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Abstract: Additive manufacturing (AM) is a production process for the fabrication of
three-dimensional items characterized by complex geometries. Several technologies employ a
localized melting of metal dust through the application of focused energy sources, such as lasers or
electron beams, on a powder bed. Despite the high potential of AM, numerous burdens afflict this
production technology; for example, the few materials available, thermal stress due to the focused
thermal source, low surface finishing, anisotropic properties, and the high cost of raw materials and
the manufacturing process. In this paper, the combination by AM of meltable resins with metal casting
for an indirect additive manufacturing (I-AM) is proposed. The process is applied to the production
of open cells metal foams, similar in shape to the products available in commerce. However, their
cellular structure features were designed and optimized by graphical editor Grasshopper®. The metal
foams produced by AM were cast with a lost wax process and compared with commercial metal
foams by means of compression tests.
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1. Introduction

Additive manufacturing (AM) processes allow for the fast and accurate design of three-dimensional
components. Complex geometries can be reproduced by overlayering several micro-metric tiers of
metallic or polymeric materials. The dimension of the items in production can be directly obtained from
a Computer-Aided Design (CAD) file [1,2]. Several technologies are now available for AM production.
Mainly, they differ in layering process, operating principle, and suitable materials. In the Fused Head
Modeling (FDM), a movable head extrudes a thin wire of thermoplastic polymer. Controlling the
temperature after extrusion, the wire solidifies, creating a layer welded to the former. A wide range
of cheap and nontoxic polymers can be extruded in an Fused Deposition Modeling (FDM) process,
such as Acrylonitrile Butadiene Styrene (ABS), medical ABS, polyclactic acid (PLA), casting wax, and
elastomers [3,4]. Despite its simplicity, inexpensiveness, and the raw materials rendered, the surface
quality and accuracy are rather low compared to other technologies. However, FDM is still used for
the production of low-cost and low added-value components [5]. The stereolithography (SLA) is an
AM technology where a photosensitive resin after ultraviolet (UV) exposition hardens with a process
called photopolymerization. In SLA process, a substrate immersed in a liquid resin is the base for the
printing process. A low-power UV laser triggers the polymerization process, creating a solid layer on
the substrate surface [6]. An SLA device requires adequate hardware and software control systems to
achieve valuable results in terms of resolution and accuracy.
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AM processes for metallic materials represent an interesting technology in manufacturing
applications. The most applied AM processes for metals include laser beam melting (LBM), electron
beam melting (EBM), and laser metal deposition (LMD). Metallic parts produced by AM are more
suitable for industrial applications compared to polymeric parts. However, expensive machineries,
as well as low surface finishing and demanding process settings, limit the application of these
methodologies in industrial environments [7]. Metal foams are composed of biphasic and cellular
materials, which combine good mechanical resistance with excellent thermal and acoustic properties [8].
In particular, high specific strength [9–13] and strain [14–16], excellent energy absorption [17,18],
acoustic insulation [19], and heat dissipation media [20–24] make this class of materials increasingly
useful for several multifunctional applications. The main problem afflicting metal foams regards the
manufacturing process, and specifically the porosity distribution [25,26], as well as the connection with
other components. The latter is a critical factor in structural and heat-exchange devices, because welding
and brazing processes are time-consuming, costly, and not suitable for the most common materials
exploited in metal foams production. This burdens their feasibility in industrial applications [27,28].
The cellular configuration design is fundamental, as its purpose is the definition of a commercial
foam-like structure that matches specific application requirements. As a consequence of their random
structure, the foams offer very valuable materials for filters [29–31] or heat exchange processes [32–35].

