAM-1 expression provide a new step towards understanding the effect of ICAM-1
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under inflammatory conditions. These in vitro data may inspire future research on the mechanisms
by which diet, microbiota and other factors influence the immune system and, consequently, the
development of inflammatory and infectious diseases.

4. Material and Methods

4.1. Cell Culture

Human oral epithelial carcinoma cells HSC-2 and TR146 were kindly provided by Prof. Rausch-Fan
from Medical University of Vienna, Vienna, Austria. Gingival fibroblasts and primary epithelial cells
were obtained from human gingiva harvested from extracted third molars of patients who had given
informed and written consent. Gingival fibroblasts were prepared by explant cultures. The epithelium
was separated from the underlying connective tissue after overnight dispase II (2.4 U/mL; Roche,
Mannheim, Germany) treatment, and preparation of single-cell suspension by means of trypsin (Lonza,
Walkersville, MD) digestion at 37 ◦C for 10 min. Epithelial cells were expanded in growth medium-2
(KGM-2; Lonza, Basel, Switzerland). The Ethics Committee of the Medical University of Vienna (EK NR
631/2007, 19 March 2019) Vienna, Austria, approved this protocol. Cell lines and gingival fibroblasts
were cultured in Dulbecco’s modified Eagle medium (DMEM, Invitrogen Corporation, Carlsbad, CA,
USA) supplemented with 10% fetal calf serum (Invitrogen Corporation, Carlsbad, CA, USA) and
antibiotics (Invitrogen Corporation, Carlsbad, CA, USA) at 37 ◦C, 5% CO2, and 95% humidity. Gingival
epithelial cells were cultured in keratinocyte growth medium-2 (KGM-2; Lonza, Basel, Switzerland) at
37 ◦C, 5% CO2, and at 95% relative humidity. Cells were seeded in growth medium at a concentration
of at least 30,000 cells/cm2 onto culture dishes one day prior to stimulation. Serum-free conditions
were used during cell stimulation. For the isolation and culture of murine bone marrow-derived
macrophages, BALB/c mice (Animal Research Laboratories, Himberg, Austria) of 6–8 weeks old were
purchased. Bone marrow cells were collected from the femora and tibiae and grown for 5 days in
Minimum Essential Medium Eagle-Alpha Modification (αMEM, Invitrogen Corporation, Carlsbad,
CA, USA), supplemented with 10% fetal calf serum and antibiotics, supplemented with 20 ng/mL
macrophage colony-stimulating factor (M-CSF; ProSpec-Tany TechnoGene Ltd., Rehovot, Israel). For
selected experiments, cells from Nrf2 knockout mice and the respective wildtype controls were used
(Prof. Florian Gruber, Department of Dermatology, Medical University of Vienna, Vienna, Austria).

4.2. Viability Assay

Epithelial HSC-2 cells and gingival fibroblasts were incubated with different concentrations of
acetate, propionate and butyrate (Sigma-Aldrich, St. Louis, MO, USA) or serum-free medium in
96-well plates (CytoOne, Starlab International, Hamburg, Germany). After 24 h, a final concentration of
0.5 mg/mL of a MTT - 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide – (Sigma-Aldrich,
St. Louis, MO, USA) solution was added to each well of the microtiter plate for 3 h at 37 ◦C. After
medium removal, formazan crystals were solubilized with dimethyl sulfoxide. Assessment of optical
density was carried out for 570 nm. Absolute numbers of optical density in the treatment groups were
expressed and presented as percentage of unstimulated controls ± standard deviation.

4.3. Cell Stimulation

Based on the findings from the viability assay, stimulation of HSC-2 cells and gingival fibroblasts
was performed with 10 mM of acetate, propionate and butyrate. As a basic setting for the experiments,
cells were exposed to SCFA for 24 h in serum-free medium before the addition of 10 ng/mL IL1β
and TNFα (ProSpec-Tany TechnoGene Ltd., Rehovot, Israel) for another three hours, after that gene
expression analysis of ICAM-1 was performed. Likewise, the oral squamous cell carcinoma cell line
TR146 was exposed to butyrate in the same conditions of HSC-2. Macrophages were exposed to SCFA
for 24 h in growth medium before the addition of LPS (100 ng/mL, LPS from Escherichia coli 0111: B4;
Sigma-Aldrich, St. Louis, MO, USA) or 2% of sterile pooled human saliva [74] for another three hours.
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For dose-response experiments in HSC-2 cells, concentrations of 1, 10, 30 and 100 mM of butyrate were
used. HSC-2 cells were further exposed to GPR43 (FFAR2) agonist (Merck KGaA, Darmstadt, Germany)
at 30µM and the histone deacetylase inhibitor trichostatin A at 10 nM (Sigma-Aldrich, St. Louis, MO,
USA) for 24 h before inflammation was induced accordingly. In another series of experiments, HSC-2
cells were exposed to IL1β and TNFα for 1 h followed by the exposure to 10 mM butyrate for three
hours, or exposed to butyrate either alone or in the presence of tin protoporphyrin IX dichloride (SnPP;
Sigma-Aldrich, St. Louis, MO, USA) at a concentration of 10µM. We have included a rescue experiment
by using the inhibitor of FFAR2 named GLPG 0974 at 10µM (Tocris Bioscience™, Abingdon, UK).