2. Materials and Methods

The foam structure was realized using a method developed in a previous work [23]. The value
that defines the distribution of porosities within a metal matrix is defined as pores per inch (PPI).
It defines a linear distribution of pores; consequently, a specific volume distribution was defined as the
cube of PPI value. A random distribution of points, corresponding to cell cores, was used to populate a
reference volume. Consequently, the calculation of the points number was based on the designed metal
foam value of PPI. A tessellation of the domain of interest was performed with a Voronoi division of
space, D ∈R3. Defined a number of points in D,

{
Si(xi)

}
for i = {1, . . . , N}, every point is associated a

Voronoi cell, Ci, as follows:

Ci =
{
P(x) ∈ D

∣∣∣∣d(P, Si) ≤ d
(
P, S j

)
∀ j , i

}
(1)

where d(?,?) is the Euclidean distance. The points corresponding to cores were identified randomly in
a homogeneous distribution among the points generated. The cell individuated represents the space
control of a point, specifically the part of domain adjacent to the nearest point. Various algorithms
were proposed for realizing a Voronoi tessellation. In this paper, a cell-by-cell development procedure
is presented. A cell (Ci of point Si) with the same dimensions of the whole region was defined.
Subsequently, Ci was modified by a recurring procedure, where other points (S j) were examined by
improving gap from Si. After, each repetition (point S j), Ci was decreased to the convergence of the
previously estimated pore and the portion of space closer to Si than S j. This recursive procedure was
stopped when the distance between point Si and point S j became adequate for the half-space closer to
Si than S j to inevitably incorporate the entire cell. Equation (2) shows the isotropic criterion: d

(
S j, Si

)
> 2dmax

dmax = maxP∈Cid(P, Si) = maxP∈{Vi}d(P, Si) i

(2)

where {Vi} is the set of vertices of cell Ci. The cells found in this process identified the spatial pattern.
Convex polyhedral intersecting along flat faces was achieved. The process to obtain Voronoi structure
was implemented as visual programming code inside Grasshopper®environment. The process applied
to achieve the foam structure is reported in Figure 1. The volume of the foam sample was determined.
Subsequently, tessellation process was performed; the pores were generated, creating a random cloud
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of points within the volume. These points determined the Voronoi cells; afterwards, the morphology
exploited to produce the CAD model of the foam was obtained.
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Figure 1. Process to achieve random structure in a space region by Voronoi tessellation [23].

In the industrial applications, 5 and 10 PPI represent the common value of pores densities.
In addition to these two densities, an intermediate value of 7 PPI was achieved. The number of pores
used to obtain specific morphology was explained in Table 1.

Table 1. Number of pores of foams designed in this work.

PPI Pores Per Centimeter Specific Pores (pores/cm3) Number of Pores

5 1.968 7.628 183
7 2.756 20.931 502
10 3.937 61.024 1,465

Voronoi Tessellation enables individuation for each point of the set a cell. The individuated
cell represents a portion of space corresponding to the influence region of a specific pore. The cell
determines the region of space where all points of the space are closer to the core point than to any other.
For each defined core, the convex cell was determined by axial planes of the segments that assemble
it to the adjacent cores. Segments obtained from the reticular structure were thickened to 0.4 mm to
achieve ligaments corresponding to commercial foams characteristics. Open surfaces and repeated
entities were removed to achieve the printable model. Connecting rays were added in the junction
between segments to achieve a structure comparable to commercial foams. The sacrificial pattern was
obtained by a stereolithography 3D printer XFAB 2000 DWS (DWS, Thiene, Italy). The working area of
the 3D printer is equal to a cylinder with a diameter of 180 mm. The machine utilizes a Solid State
BluEdge®BE-1300X proprietary laser (DWS, Thiene, Italy), which permits achieving slicing in a range
of 10–100 µm. The material exploited was FUSIA 444 (DWS, Thiene, Italy), which is a photosensitive
resin for DWS 3D printers (DWS, Thiene, Italy), suitable for casting processes of elaborated models
and thin details. The reticular structure of the CAD model helps avoid adding supports for the correct
realization of the sacrificial pattern. The models obtained by additive procedure were situated in
a UV oven for 1 h to complete the resin polymerization. Afterwards, the printed component was
integrated in mold plaster (Ultra-Vest®MAXX, Ransom & Randolph, Maumee, OH, USA). The plaster
powder was diluted in water at 25 ◦C, and the solution soaked and stirred at 316 rpm for 1 and 4 min,
respectively. The mix was then poured into a foundry cylinder. With the aim of dissolving potential
air inclusions, a vacuum machine and a vibrating platform were exploited in the plaster finishing.
The plaster mold was dried at room temperature for 2 h, then the dewaxing process was exploited.
Next, it was thermally treated. The thermal cycle, reported in Figure 2, provides for three heating
ramps followed by a plateau. The thermal program is critical in order to remove material of sacrificial
pattern from the mold and reach the casting temperature.
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Figure 2. Thermal cycle exploited for shape preparation and model dewaxing.

In parallel, the aluminum alloy EN43500 was heated to a temperature of 730 ◦C and mixed by
low-frequency pulses before the casting. To realize the casting process, a molding device working in a
vacuum condition was used. A casting temperature of 1,450 ◦C was reached with an accuracy of 4 ◦C.
Following the casting process, the cylinder was cooled for six hours; subsequently, the plaster was
opened. The casting achieved was cleaned from the pouring channels and the sprues. Then, the raw
was machined to obtain a sample with dimensions of 20 × 20 × 40 mm, and specimens of comparable
dimensions were produced from two typologies of commercial metal foam (m.pore®by MAYSER,
(Mayser GmbH & Co KG, Lindenberg, Germany) and duocel®by ERG, (ERG Aerospace Corporation,
Oakland, CA, USA). The commercial metal foams used in this work were both 10 PPI. Furthermore,
both the commercial samples are produced with the same alloy exploited for the casting of the designed
foams. Duocel®and m.pore®metal foams are realized by investment casting of polyurethane foam.
In the former, the section of metal foam ligaments is variable in function of its relative density and
process parameters. The duocel®metal foam ligaments section, achieved from the samples exploited in
the present work, is triangular with the side pair of 0.4 mm, and the ligaments section of m.pore®metal
foam is triangular with the side pair of 0.7 mm. To define the mechanical properties and compare the
commercial models and designed foams, compression tests were realized. A standard mechanical tests
device, “MTS 50 Insight” (MTS Systems Corporation, Eden Prairie, MN, USA, and a 50 kN load cell
(MTS Systems Corporation, Eden Prairie, MN, USA) were used. The compression tests were realized
under a constant deformation rate of 1 mm/min (quasi-static condition). As an end-test, condition
was imposed: the achievement of 80% of deformation from the initial dimension. For each type, three
specimens were prepared to verify the repeatability of the tests. From the stress-strain diagrams, it was
possible to extrapolate the energy absorbed by the specific structures. The collapse stress “σ” was
evaluated as a ratio between force F (N) and an apparent cross-sectional area A (mm2) of the sample

σ =
F
A

(MPa) (3)

Strain ε (%) was calculated from the deflection L (mm) and initial height h (mm) of the specimen

ε =
L
h
·100 (%) (4)
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Deformation energy absorbed W (J) needed for deformation up to L

W =

∫ L

0
F(L)dL (5)

3. Results and Discussion

By exploiting the algorithm that had been developed, reticular random structures were realized.
The nature of the cellular structure made the foam self-supporting. Therefore, the application
supporting elements during the foam model manufacturing was redundant and unnecessary.

In contrast to the commercial foams, the morphology achieved shows the number of cells required
in order to be classified with the correct PPIs number. The cell number of the designed foam is required
to allow the classification in the theoretical PPI number; in this way, CAD models are completely
controllable as parameters. During the casting, while the structure thickened and the PPI increased,
no damage in the gypsum shape was produced, confirming the goodness of the thermal cycle chosen.