4.4. qRT-PCR Analysis

ExtractMe total RNA kit (Blirt S.A., Gdańsk, Poland) was used for RNA isolation. Reverse
transcription was then performed by means of SensiFASTTM cDNA (Bioline, London, UK). For
polymerase chain reaction, SensiFASTTM SYBR ROX Kit (Bioline, London, UK) on a Real-Time PCR
Detection System (Bio-Rad Laboratories, Hercules, CA, USA) was carried out. Primer sequences used
are described in Table 2. The mRNA levels were calculated by normalizing to the housekeeping gene
GAPDH using the ∆∆Ct method.

Table 2. Primer sequences.

Primer Sequence Forward Sequence Reverse

hICAM-1 cct tcc tca ccg tgt act gg agc gta ggg taa ggt tct tgc
hARRB2 caa ctc cac caa gac cgt caa ga ttc gag ttg agc cac agg aca ctt

hGAPDH aag cca cat cgc tca gac ac gcc caa tac gac caa atc c
hActin cca acc gcg aga aga tga cca gag gcg tac agg gat ag

mICAM-1 gtg atg ctc agg tat cca tcc a cac agt tct caa agc aca gcg
mGAPDH aac ttt ggc att gtg gaa gg gga tgc agg gat gat gtt ct

mActin cta agg cca acc gtg aaa ag acc aga ggc ata cag gga ca

4.5. Western Blot

After stimulation with butyrate for 24 h and the inflammatory cytokines IL1β and TNFα for
another three hours, HSC-2 cells were extracted with SDS buffer and inhibitors of protease (PhosSTOP
with cOmplete; Sigma-Aldrich, St. Louis, MO, USA), divided by SDS-PAGE and transferred onto
nitrocellulose membranes (Whatman, GE Healthcare, General Electric Company, Fairfield, CT, USA).
Thereafter, membranes were submitted to blocking process for 2 h and exposed to the first antibodies
(mouse ICAM-1 G-5 and actin C-2 both at 200 ng/mL; Santa Cruz Biotechnology, Santa Cruz, CA, USA)
for 24 h. In another series, HSC-2 cells were exposed to butyrate for 24 h and to the cytokines for 30 min
before exposed to antibodies against phosphorylated and complete p38 and c-Jun N terminal protein
kinase MAPK (both Cell Signaling Technologies, Danvers, MA, USA). Then, proteins were detected by
the appropriate HRP-conjugated secondary antibody at 40 ng/mL (Santa Cruz Biotechnology, Santa
Cruz, CA, USA). Subsequently, chemiluminescence detection (Clarity ECL Western Blot Substrate kit,
Bio-Rad Laboratories, Hercules, CA, USA) was performed with a ChemiDoc MP System (Bio-Rad
Laboratories, Hercules, CA, USA).

4.6. Immunofluorescence

Immunofluorescent analysis was performed on HSC-2 cells plated onto Millicell® EZ slides
(Merck KGaA, Darmstadt, Germany) treated with 10 mM of butyrate overnight and then exposed to
IL1β and TNFα for 30 min. Cells were fixed in 4% paraformaldehyde and blocked in 1% BSA and 0.1%
Triton in buffered saline before being incubated with nuclear factor kappa B (NF-κB) p65 antibody
(25 ng/mL, rabbit, Cell Signaling Technology, MA, USA) overnight at 4 ◦C. After washing, Alexa Fluor
488 secondary antibody (4 µg/mL; anti-rabbit, Cell Signaling Technology, MA, USA) was applied for
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1 h at room temperature. Glass slides were mounted and images were captured at 40x under a Zeiss
Axiovert 200 M fluorescent microscope (Carl Zeiss AG, Oberkochen, Germany).

4.7. Statistical Analysis

All experiments were repeated at least three times. Bars show the mean and standard deviation of
the data from all independent experiments. Normality of the data was assessed using the Shapiro-Wilk
test. Statistical analysis was based on t-test and ANOVA or Mann–Whitney U test depending on the
distribution of the data. Analyses were performed using Prism v7 (GraphPad Software, La Jolla, CA,
USA). Significance was set at p < 0.05.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/5/1679/
s1.
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