Figure 3 highlights the similarity between the CAD model, AM model, and cast specimen. It shows
the compliance of structure carried out in the various sub-processes. Therefore, there is full control of
structural parameters, such as the number of cells and ligaments dimensions.
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Figure 3. Comparison between (a) CAD model, (b) printed model, and (c) specimen obtained from
foundry [23].

The accuracy of the designed process led to the achievement of samples with the same PPI
numbers as the CAD model. The PPI number is a statistical classification, as it is strongly influenced
by the manufacturing process. Mainly, it affects the distribution and the shape of the cavities within
the foam. The two commercial foams exploited in this paper were both characterized by a PPI number
equal to 10, but this is only a value to catalogue the porosity of commercial foams. However, they
highlight a different morphology from the cast 10 PPI specimen. In the indirect additive manufacturing
(I-AM) developed, the focus is on the modeling and not on the process parameters, as they provide
limited control of the structure. The overall quality of the commercial products available in the market
may be obtained only by means of a statistical approach. Figure 4 shows the metal foams object of this
work. The comparison between the pictures c) and e) of Figure 4 shows how linear the ratio of 1:2 is,
as expected from the observation of 5 and 10 PPI foams.
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Figure 4. Metal foams object of this work: (a) m.pore®, (b) duocel®, (c) 5 pores-per-inch (PPI) designed,
(d) 7 PPI designed, and (e) 10 PPI designed.

The compression tests of the same foam type have the same mechanical behavior, highlighting the
repeatability of the characteristics obtained. During a compression test, three areas can be individuated:
an elastic, a plateau, and an ending zone where the specimen failure occurs. Figure 5 shows a designed
specimen of 10 PPI during the compression test. In the second frame of the first row, there is the end of
the elastic stretch, while in the second frame of the second row there is phenomenon of densification
of the cells. Plastic deformation and fracture of cell wall progress simultaneously to a distinct peak
followed by a small stress drop. This behavior is evident in the sequence frames. The densification
phenomenon involves an extremity of the sample with a slow propagation on the rest of the specimen
until reaching a deformation of 50%. After the collapse of the structure, densification involves the
whole morphology, and the stress/strain curve starts again with a significant increase.
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Figures 6 and 7 show the stress-strain curves. The curves obtained are in accordance with typical
stress-strain curve of solid foams. The plateau is rather smooth and corresponds to progressive cell
collapse by elastic buckling, plastic yielding, or brittle crushing. Figure 6 shows the stress-strain curves
obtained from compression tests of commercial foams. The curves show a very slight dispersion
of data between them. This is due to the fact that ligaments tend to compact without breaking up
during breakage. This behavior is in agreement with the fact that both foams have very similar
production processes that statistically exhibit replicable behavior. Figure 7 shows the stress-strain
curves of designed foams and the comparison between different types of foams. The curves of the same
structure are similar, as they are on the same stress value. However, few oscillations are evident and
cause the breaking of different ligaments in the same level of deformation between different samples.
Designed 5 and 7 PPI foams have large cells and very long ligaments; in these tests, the oscillations
observed on the plateau are the results of breaking individual ligaments. The designed foams have a
section of ligament constant along its axis. In contrast, commercial foams have a variable section of
ligament, less in the mean section between the two ends and greater at the node. An additional possible
explanation for this behavior is due to the surface obtained in the samples made. Ligaments show
the profile of the layers created by the additive manufacturing process and reproduced by the casting
process. Ten PPI samples show different results; this behavior is the consequence of morphology
specimens. In fact, Figure 4 shows how the morphology of 10 PPI specimens are very different (a, b, e).
In particular, the mechanical performances increase because the duocel®foam presents a structure
closer than the m.pore®foam. In addition, designed 10 PPI foam shows a more constant section than
the duocel®foam. Morphological characteristics allow one to obtain performances of different orders
of magnitude, as shown in Table 2.

Table 2. Results of compression tests.

Typology Foam Specimen Relative
Density (%)

Y Strength
(MPa) Y Strain Densification

Strength (MPa)
Densification

Strain

Deformation
Energy

Absorption (J)

m.pore® 1 3.217 0.221 0.094 0.295 0.447 0.795
m.pore® 2 3.351 0.207 0.091 0.279 0.481 1.069
m.pore® 3 3.475 0.175 0.030 0.265 0.460 1.491
duocel® 1 7.804 1.276 0.059 1.993 0.499 6.494
duocel® 2 7.592 1.397 0.072 1.900 0.411 4.521
duocel® 3 7.745 1.337 0.058 2.087 0.454 4.394

5 PPI designed 1 9.133 1.080 0.064 0.589 0.698 10.682
5 PPI designed 2 8.430 1.057 0.040 1.260 0.705 12.419
5 PPI designed 3 8.932 1.220 0.022 1.232 0.846 18.403
7 PPI designed 1 20.462 9.457 0.052 9.532 0.835 112.677
7 PPI designed 2 20.326 7.955 0.051 7.907 0.764 98.823
7 PPI designed 3 19.769 8.295 0.060 7.730 0.780 96.485
10 PPI designed 1 20.913 6.985 0.040 11.937 0.507 88.822
10 PPI designed 2 22.643 8.780 0.057 9.777 0.636 105.762
10 PPI designed 3 20.036 8.327 0.125 7.720 0.666 89.701
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Figure 7. Stress-strain curves of designed foams. Respectively, (a) 5 PPI designed, (b) 7 PPI designed,
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It was noted that all the specimens show a trend regarding the energy of deformation and their
relative density that is calculated as the ratio between foam density and metal density.

As highlighted in Figure 8, there is a second degree polynomial correlation between the deformation
energy absorption and the relative density (R-square = 0.9674). This is an enhancement due to the
improved resistance of the material. The same behavior occurs when investigating the yield stress
(R-square = 0.9751). Improving the relative density led to increasing deformation energy and yield
stress, as it involves an increased working area section.
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The comparison between the duocel®foam and 5 PPI designed foam showed that, although the
samples present a similar value of relative density, the deformation energy absorption of designed
foam is superior to commercial foam. This consideration shows the influence of the morphology on
the mechanic characteristics. In fact, the foams with similar values of relative density show different
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geometrical characteristics of ligaments. These specimens display a similar density value, but the
designed foam exhibits twice the deformation energy absorption value of the commercial foam. These
results highlight the importance of the shape control functionalized to the specific application.

It has been noted that the specimens produced in this work during the compression test showed
the separation of ligaments. A Scanning Electron Microscopy (SEM) analysis was performed; Figure 9
displays a SEM image of a node of ligaments of 5 PPI designed metal foam. As highlighted in Figure 9,
printed layers were reproduced exactly by foundry process on ligament morphology. The morphology
characteristics highlighted are associated with resin foam printing process.
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Figure 9. SEM image of 5 PPI-designed metal foam.

4. Conclusions

This paper proposes the design and the production of metal foams with a completely customized
structure. An algorithm for the Voronoi tessellation of a specific region was implemented and led to
the realization of the cellular structure typical of metal foams.

The CAD files created were exploited for the production of the casting models by additive
manufacturing.

Comparing the CAD models with 3D models and cast components highlights the high accuracy
of this indirect additive manufacturing process in the production of metal foams. In contrast to the
commercial foams, it is possible to design and therefore produce metal foam featuring PPI value and
ligaments morphology in accordance with design needs. This allows for the design of components
dedicated to specific applications. Quasi-static compression tests performed on the commercial foams
and samples produced highlight the second-degree correlation between the density and deformation
energy absorption of the specimens. However, it is possible to evaluate the structural improvement for
the increase of the deformation energy. In particular, the 5 PPI designed structure, despite comparable
value of relative density, exhibits twice the deformation energy absorption value compared to the 10
PPI duocel®commercial foam.
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